
Managing Ontological Constraints

Yannis Kalfoglou
yannisk@dai.ed.ac.uk

David Robertson
dr@dai.ed.ac.uk

School of Artificial Intelligence,
Institute for Representation and Reasoning,

Division of Informatics,
University of Edinburgh,

80 South Bridge, Edinburgh, EH1 1HN, Scotland

Abstract

We explore the use of ontological constraints in a
new way: deploying them in a software system’s
formal evaluation. We present a formalism for
ontological constraints and elaborate on a meta
interpretation technique in the field of ontologies.
Ontological constraints often need enhancements
to capture application-specific discrepancies. We
propose an editing system that provides guidance
in building those constraints and we explain how
this helps us to detect conceptual errors that re-
flect a misuse of ontological constructs. We de-
scribe a multilayer architecture for performing
such checks and we demonstrate its usage via an
example case. We speculate on the potential im-
pact of the approach for the system’s design pro-
cess.

1 Introduction

In the AI ontological community most work is focused
on the two issues that ontologies claim to deliver: know-
ledge sharing and reuse. In the recent years, developments
in the field have been fast and new ways of developing,
browsing and editing ontologies have emerged. However,
the observed dearth of applications reported in [Usc98] is
a hard reality and ontological engineers are working hard

The copyright of this paper belongs to the papers authors. Permission to
copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage.

Proceedings of the IJCAI-99 workshop on
Ontologies and Problem-Solving Methods (KRR5)
Stockholm, Sweden, August 2, 1999

(V.R. Benjamins, B. Chandrasekaran, A. Gomez-Perez, N. Guarino, M.
Uschold, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-18/

to alleviate the situation. One problem in doing this is in
finding practical ways to make use of the collection of ax-
ioms(often in first-order predicate logic or similar notation)
which are intended by developers of formal ontologies to
constrain their use. This paper gives a novel way of mak-
ing use of these.

1.1 Ontological constraints

These are usually given as axioms in predicate calcu-
lus(or similar). We describe in textual form an axiom of
a formal ontology, the Process Interchange Format(PIF)
ontology([LGJ 98]):

“An object can participate in an activity only at
those timepoints at which both the object exists
and the activity is occurring”

This axiom can be formalised in predicate calculus as fol-
lows:

The role of this axiom is to restrict possible interpreta-
tions of the ontologically defined relation participates in.
So, whenever someone using the PIF ontology describes
the relation in a way that does not conform to the axiomat-
ised definition this will reveal a potential discrepancy. For
example, the following definition, which might be part of a
logic program using the ontology:

could be erroneous with respect to the axiom given above,
depending on how is defined for activit-
ies, despite the fact that it uses syntactically valid onto-
logical constructs. It reflects a misunderstanding of onto-
logy’s semantics and can only be detected by checking its
conformity with the ontological constraints.

Y. Kalfoglou, D. Robertson 5-1

As we describe later in the paper existing ontological ax-
ioms need to be enhanced to capture domain-specific dis-
crepancies. This practice is often encountered when we
move from top level ontologies down to domain specific
ontologies where the order of specificity increases .

This paper is organised as follows: in section 2 we
present a formalisation for ontological constraints along
with a meta interpretation technique that makes it possible
to check whether goals that succeed in the proofs viol-
ate those constraints. We present a flexible multilayer ap-
proach to facilitate this sort of checks and in section 3 we
elaborate on tools that help us to construct ontological con-
straints. We discuss benefits of the approach and demon-
strate a brief use of the multilayer architecture in sections 4
and 5 respectively. In section 6 we give pointers to related
work.

2 Formalising ontological constraints

In this section we present a formalisation for ontological
constraints and how we chose to represent them in a spe-
cific error format. In section 2.1 we elaborate on a generic
inference mechanism which is made explicit through meta-
interpretation and we present an error checking mechanism
tailored to the particular ontological constraints. In sec-
tion 2.2 we show how we realise this theoretical model in
a multilayer approach that combines the inference mechan-
ism along with the error checking and gives us additional
advantages which we discuss in the sequel. The ontological
constraints adopt the following notation:

where is a unit goal and are all vari-
ables in , and is a condition composed of logical
connectives() and/or unit goals. The condition
must be composed of valid ontological constructs and it
must be true when the unit goal is true.

We are interested in proofs over existentially quantified
goals, so the formula is transformed into a normal form
where the ‘ ’ operator below connects the original(left) to
the transformed version(right):

We then identify the predicate derived from the left hand
side of the original implication of formula and lose the
existential quantifier and outer negation since these expres-
sions will be used to test for errors on goals in the proof.
Hence, the right part of formula will be:

In [CJB99] the authors provide an account for various kinds of ontolo-
gies reported in the literature and elaborate on the role of domain-specific
and method ontologies for KBSs development.

So, for example, given the ontological constraint:
, a translation to normal

form will be:

As in formula , we transform formula to the specific
error format:

2.1 Meta interpretation in Ontologies

A common inference strategy in trying to establish truth
when proving goals is the goal reduction. This is made
explicit through meta interpretation based on the stand-
ard ‘vanilla’ model . We use by convention the predicate

as follows: is true if is true
with respect to the program being interpreted. The infer-
ence mechanism is given in FOPC notation:

(1)
(2)
(3)
(4)
(5)
(6)
(7)

The interpreter has the following declarative reading:
line (1) states that a conjunction of goals is true
when both and is true. Lines (2) and (3) state that a
disjunction is true when either or is true. Line
(4) deals with negative goals; it states that is assumed
true if we cannot prove . In lines (5) and (6) specific
idioms of the implementation language are treated; if
is a non logical expression like a meta-predicate then is
true if after applying successfully the relation
to obtain a new goal , is provable. If is a builtin
expression then it is always true. In line (7) the strategy of
goal reduction is realised: goal is true if there is a clause

in the interpreted program such that is true.
We define an error checking mechanism tailored to de-

tect ontological errors. It works with the inference mechan-
ism described above and uses ontological constraints of the
form given in section 2. The mechanism is given in FOPC
notation:

(A)

(B)
(C)

described in [Ste94].

Y. Kalfoglou, D. Robertson 5-2

(D)

(E)

(F)

(G)

We use the following predicates in the mechanism:

to denote that in trying to
prove a goal, , we discovered ontological errors,

;

to denote that the error
check we performed to goal, , yield the set of
ontological errors, ;

to denote
that we found an ontological error, , and its de-
pendent errors, , in trying to prove goal, .

The error checking mechanism can be given a declarative
reading: line (A) states that a conjunction of goals
will yield error, , if we can find error in trying to
prove , and error in trying to prove , and is
the union of and . Line (B) states that we get no
errors() on a negated goal when we cannot prove it via
the inference mechanism. This means that any errors in
the exploration of the failed proof are ignored. Line (C)
realises the error checking mechanism: a goal will yield
error if in applying the inference mechanism to prove
goal we can get its subgoal ; and we can find new error

on that subgoal, ; and we can perform an error check
on goal to yield error ; and is the union of and

. Line (D) states that we get no errors on goal when
cannot be proved through the inference mechanism or
is a conjunctive goal or is a negative goal.
Lines (E) and (F) implement the error checking: in

(E) we declare that an error check on goal will
yield a set of errors if we can find ontological er-
rors and its dependent errors on and set
is composed of all occurrences of and repres-
ented as the template . This
is an implementation of the standard builtin predic-
ate which has the following
meaning(quoted from [SIC95]): “ is the set of all in-
stances of such that is satisfied, where that
set is non-empty”. In (F) we declare that we get no errors
on goal if there is no ontological error on that goal.

Line (G) implements the interface to ontological con-
straints. It states that there exist an ontological error and

its dependent errors on goal , if an ontological con-
straint on goal is satisfied identifying the error , and we
can find its dependent errors regarding as a new goal
to check which is a replica of except that all its variables
are new. This is given by the standard builtin predicate

the meaning of which
is(quoted from [SIC95]): “ is a renaming of

, such that new variables have been substituted for all
variables in ”.

The advantage is that we separate the inference strategy
from error checking strategy. That means we can
plug-in another inference strategy(expressed as)
without changing the error checking strategy(expressed as

).
However, when we implement this inference mechan-

ism separately from the error checking one we have to face
some interesting issues. As we describe in the next section,
existing ontological constraints often need enhancements
with extra constructs to capture application specific errors.
Ideally, those constructs should be part of the ontology and
we should be able to check them in the same way as for ex-
isting constructs. In an approach where all ontological con-
structs and constraints belong to the same level, addition of
extra constructs might cause problems with the explana-
tion of errors with respect to their triggering conditions. If
those conditions use extra constructs which are not part of
the original ontology this should be made explicit through
the error checking mechanism.

To tackle these issues we invented an indexing format
to separate the specification that adopts the ontology con-
structs from the ontological constraints. In doing this, onto-
logical constraints are viewed as a meta-level specification
which makes it possible not only to perform the same sort
of checks on them with respect to meta-level constraints
but to apply the checks selectively on the layers you want.

To realise this we implemented a multilayer architec-
ture, which we describe in the next section, and we com-
bined the inference mechanism with the error checking
one. The whole combined meta-interpreter is explained in
[Kal99b]. To summarise the section we list below issues
that are tackled with the multilayer approach along with
pointers to the rest of the paper where we discuss their im-
plementation:

how to layer the error checks? see, section 2.2, real-
isation of multilayer approach;

where do ontological constraints come from? see, sec-
tion 3, where an editing system is discussed;

how are multilayer errors explained? - see, section 5
where an error check is realised at a meta layer

2.2 Multilayer architecture

In this section we describe the multilayer architecture we
adopt. We include a diagrammatic version of the multilayer

Y. Kalfoglou, D. Robertson 5-3

Figure 1: The Multilayer architecture. The right part shows the approach as a whole, whereas the left part is a magnific-
ation of a layer.

architecture at figure 1 where we include at the left part a
magnification of one layer. A description of a layer follows:

Specification construction starts by adopting the syntax
and semantics of the ontology. We use Horn Clauses as a
specification construction formalism with the normal Pro-
log execution model. This allows us to interpret the spe-
cification declaratively based on the underpinning compu-
tational logic while the procedural interpretation makes it
possible to check the correctness of the specification auto-
matically by using the meta-interpreter mechanism.

The ontological constructs will not be the only parts of
the specification. In fact, it is normally impractical to con-
struct an executable specification by using only the onto-
logy’s constructs. Other constructs are normally added to
customise the specification for the particular domain of ap-
plication. These will not benefit from the meta-interpreter
error checking mechanism but can be checked in the nor-
mal way.

Ontological axioms are used to verify the correct use
of ontological constructs in the specification. Their role
is to ensure that the correct interpretations of ontological
constructs will be given. This can be done automatic-
ally with the meta-interpreter and as we described in sec-
tion 1.1 there can be extra, application specific ontological
constraints that are constructed with the use of supporting
tools, like the editor we describe in section 3.

The specification along with the ontological constraints
is interpreted by the meta-interpreter. Whenever a state-
ment in the specification does not satisfy the ontological
constraints an error is reported.

The right part of figure 1 shows our approach in a mul-
tilayer perspective. This allows us to check the correct-
ness of ontological constraints themselves. Whether they
are provided by ontological engineers in the form of on-
tological axioms or are application specific error condi-
tions they may be erroneously defined. This could lead to
an erroneous error diagnosis with pernicious side effects.
However, our proofs that error exist are done using the
same mechanism as for specifications, making it possible
to define constraints on error ontologies. The advantage of
this approach is that we can use the same core mechanism,
the meta-interpreter program, to check specifications and
their ontological constraints simultaneously. Ultimately,
this layer checking can be extended to an arbitrary num-
ber of layers upwards, until no more layers can be defined.
A brief example of the multilayer approach is given in sec-
tion 5, while here we draw the attention of the reader to
the format we adopt to represent specification statements
in analogy with the clause/2 builtin predicate described in
section 2.1. The only difference is that we add one more
argument to the clause to indicate the index of a layer. The
format is as follows:
specification(Index,(A B))
The same addition has been made to the error description
format given in section 1.1.

3 Building ontological constraints

The existing set of ontological constraints can be augmen-
ted by adding extra constraints. A similar approach was

Y. Kalfoglou, D. Robertson 5-4

introduced in [UCH 98], where the authors report that
they had to add extra ontological axioms in their specifica-
tion formulation in order to prove some concepts that were
treated as primitives in the underpinning ontology. We have
elaborate further on the notion of defining extra, applica-
tion specific ontological constraints which results in a cus-
tomised axiomatisation. We believe that the user should be
provided with support in utilising both kinds of constraints,
existing and new ones tailored to the particular application.
Whatever the choice, the constructs used in the constraints
should conform to the ontology vocabulary and be consist-
ent with the existing constraints. However the application
specific constraints can use extra constructs which are not
part of the underpinning ontology.

With this aim in mind we have build two editing tools
that facilitate the construction of ontological constraints
and provide builtin checks for conflicts and subsumption
occurrence. We will elaborate on design choices and use of
these tools via two short example cases: a construction of a
generic constraint borrowed from the Process Interchange
Format(PIF) ontology and a construction of an applica-
tion specific constraint borrowed from our work([Kal99a])
in the AIRCRAFT ontology application.

In the case of building a generic constraint the user can
define unary, binary and ternary relations that hold over on-
tological concepts and choose logical connectives to link
them. The collection of concepts from the ontology as well
as the distribution of variables that will be shared among
the literals is done automatically, the user only has to select
the concepts he wants to use. The result of editing an ax-
iom of the core PIF, which is given below in textual form:

“The before relation holds only between timepoints”

is as follows in FOPC notation:

If we are interested in using the constraint as an axiom
then at this stage we are ready to add it to the existing
ontology axiomatisation after a conflict and subsumption
checking is done. The sort of conflict check we apply de-
clares two axioms as being contradictory to each other if
after a matching of their heads have been successful, their
subgoals have the same symbols but still are not unifiable
after having their variables temporarily bounded. The sub-
sumption check will ensure that for two axioms that their
heads match, we won’t let a more generic one to sub-
sume an existing detailed one. This is a limited form of
subsumption check that will prevent specific information
loss caused by a generic axiom. For example, assume the

documentation for the PIF ontology can be found in [LGJ 98].
the AIRCRAFT ontology is documented online, in April of 1999 the

URL was: http://www.isi.edu/isd/ontosaurus.html.
In [VRMS99] the authors describe a use of the AIRCRAFT ontology.

axiom above, and that the ontology already contains the:
, this

will cause a subsumption warning to the user since vari-
ables and from the new axiom will subsume predic-
ates and , respectively. In both the conflict
and subsumption check no action is taken by the system
apart from warning the user because there are cases where
we might want to include both axioms in the ontology .

However, if the constraint is to be used as an error con-
dition not to be satisfied by the specification then we are
interested in the normal form of the above logical assertion.
We apply a standard set of rewrite rules to produce the nor-
mal form as a conjunction of literals. We apply these rules
exhaustively, and the axiom given above will automatically
translated to:

This will be transformed automatically to the error condi-
tion format we adopt:

error(Index, before(P,Q), (point(P) point(Q)))

where Index denotes the layer that this condition belongs to
which is the layer above the specification to be checked in
terms of the multi-layer architecture we presented in sec-
tion 2.2.

The second editing tool facilitates the construction of
application specific ontological constraints. It uses an heur-
istic for retrieving ontological relations as candidate parts
of the constraint to be build. The taxonomy of concepts is
taken into account to constrain the choices of the user in se-
lecting candidate relations and to verify that the maximum
possible set of relations is retrieved. Apart from these rela-
tions there is a choice of augmenting the constraint with
extra predicates or new relations to express complicated
constraints whenever this is not possible with the available
relations set. As in the previous editing tool the distribu-
tion of variables that will be shared among the constraint’s
literals is done automatically.

Let us look in detail the construction of the constraint we
used in the AIRCRAFT ontology experiment([Kal99a]).
Figure 2 illustrates a selection of ontological relations
drawn from the AIRCRAFT ontology which will be pro-
cessed by the extraction mechanism.

The relations retrieval is initiated by typing a keyword
which is an ontology concept chosen by the user. In our
example this keyword was the concept weapon. As we
can see from figure 2 the relations that hold directly over
this concept are target type and guidance. These
will be the first to accumulate as candidate ones. However,
by using the taxonomy of the ontology which declares that
weapon is a type of ordnance, we will retrieve the rela-

this is a debatable matter and [VJBCS98] elaborate on that issue.

Y. Kalfoglou, D. Robertson 5-5

enginename

aircraft

weapon

propellor engine ISA engine

ordnanceISA

flyingObjectISA

horsepower

numberpropellorEngine

max_speedmax_range

number numberflyingObject flyingObject

target_type guidance stores mission

weapon weapon guidanceType ordnance aircraft aircraft missionType

engine_manufacturer

(format: <child> ISA <parent>)

target

ISA taxonomy declarations:

Figure 2: A selection of relations from the AIRCRAFT ontology.The relations are represented as rectangular boxes with
the concepts that hold over stemming from them. We also include a subset of the ISA taxonomy declarations

tion stores as well. There are no more relations to be
retrieved based on the particular concept, so the mechan-
ism will proceed to retrieve potential relations based on
associated keywords. Those will be the remaining con-
cepts from the relations that already have been retrieved:
target, guidanceType and aircraft. The same process is ap-
plied for each of the new concepts which will result in the
retrieval of three more relations: mission, max range
and max speed. Any new concepts that will accompany
the new relations(i.e. number) will not be regarded as new
keywords to try since this will result in retrieval of rela-
tions dissociated with the original keyword. Therefore, at
this point the algorithm terminates since there are no more
relations to retrieve nor there are concepts from the original
retrieved relations set that haven’t been checked yet.

Once the candidate relations have been retrieved the user
selects the ones he wants to include in the constraint. In our
case, those were: stores and target type. The next
step is define a name for the constraint to be built, in our
case navyThreat and the type of variables that will be
used in the constraint’s head. Those are selected from the
ones that used in the constraint body. This step is illustrated
in Figure 3.

As we can see from the set of available variable types:
aircraft, target and weapon, the user has choose to define
one variable of type aircraft in the constraint’s head. In the
sequel, we bind the variables that will be shared among the
relations. Again the taxonomy of concepts is taken into ac-
count to automatically bind variables that are of the same
type or connected with an ISA relation. This is the case
for the concept weapon which is child of ordnance. Their
places in the relations will be occupied by the same vari-
able. Figure 4 shows a screenshot of the editor at this stage
of constraint building.

Only one variable has to be instantiated, the second vari-
able of relation target type. There can be an augment-
ation of the constraint with extra predicate or relations with
respect to this variable, but in our case, this was bounded
to the constant ‘Naval-Unit’.

The final step is to link the constraint literals with lo-
gical connectives(). After a conflict and subsump-
tion checking is done the constraint is ready to add in the
constraints base and transformed automatically in the error
condition specific format. We give them below in FOPC
notation and in error condition format:

in FOPC:

’Naval-Unit’

in error condition format:
error(Index,navyThreat(AIRCRAFT),

((aircraft(AIRCRAFT)
stores(AIRCRAFT,WEAPON)
target type(WEAPON,’Naval-Unit’)))).

3.1 Implementation

The editing tools were written in Java and are executable as
applets in Web browsers with Java support. Alternatively
they can run as Java applications. They serve as the front-
end of the ontological constraints manager implemented in
Prolog. We used the Java package jasper to link Prolog
with the Java front-end, which is a bi-directional Java to
Prolog interface developed from SICStus .

the package is documented online; the URL in April of 1999 was:
http://www.sics.se/isl/sicstus/sicstus 12.html.

Y. Kalfoglou, D. Robertson 5-6

Figure 3: A screenshot that shows the step of defining the head of the constraint to be built along with the type of variables
that will be used in it.

Figure 4: A screenshot that shows the step of instantiating variables in the constraint’s relations.

4 Benefits of the approach

The use of ontological constraints we propose has several
benefits for the system’s design process. We summarise
below the most important of them along with pointers to
documented work:

augmentation of specifications with formally defined
constructs drawn from the underpinning ontology.
We argue that these constructs might be reused in
other similar applications which may result in a
cost-effective solution for the design process. In
[Kal99a] we explore the feasibility of this approach
via an example case in the domain of ACP(Air Cam-
paign Planning) realised through the AIRCRAFT
ontology([VRMS99]);

use of ontological constraints to detect conceptual er-
rors in specifications that use ontological constructs.
This has a potential impact to the early phases of soft-
ware design since it makes it possible to detect errors
that were previously uncaught. Moreover, these on-
tological constraints might be reused to detect similar
kind of errors in other applications. In [Kal99b] we
present an application of this approach in the domain
of ecological modelling;

the multilayer architecture might be used to ease the
mapping of ontologies and spot mismatches of con-

cepts and relations in an arbitrary number of layers.
This may be useful when applied to methodologies
that impose a layered ontology design approach(see,
for example, [van98]).

5 Use of multi-layer architecture

We will demonstrate briefly a motivating example on the
use of the multi-layer architecture borrowed from the
PHYSSYS ontology. The ontology, which is is documented
in [BAT97], is a formal ontology based upon system dy-
namics theory as practiced in engineering modelling, sim-
ulation and design. It expresses different conceptual view-
points on a physical system and consists of three engin-
eering ontologies formalising these viewpoints. In our ex-
ample case we deal with one of these ontologies, the com-
ponent ontology.

The component ontology is constructed from mere-
ology, topology and systems theory. To quote [BAT97]:

“In a separate ontology of mereology a part-of-
relation is defined that formally specifies the in-
tuitive engineering notion of system or device de-
composition. This mereological ontology is then
imported into a second separate ontology which
introduces topological connections that connect
mereological individuals. This topological on-
tology provides a formal specification of what

Y. Kalfoglou, D. Robertson 5-7

Figure 5: The component view of a physical system: It shows the topology for an air pump. Sub-components are drawn
inside the area defined by their super-component. The small solid blocks are the interfaces through which components are
connected.

the intuitive notion of a network layout actually
means and what its properties are. The ontology
of systems theory includes the topological onto-
logy and defines concepts like(open or closed)
systems, system boundary, etc., on top of it.”

To demonstrate a component viewpoint based on the
component ontology, we illustrate in figure 5 (borrowed
from [BAT97]) a structural-topological diagram for a phys-
ical system, like an air pump.

The principles underlying the construction and usage of
the PHYSSYS ontology are beyond the scope of this paper;
we point the interested reader to [BBWA96] for further de-
tails. In the sequel, we elaborate on the application of the
multi-layered architecture to each of the three ontologies
included in the component ontology: mereology, topology
and systems theory.

All the ontologies were implemented, originally, in On-
tolingua using the Ontology server([FFPR96]). We trans-
lated them to the target language we use: in Prolog. Al-
though we could use the automatic translation provided by
the server we chose to do this manually. This made it easier
to translate selective parts of the ontologies while pre-
serving the syntactic elegance of the resulting Horn clauses.
In [Bri99] the author elaborates on the Ontolingua syntax
to Prolog translation issue.

5.1 Mereology - Layer 2

The top layer of the architecture, layer 2, consists of the
mereology ontology. It provides definitions for mereolo-
gical relations to specify decomposition and the properties
that any decomposition should have. We rewrite Ontolin-
gua statements of the form: as: for spe-
cification statements and as ontological axioms
which must not be violated. These can be rewritten as error
conditions, as we described in an earlier section(2), of the

form: . An excerpt of the mereology onto-
logy is given below in the specification format we adopt:

specification(2,(individual(X) equal(X,X))).
specification(2,(proper part of(X,Z) part of(X,Z))).
specification(2,(proper part of(X,Z) part of(X,Y)

proper part of(Y,Z))).
specification(2,(direct part of(X,Y) proper part of(X,Y)

(proper part of(Z,Y)
proper part of(X,Z)))).

specification(2,(disjoint(X,Y) (equal(X,Y)
(proper part of(Z,X)
proper part of(Z,Y))))).

specification(2,(simple individual(X) individual(X)
proper part of(,X))).

The declarative reading of these clauses is the follow-
ing: the first clause realises the notion of mereologically
individual. An individual X is a mereological individual
when equal(X,X) holds. The relation equal(X,Y)
defines which individuals are considered to be mereolo-
gically equal and it usually holds for equal(X,X). The
second and third clause represent the proper part of
relation. When an individual, X, is part of individual Z
then the proper part of relation holds. In the third
clause the recursive definition of proper part of real-
ises the transitivity property. We use the part of/2
predicate to express static relations that hold with re-
spect to the air pump system illustrated in figure 5. The
direct part of/2 predicate realises the direct relation
of individual X to individual Zwithout the transitivity prop-
erty taken into account. Clause disjoint/2 holds for in-
dividuals that are not mereologically equal or do not share
a part. Finally, the simple individual/1 predicate
states that an individual X is regarded as a simple individual
when it has no decomposition.

Apart from these specification statements we can also

Y. Kalfoglou, D. Robertson 5-8

write down, directly from the Ontolingua syntax, error con-
ditions with respect to the specification given above:

error(3,individual(X), equal(X,X)).
error(3,proper part of(X,Y),proper part of(Y,X)).
error(3,direct part of(X,Y), (proper part of(X,Y)

(proper part of(Z,Y) proper part of(X,Z)))).
error(3,disjoint(X,Y), (equal(X,Y)

(proper part of(Z,X) proper part of(Z,Y)))).
error(3,simple individual(X), (individual(X)

proper part of(,X))).

Notice that the individual, direct part of,
disjoint and simple individual error conditions
are identical to the preconditions of corresponding axioms
in the specification. This is because each error/precondition
pair was obtained by “splitting” a double implication, as
described earlier. In such circumstances the specification
clauses are guaranteed to be consistent with the error con-
ditions but this can change if we add new clauses to the
specification or adapt it.

According to the multi-layered architecture presented in
section 2.2 the specification statements are placed in layer
2 while the error conditions that monitor them belong to a
layer above, layer 3. In layer 2 we found also definitions
of monadic predicates equal/2 and part of/2with re-
spect to instances of the air pump system.

5.2 Topology - Layer 1

At layer 1 of the architecture we place the topology on-
tology. This ontology provides the means to express that
individuals are connected. Axioms ensure that only sound
connections can be made. We apply the same principles
to transform the Ontolingua syntax in the specification
format:

specification(1,(connection(C) connects(C,X,Y))).
specification(1,(connects(C,X,Y) (connect(C,X,Y)

connect(C,Y,X)))).

The first clause states that a connection C connects two
individuals X and Y. The connects/3 predicate realises
the symmetrical property that holds for the connects rela-
tion. It uses the predicateconnect/3 to express instances
with respect to the air pump system in figure 5. These are:

specification(1,(connect(valve1 X reservoir,
valve1,reservoir) true)).

specification(1,(connect(reservoir X valve2,
reservoir,valve2) true)).

specification(1,(connect(bellows X reservoir,
bellows,reservoir) true)).

specification(1,(connect(lever X bellows,
lever,bellows) true)).

specification(1,(connect(coilMagnet X lever,
coilMagnet,lever) true)).

specification(1,(connect(airSupply X valve1,
airSupply,valve1) true)).

specification(1,(connect(airSupply X valve1,

airSupply,pump) true)).
specification(1,(connect(powerSupply X coilMagnet,

powerSupply,coilMagnet) true)).
specification(1,(connect(powerSupply X coilMagnet,

powerSupply,pump) true)).
specification(1,(connect(airLoad X valve2,

airLoad,valve2) true)).
specification(1,(connect(airLoad X valve2,

airLoad,pump) true)).

Note that the connections airSupply X valve1,
powerSupply X coilMagnet and airLoad X val
ve2 are the external connections of the system regarding
the pump system whose internal connections are the first
five from the above. According to figure 5 the external
connections connect the outside individuals with an indi-
vidual inside pump and the pump itself. The ontological
constraints of this topological layer are the following:

error(2,connection(C), connects(C,X,Y)).
error(2,connects(C,X,Y), connects(C,Y,X)).
error(2,connects(C,X,Y), (part of(X,Y) part of(Y,X))).
error(2,connects(C,X1,Y1), (connects(C,X2,Y2)

((disjoint(X1,X2) disjoint(X1,Y2))
(disjoint(Y1,X2) disjoint(Y1,Y2))))).

The first two conditions used to trap side-effects of the
symmetrical property that holds for the air pump system
connections as well as invalid definitions of connections.
The third condition prohibits that a part is connected to it-
self or its whole. The last error condition used to detect
errors when a connection connects two entirely separated
pair of individuals. It uses the mereological relation dis-
joint that has already been defined in layer 2. These condi-
tions are placed in layer 2 of the architecture to monitor the
topological statements of layer 1.

5.3 Systems theory - Layer 0

At the lowest layer of the architecture, layer 0, we place
the systems theory ontology. It defines standard system-
theoretic notions such as system, sub-system, system
boundary, environment, openness/closeness, etc. An ex-
cerpt of this ontology is given below in the specification
format we adopt:

specification(0,(in system(X,S) proper part of(X,S)
system(S)

system(X))).
specification(0,(in boundary(C,S) connection(C)

system(S)
connects(C,X,Y)
in system(X,S)

in system(Y,S))).
specification(0,(subsystem(SUB,SUP) system(SUB)

system(SUP)
proper part of(SUB,SUP))).

specification(0,(open system(S) system(S)
in boundary(C,S))).

specification(0,(closed system(S) system(S)
open system(S))).

Y. Kalfoglou, D. Robertson 5-9

The declarative reading for the above systems theory
specification is as follows: the in system/2 predicate
holds for individuals that are in the system and are not sub-
systems of it; the in boundary/2 predicate defines a
connection to be in the boundary of a system when it con-
nects an individual in the system to an individual outside
the system; the subsystem/2 predicate holds for indi-
viduals that are part of a system and must be system them-
selves; the open system/1 predicate declares a system
to be open when a connection of that system belongs to its
boundaries; and finally the closed system/1 predicate
states that a system is a closed system when it is not an
open system. Apart from these definitions we found also
definitions of system instances with respect to the diagram
of figure 5: pump, powerSupply, airSupply and airLoad are
all systems.
The ontological constraints of systems theory are:

error(1,in system(X,S), (proper part of(X,S)
system(S)

system(X))).
error(1,in boundary(C,S), (connection(C)

system(S)
connects(C,X,Y)
in system(X,S)

in system(Y,S))).
error(1,subsystem(SUB,SUP), (system(SUB)

system(SUP)
proper part of(SUB,SUP))).

error(1,open system(S), in boundary(airLoad X valve2,S)).

The first three error conditions are direct transforma-
tions from the given Ontolingua code used to detect pos-
sible misuse of the specification given above. However
the last error condition is a customised condition tailored
to the air pump system and constructed with the help of
editing tools we described in section 3. As we can see
from figure 5 it is error whenever a system of which the
airLoad X valve2 is not in its boundaries is regarded
as an open system. These conditions belong to layer 1 in
the architecture to monitor the systems theory layer 0.

5.4 Errors detected

This layered specification can be executed to check whether
various properties of the air pump system(figure 5) hold
with respect to the ontological definitions of each of the
three layers: mereological, topological and systems theory.

So, for example, we can check for specific mereological
properties by asking whether lever is disjoint from airLoad
giving the relevant Prolog query. As we can see from figure
5 we will get a, correct, positive answer.

If we want to check topological properties of the system
we might ask which connections connect the pump system
with components of the outside world by giving the Prolog
query:
connects(CONNECTION,COMPONENT,pump)?

an answer to which will give us the possible connec-
tion/components set:
(powerSupply to coilMagnet, powerSupply),
(airSupply to valve1, airSupply),
(airLoad to valve2, airLoad).

Finally, we can execute the specification from the sys-
tems theory point of view that includes topological and
mereological definitions and check, for example, which
systems are considered to be closed systems. The answer
set will consists of the: powerSupply, airSupply and air-
Load systems.

However, assume that at the mereological layer, layer
2 of our architecture, the ontologist makes the following
erroneous definition:

specification(2,disjoint(A, B) proper part of(A, B).
This definition states, erroneously, that for two individu-

als and that is not a mereological part of the dis-
joint relation holds.

We can detect this sort of error at the mereological layer
where it occurs by checking this layer’s definitions against
their error conditions. This is feasible with the multi-layer
architecture since we can define the layer from which to
start checking. So, if we ask the model whether bellows
is disjoint from bellows we will get an erroneous positive
answer. With the error conditions of layer 3 given above
the error is detected and reported:

error condition satisfied(3,disjoint(bellows,bellows),
(equal(bellows,bellows)
proper part of(Z,bellows)
proper part of(Z,bellows)))

The error was detected because the condition equal
(bellows,bellows) was proved by the meta-
interpreter.

We can extent this layer checking to include the to-
pological layer, layer 1 in the architecture. So, for ex-
ample, we can check which components are connected by
the reservoir X valve2 connection. The answer will
be, correctly, that reservoir and valve2 compoments
are connected via this connection. However, the erroneous
definition of disjoint relation is trapped and reported:

error condition satisfied(3,disjoint(reservoir,reservoir),
(equal(reservoir,reservoir)
proper part of(Z,reservoir)
proper part of(Z,reservoir)))

error condition satisfied(3,disjoint(valve2,valve2),
(equal(valve2,valve2)
proper part of(Z,valve2)
proper part of(Z,valve2)))

error condition satisfied(2,connects(reservoir X valve2,
reservoir,valve2),

(connects(reservoir X valve2,reservoir,valve2)
(disjoint(reservoir,reservoir)
disjoint(reservoir,valve2))
disjoint(valve2,reservoir)
disjoint(valve2,valve2)))

Y. Kalfoglou, D. Robertson 5-10

Three errors have been detected: two at the mereological
layer with respect to the erroneous definition of disjoint,
and one at the topological layer where the condition defined
over the connects relation was proved by the interpreter. In
particular the disjoint(reservoir, reservoir)
and disjoint(valve2,valve2) that belong in the
condition of connects relation are erroneous and reported
at the layer above.

The most interesting case is when we check the model
from the systems theory point of view. We can ask, for
example, whether the pump is an open system. We will get
a, correct, positive answer. However, the hidden error is
trapped and reported:

error condition satisfied(3,disjoint(valve2,valve2),
(equal(valve2,valve2)
proper part of(Z,valve2)
proper part of(Z,valve2)))

error condition satisfied(3,disjoint(airLoad,airLoad),
(equal(airLoad,airLoad)
proper part of(Z,airLoad)
proper part of(Z,airLoad)))

error condition satisfied(2,connects(airLoad X valve2,
valve2,airLoad),

(connects(airLoad X valve2,airLoad,valve2)
(disjoint(valve2,airLoad)
disjoint(valve2,valve2))
disjoint(airLoad,airLoad)
disjoint(airLoad,valve2)))

path: [in boundary(airLoad X valve2,pump)
(connection(airLoad X valve2)
system(pump)
connects(airLoad X valve2,valve2,airLoad)
in system(valve2,pump)

in system(airLoad,pump))]

As in the previous case, three errors have been de-
tected: two with respect to the erroneous definition
of disjoint relation and one for the definition of con-
nects relation over airLoad X valve2 connection. Re-
call from the error conditions of layer 1, the definition
in boundary(airLoad X valve2,S) is used as a
condition over the open system/1 predicate. The multi-
layer architecture allows for check in the error conditions
themselves and this enabled the detection of disjoint rela-
tion misuse. We include also the execution path we accu-
mulate that helps to locate errors.

The detection of errors at the topological and systems
theory layers, 1 and 0 respectively, is important given that
the behaviour of the system at the systems theory layer was
the correct one. This will lead, probably, to the propaga-
tion of the error in subsequent phases of system’s develop-
ment which will make its detection even more difficult as
the level of complexity increases and the top layer, that of
mereology, becomes more and more hidden in the system.

6 Related work

In this section we provide pointers to relevant work in
the area of ontological constraints management. Although
our method is precise and comparatively straightforward, it
touches on a broad range of different but related topics. We
summarise each of these below.

In [GF95], the authors report that, as part of the TOVE
project, they introduced the notion of an ontology’s com-
petence: a set of queries that the ontology can answer.
These queries also evaluate the expressiveness of the on-
tology that is required to represent them and characterise
their solutions. These competency questions do not gener-
ate ontological commitments, they are used to evaluate the
ontological commitments have been made. The value of
ontological commitment and its role to ontology develop-
ment and application is discussed in [Gua98]. The author
states that the ontological commitment should be made ex-
plicit when applying the ontology in order to facilitate its
accessibility, maintainability, and integrity. This will lead
to an increase of transparency for the application software
which based on that ontology.

In the area of characterisations of the discrepancies
[VJBCS98] elaborate on the notion of ontology mis-
matches and provide a classification for such mismatches.
Those mismatches occur when we try to map heterogen-
eous systems and arose from the differences of their under-
pinning ontologies. Their contribution is a set of guidelines
that helps to identify the type of mismatch and assess the
level of difficulty in resolving them. In [Gom96], the au-
thor discuss criteria that should be used to verify consist-
ency and completeness of an ontology.

In the area of software development an example of de-
scribing commitments which must be met by system mod-
ules is described in [MTMS92]. The authors elaborate on
the idea of constraints that each of the system modules
has to conform to. These constraints are drawn from the
underpinning ontology and the system that manages them
(Comet) aims at providing context-specific guidance to the
system’s architect on what modules may be relevant to in-
clude in the design, and what design modifications will be
required in order to include them.

Acknowledgements

The research described in this paper is supported by
a European Union Marie Curie Fellowship(programme:
Training and Mobility of Researchers) for the first author
and a EPSRC IT Advanced Fellowship for the second au-
thor.

the TOVE ontology is electronically accessible via the URL(in April
of 1999): http://www.ie.utoronto.ca/EIL/tove/toveont.html.

Y. Kalfoglou, D. Robertson 5-11

References

[BAT97] P. Borst, H. Akkermans, and J. Top. Engin-
eering Ontologies. International Journal of
Human-Computer Studies, 46:365–406, 1997.

[BBWA96] P. Borst, J. Benjamin, B. Wielinga, and
H. Akkermans. An Application of Ontology
Construction. In Proceedings of ECAI-96
Wokrshop on Ontological Engineering, Bud-
apest,Hungary, August 1996.

[Bri99] V. Brilhante. Using Formal Metadata De-
scriptions for Automated Ecological Model-
ing. In Proceedings of the AAAI-99 Work-
shop on Environmental Decision Support Sys-
tems and Artificial Intelligence(EDSSAI99),
Orlando, Florida, USA, July 1999.

[CJB99] B. Chandrasekaran, R. Josephson,
and R. Benjamins. What Are Ontologies, and
Why Do We Need Them? IEEE Intelligent
Systems, 14(1):20–26, January 1999.

[FFPR96] A. Farquhar, R. Fikes, W. Pratt, and J. Rice.
The Ontolingua Server: a Tool for Col-
laborative Ontology Construction. In pro-
ceedings of the 10th Knowledge Acquisition
Workshop, KAW’96,Banff,Canada, November
1996. Also available as KSL-TR-96-26.

[GF95] M. Gruninger and M.S. Fox. Methodology
for the Design and Evaluation of Ontologies.
In Proceedings of Workshop on Basic Ontolo-
gical Issues in Knowledge Sharing, Montreal,
Quebec,Canada, August 1995.

[Gom96] Gomez-Perez,A. A framework to Verify
Knowledge Sharing Technology. Expert Sys-
tems with Application, 11(4):519–529, 1996.
Also as Stanford’s University, Knowledge
Systems Laboratory, Technical Report, KSL-
95-10.

[Gua98] Guarino,N. Formal Ontology and Information
Systems. In N. Guarino, editor, Proceedings
of the 1st International Conference on Formal
Ontologies in Information Systems, FOIS’98,
Trento, Italy, pages 3–15. IOS Press, June
1998.

[Kal99a] Kalfoglou,Y. and Robertson,D. A Case
Study in Applying Ontologies to Augment
and Reason about the Correctness of Specific-
ations. In Proceedings of the 11th Interna-
tional Conference on Software Engineering

and Knowledge Engineering, SEKE’99, Kais-
erslauten, Germany, June 1999. Also as: Re-
search Paper No.927, Dept. of AI, University
of Edinburgh.

[Kal99b] Kalfoglou,Y. and Robertson,D. Use of Formal
Ontologies to Support Error Checking in Spe-
cifications. In D. Fensel and R. Studer, edit-
ors, Proceedings of the 11th European Work-
shop on Knowledge Acquisition, Modelling
and Management(EKAW99), Dagstuhl, Ger-
many, pages 207–220, May 1999. Also as:
Research Paper No.935, Dept. of AI, Univer-
sity of Edinburgh.

[LGJ 98] J. Lee, M. Gruninger, Y. Jin, T. Malone,
A. Tate, G Yost, and other members of the
PIF working group. The PIF Process Inter-
change Format and framework. Knowledge
Engineering Review, 13(1):91–120, February
1998.

[MTMS92] W. Mark, S. Tyler, J. McGuire, and J. Schoss-
berg. Commitment-Based Software Develop-
ment. IEEE Transactions on Software Engin-
eering, 18(10):870–884, October 1992.

[SIC95] SICStus. SICStus Prolog User’s Manual.
ISBN 91-630-3648-7, Intelligent Systems
Laboratory - Swedish Institute of Computer
Science, 1995.

[Ste94] Sterling,L. and Shapiro,E. The Art of Prolog.
MIT Press, 4th edition, 1994. ISBN 0-262-
69163-9.

[UCH 98] M. Uschold, P. Clark, M. Healy, K. William-
son, and S. Woods. An Experiment in Onto-
logy Reuse. In Proceedings of the 11th Know-
ledge Acquisition Workshop, KAW98, Banff,
Canada, April 1998.

[Usc98] Uschold,M. Where are the Killer Apps?
In Gomez-Perez,A. and Benjamins,R., ed-
itor, Proceedings of Workshop on Applications
of Ontologies and Problem Solving Methods,
ECAI’98, Brighton, England, August 1998.

[van98] van der Vet,P. and Mars,N. Bottom-Up
Construction of Ontologies. IEEE Transac-
tions on Knowledge and Data Engineering,
10(4):513–526, 1998.

[VJBCS98] P.R.S. Visser, D.M. Jones, T.J.M. Bench-
Capon, and M.J.R. Shave. Assessing Hetero-
geneity by Classifying Ontology Mismatches.
In N. Guarino, editor, Proceedings of 1st

Y. Kalfoglou, D. Robertson 5-12

International Conference on Formal Ontolo-
gies in Information Systems, FOIS’98, Trento,
Italy, pages 148–162. IOS Press, June 1998.

[VRMS99] A. Valente, T. Russ, R. MacGrecor, and
W. Swartout. Building and (Re)Using an On-
tology for Air Campaign Planning. IEEE In-
telligent Systems, 14(1):27–36, January 1999.

Y. Kalfoglou, D. Robertson 5-13

