Interoperation for
Development and Improvement of
Expert Systems

Noriaki IZUMI ~ Akira MARUYAMA
Atsuyuki SUZUKI Takahira YAMAGUCHI
Dept. Computer Science, Shizuoka University

3-5-1 Johoku Hamamatsu Shizuoka 432-8011 JAPAN
{izumi,s4038,suzuki,yamaguti}@cs.inf.shizuoka.ac.jp

Abstract

This paper proposes the interoperation envi-
ronment which enables an expert system to
get information available to improve its per-
formance from others. First, we have given a
method library of reusable templates in order
to provide a correspondence between specifi-
cation and implementation of inference struc-
tures. Next, a cooperation method has been
presented, using the difference arising in the
context of the correspondence between infer-
ence primitives of an originator and those of
recipients. The wrapper with conversion facil-
ities has been also provided, using a common
domain ontology developed manually. After
designing and implementing such an interop-
eration environment, experiments have been
done among four heterogeneous expert sys-
tems. Furthermore, it has been shown that an
expert system finds a way to perform a given
task better by the interoperation with other
three expert systems.

The copyright of this paper belongs to the papers authors. Per-
mission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage.

Proceedings of the IJCAI-99 workshop on
Ontologies and Problem-Solving Methods (KRR5)
Stockholm, Sweden, August 2, 1999

(V.R. Benjamins, B. Chandrasekaran, A. Gomez-Perez, N.
Guarino, M. Uschold, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-18/

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

1 Introduction

As expert systems have been built up in many real
fields over the past decade, the research on Coopera-
tive Distributed Expert Systems (CDES) has emerged,
integrating two kinds of technology from knowledge ac-
quisition and software agents. The work in the field of
CDES focuses on the cooperation among distributed
expert systems but has not yet been getting into co-
operation in real complex domains at a semantic level.

As seen in the fields of software agents and CDES,
at present, multiagent and knowledge engineering
technologies are becoming integrated. However, in or-
der to develop robust cooperative knowledge systems
in real and large scale industrial applications, the ap-
proaches from knowledge level analysis and knowledge
modeling are few and so we are still in shallow interop-
eration just at a syntactic level among distributed het-
erogeneous expert systems. Even if useful information
is acquired, there is a significant issue how the infor-
mation is reflected in the implementation-structure of
knowledge systems. Thus, in this paper, we propose an
environment for deep interoperation among four het-
erogeneous expert systems at a semantic level, model-
ing them at a proper level of granularity of knowledge,
defining the relationship between models and imple-
mentations, using the difference arising in the context
of the correspondence between the inference structure
of an originator and the one of recipients, and pre-
senting a wrapper with conversion facilities using a
common domain ontology.

In the remainder of this paper, we first describe
methods of modeling, operationalizing, cooperating
and communicating (wrapping) heterogeneous expert
systems. Next, we put the methods together into
an interoperative environment, INDIES(an Interoper-
ative eNvironment for Development and Improvement

(initial_enterprise_data) ;
transform a_knowledge ‘

{
(current_enterprise_state]

cpa_advice
' select
:
+ (a_piece_of_cpa_advice
:
‘
:

a_set_of_cpa_advice

: [_transform |
1

next_enterprise_state)

compare

Figure 1: Common KADS specification of FIMCOES

for Expert Systems) for them. The empirical results
have shown us that a financial management expert sys-
tem is supported by other three expert systems in find-
ing a better solution.

2 Modeling and Implementing Dis-
tributed Expert Systems

In order for distributed expert systems to exchange
useful information applicable to their better perfor-
mance from others, there are two important consid-
erations: how to specify expert systems at a concep-
tually acceptable level of details, and how to reflect a
received information of alteration on their implemen-
tation. The following discusses a method to identify
the proper kinds and granularity of information and a
method for operationalizing the conceptual models.

2.1 Modeling Expert Systems by Common
KADS

Developed expert systems are much different in their
implementation details, such as knowledge representa-
tion languages and how to run inference engines. If
they would exchange information at such implemen-
tation details, each expert system would have no way
to find information for the improvement in their per-
formance. So, the information about inference engines
and knowledge bases must be lifted from the imple-
mentation details to some proper conceptual details
acceptable to be exchanged. In the field of knowledge
engineering, the methodology has recently been devel-
oped to specify the semantics of expert systems free
from implementation details. Common KADS[Bre94]
is one of the well-organized knowledge libraries that
provides inference primitives called canonical func-
tions, such as Select, Compare, Merge and so on. In
Figure 1, a specification description of the expert sys-
tem FIMCOES which consults a financial management
of an enterprise[Gra94] is given as an example case.

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

2.2 Correspondence between Specification
and Implementation of Expert Systems

Through our previous work[YMG98b], in which we
have employed Common KADS as an abstract descrip-
tion method, a significant issue comes up in correspon-
dence between specification and implementation of ex-
pert systems. To put the issue concretely, we have to
spend more than two weeks in order to change an im-
plementation structure of an expert system according
to an alteration obtained by an exchange of specifica-
tion information. Main causes which costs such a long
time can be listed up as follows.

1. Difference of data structures

An alteration in input, output and reference
knowledge of an inference primitive effects not
only internal structure of the primitive but also
other primitives because of a variety of data struc-
tures of knowledge, including their implementa-
tion and data call.

2. A variety of refinement methods

Developers of expert systems often make inference
primitives share the program codes and cut the
redundancy of data exchange. Because of these
varieties, it is difficult to decide which primitive
should be changed according to an alteration on
an abstract description.

3. Side effects of adding control structure

An abstract description can be interpreted in dif-
ferent ways of implementation with control struc-
tures. For example, we have a lot of options for
a behavior of a loop in data flow diagrams such
as iteration with conditional, repetition with a
counter, a fail loop with backtracking, and so on.

In the further analysis to get the above features over,
we’ve found out that the employment of different lan-
guages makes a gap between specifications and imple-
mentations in the development process of expert sys-
tems. So, design specifications and implementation
codes of expert systems should be described in a uni-
fied language in order to reflect specification alteration
immediately to the implementation structure.

2.3 Building Reusable Templates for Specifi-
cation and Implementation

From the importance of a unified language for the
reflection of the change on a specification descrip-
tion, we rebuild and extends canonical functions
into “REPOSIT (REusable Pieces Of Specification-
Implementation Templates)” which combines declar-
ative semantics employed in Common KADS and pro-
cedural semantics like Prolog. A unit of a description

method_library
-

b.concreating knowledge

- _/ c.adding control structy,

domain_ontology
-
CEED
GEED G
<z =

.

d. repeating from a. &

standard_data_hierarchy

—
=

Figure 2: Overview of a Development Process

in REPOSIT, defined as a relationship among input,
output and reference knowledge, is called a “unit func-
tion”. A set of unit functions is rebuilt into a method
ontology by abstracting knowledge types of input, out-
put and reference.

Furthermore, patterns of a combination of unit
functions, which appear frequently in the development
process, are gathered, sorted out and constructed as a
method library based on the following standpoint:

(1) providing refinement policies,

(2) standardizing a way of the knowledge (data)
management,

(3) classifying the adding patterns of control struc-
tures given to specifications.

In order to keep a correspondence between descrip-
tions of specifications and implementations, REPOSIT
supports step by step operationalization of an abstract
description into a detailed implementation description,
as the following way (Figure 2):

a. selecting a pattern of the method library accord-
ing to a task type of an expert system,

b. concreting knowledge type of input, output and
reference by comparing a domain ontology (Fig-
ure 3), a standard data hierarchy (Figure 4) and
requirement specification,

c. adding a control structure to the description with
the obtained information of knowledge type,

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

nterprise_data—1leaf_financial_index
nterprise_modet—major_financial_index
inancial_index

nterprise_stat
/ _a_from_cpr——detailed_management_policy
nterprise_worl nterprise_actio pa_advice ———main_management_policy

top

pa_knowledg inancial_indewg:: — value
> name ..videal range
major_fiancial_index= - - significance
minor fiancial indexg: - "occupancy
>controllability
main_management_polic¥;7 _';dcplh leaf_financial_index
«’\\ advice_description
\; relational_detaild_management_polies
effective_financial_index_list
— isa etailed_management_polics : - —sentence
~weight
has_a inancial equatioms;;— lhs index
~rhs index

“relation

Figure 3: Domain ontology for FIMCOES

world state model
action — state_transition

) < element) i
entity set }P(ituhle gléggﬂ 1c§é1ce
] relative_value necefl?y y
alu

raw_data out_ol”range
ew truth_value § Véf_‘ﬁﬁt

& e
. d point € orollability
condition < ;S(ﬁ%g?frraﬁggm

id
index << ke
all data . name
constraint
sentence
descrigonion
expression
formula —equation
1st
atom best
string
avi good
knowledge <_ @ V'Ct,e bad
€quation- (opy worst
(value) <_ unvariable
variable
qualifier

part_o
subset_of
a

a_piece_of

initial
(time) final

next

(bs) i

maer last
main developed
detail urrent
universal
middle

Figure 4: Standard data hierarchy

d. selecting a pattern for each unit function of the
description and continuing the above process.

The standard data hierarchy is manually constructed
as a domain independent ontology which gives words
for expanding domain ontologies such as building a set,
picking up an atom of a set, indicating a calculation
stage, data structures for implementation details and
SO on.

Each method of REPOSIT has two type of expres-
sions: one is the relationship among input, output and
reference knowledge, which consists of specification li-
brary, and the other is a prolog-based representation
which consists of implementation library. Figure 5
shows a basic correspondence between expressions in
a specification of a knowledge(data)-flow-diagram and

Input_Data

L

reposit_function(

[ReferenceiData—-l re| positﬁfunctiori ggf?@%i‘:b ata,
l Output_Data)
Output_Data

(a) primitive component

Ref_Datal reposit_funcl(
— Input_Data,

Ref_Datal,

Mid_Data),

reposit_func2(

Mid_Data,

Ref_Data2,

Ref_Data2 Ouput Daia)

(b) sequential connection

Figure 5: Basic relationships between REPOSIT ex-
pressions (sequential connection)

(1) canonical function
2 knowledge (data)
@ — knowledge(data)flow
“ conditional(A or B)
© [rme>
m

() R >
Figure 6: Syntax of a REPOSIT description

conditional(A or Backtrack)
output choices
input choices

control flow

those in first-order-predicates. In the figure, rectan-
gles express methods corresponding to unit functions
and quarter-circles express knowledge as data used in
the connected methods.

To combine description languages for abstract mod-
els and implementation structures, we reinforce Com-
mon KADS with operational information, given in Fig-
ure 6, which enables us to put control structures di-
rectly to knowledge-flow-diagrams in the way of Figure

7.

2.4 Operationalization of Refined Models

We augment a knowledge-flow-diagram selected as
a pattern with control structures, such as condi-
tional branches, a distinction of deterministic and non-

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

Input_Data

Ref_Datal

reposit_funcl

Output_Datal

{ test(Input_Data), !,
reposit_funcl(Input_Data, Ref_Datal, Output_Data)}
' replace(Input_Data, Output_Data)

(a) a conditional branch

Input_Data

[Ref_Data)—vl ® n_d_functiorl

rec_functior

Yes

—\
A
o

&
O
2
o
N
g
5
(o]
[=3
o
2
o
<}
g
< |

Output_Data
rec_function(Input_Data, Ref_Data, Output_Data) :-
{ test(Input_Data), !,
replace(Input_Data, Output_Data)}
' { function_body(Input_Data, Ref_Data, Mid_Data),

replace(Mid_Data, Input_Data),
rec_function(Input_Data, Ref_Data, Output_Data)}

(c) a loop structure with recursive

® Input_Data

[Ref_Data)—'—~I function_bodyl
-

Output_Data

top_func(lnput_Data, Ref_Data, Output_Data) :-
for_each(Atom, Input_Data, [
function_body(Atom, Ref_Data, Output_Atom
assemble(Output_Atom, Output_Data)]).

(d) a loop structure with iteration

Figure 7: Control structures of REPOSIT

Output_Data2

transform (cﬁa,knowledée)

current_enter pl'i se_state

cpa_advice

Cpicce_of_cpa_advic}
assemble

compute

next_enterprise_state

a_set_of_cpa_advice

compare >--------+
Sl lcompare >t .
.
! transform
;

’

Figure 8: An operationalized specification of FIM-
COES

deterministic actions, and repetitions as shown in Fig-
ure 7. To put it concrete, the following procedure is
given:

1. Adding conditional

In a knowledge-flow-diagram, a method corre-
sponding a conditional action is changed its
shape into a diamond (Figure 7(a):test). Con-
ditional action which causes backtrack is ex-
pressed in a shape of the home-base style(Figure
7(b):backtrack_test). Function call invoked by
conditional is connected by a broken line with a
diamond,

2. Clarify of non-deterministic actions

A non-deterministic action which gives an al-
ternative output with backtrack is represented
by the a rectangle with a solid circle(Figure
7(b)n_d_function),

3. Clarify of loop structures

A loop structure called recursively is enclosed
with a broken line(Figure 7(c)(d)).

After applying the above augmentation, we can get a
description given in Figure 8.

2.5 Refinement of Abstract Specifications by
REPOSIT

In order to refine REPOSIT specifications expressed as
augmented knowledge-flow-diagram, we replace a unit
function with combinations of unit functions given as
a pattern in the method library. Figure 9(a) gives a
pattern chosen for the unit function select in Fig-
ure 8. Each knowledge, appearing as an abstract type

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

C state)

effective_point_of
the _state

(a) a selected pattern

T — — — — — — — -~

(cpa_advice) “
\
\

(current_enterprise_state)

|

|

|

|
i
.
|
|
.
|

|

|

the_current_enterprise_stat

|

|

|

|

effective_point_of] vl
. e) |
: select |

} [a_piece_'of_cpa_advice]

(b) the pattern with concreated knowledge type

Figure 9: an example pattern selected for select
in the chosen pattern, is refined by using a domain
ontology and a standard data hierarchy. In order to
use knowledge name both descriptions of specifications
and implementations, we augment a domain ontology
according to the standard data hierarchy in a process
of the knowledge refinement (Figure 10). Figure 9(b)
shows the knowledge refined pattern from Figure 9(a)
as an example. In the process of the example, the do-
main ontology of Figure 3 is augmented with current
enterprise state which is constructed by current
in the standard data hierarchy and enterprise state
in the domain ontology. Because of this augmentation,
we can distinguish the same type of knowledge by its
name with the one in a different stage of calculation.

2.6 Implementation into Prolog-Codes

In this paper, we employ atoms and lists as data primi-
tives because of our prolog-based development. To use
names of knowledge in the specification directly, we
define the primitive expressions of knowledge, which
support a generic method of data call by name as fol-
lows:

atom(Atom_id, [Catq : Valy,...,Catyn : Valp]), (2)

domain_ontology <=

Figure 10: Refinement of knowledge type by using do-
main ontologies

list(List_id, [Atomq,Atoms, ..., Atomy]), (3)
alias(Alias name, Atom_id_or List_id)). (4)

In the above formulas, Atom_id and List_id represent
entities consisting knowledge, and Alias name corre-
sponds the name of the entities

A prolog-based description of specification can be
refined into the prolog-implementation codes by us-
ing REPOSIT library for implementation, as in the
same way of the refinement of specification. Figure
11 shows examples of implementation templates for
control structures: for_each and detailed function:
select_outof range. for_each , which is re-defined
like a built-in predicate forall typically appearing
in Prolog language, receives a name of a list:ListID
and executes the programs: ProgBody for each Atom
of AtomList corresponding to the name: ListID.
select_within range , which instanciates a specifi-
cation template of REPOSIT: select (which also ap-
pears in canonical functions of Common KADS). By
using a method: pickup of implementation library,
which extracts a value: I_Val of the data-id of the cor-
responding category: IdQI _Cat, we can refine select
into select_within range with call by name. A
function body: is not_contained(I_Val, R_Intvl)
can also be refined into combinations of method in an
implementation library.

As repeating the above procedures, we can get
a fine-grained knowledge-flow-diagrams corresponding
to a prolog-based description. The method “select”
which appears in Figure 9(b) is refined into the dia-
gram in Figure 12.

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

/* REPOSIT: Control structure implementation :
for_each */
for_each(Atom, ListID, ProgBody) :-
list(ListID, AtomList),
member(Atom, AtomList),
exec_prog(ProgBody) ,
fail.
for_each(_Id, _I_DataBody, _ProgBody) .
/* REPOSIT: detailed function description:
select_outof_range */
select(I_DatalName@I_Cat,
OR_Cat, OutputName) :-
name2data(I_DataName, I_DataBody),
for_each(Id, I_DataBody,

[
pickup(Id@I_Cat, I_Val),
pickup(IdOGR_Cat, R_Intvl),
is_not_contained(I_Val, R_Intvl),
] assemble_data_z(OutID, Id)

)’
setname2id (OutputName, OutID).

Figure 11: Methods in the implementation library

3 Interoperating Distributed Expert
Systems

Once expert systems have been modeled and imple-
mented by REPOSIT, the next issue is how to inter-
operate an expert system with other expert systems
to solve problems that cannot be solved alone. In or-
der to modularize such expert system deep interoper-
ation, two issues remains - cooperation(coordination)
and communication among expert systems.

3.1 Cooperation for Distributed Expert Sys-
tems

3.1.1 Construction of a Common Domain On-
tology

In order to exchange information on descriptions of
heterogeneous expert systems, a common domain on-
tology is manually constructed by using the standard
data hierarchy and domain ontologies for expert sys-
tems. Although it is an important issue how to con-
struct a common domain ontology, we pay much more
attention to consider a cooperative method among dis-
tributed expert systems, based on a REPOSIT library
for specification serving a common method ontology.

3.1.2 Shared Specification

Work made on cooperation to date has been divided
into two different approaches, direct communication
and assisted coordination in [Gen94]. The former
includes the contract-net approach and specification
sharing(SS), which are proper in small scale coopera-
tion. The latter includes a facilitators and a mediator,
which are better in large scale cooperation. Because

3-6

(_ current_financial_indexes)

abstract

(@ current_major_financial_indexes)

(@ideal range)

—>| Eikcuﬁ

(@relative value)

ikcu —]
C ideal_range j
C relatfve value)

| compute out of range |

C out_of_range)

ppda_tefcu.n'en_tf
major_financial_index
v

assemble

TUpdate_current_
major_financial_indexes

sorted_update_
current_major_fiancial_indexes
_by_out_of_range
¥
[® member]
Y

a_worst_point_of _the_
current_,major_fiancial_indexes

effective_point_of_
the_current_financial_index

Figure 12: Refined specification of FIMCOES (a part)

we have a common ontology,it is easy to enact an SS-
based approach to interoperate expert systems. The
shared specification comes from a common method
ontology and a common domain ontology. Although
one expert system (originator) can get the information
about capabilities of the other expert system (recipi-
ent) through the shared specification, it is important
to identify the information available to (be able to)
improve the originator. Because it costs too much to
find out differences in extensive range to the whole in-
ference structure, we adopt only the difference arising
in the small context of correspondence between infer-
ence primitive of an originator and those of a recipient.
A method to find out the difference arising is presented
(Figure 14) as follows:

1. Make a set of correspondence in which inference
primitives are the same between an originator and
a recipient.

2. By taking a look at the context (pre-inference-
primitive, post-inference primitive, input, output
and reference knowledge) of the inference prim-

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

component
enterprise
department

ntity ~——————artifact
construction ——obstacle
device_structure
System_structurgayee———qualitative_value
qant\ty< quantitative_value
rule

~——heuristic

_reature—
constitution —structure
enaurance
suengm«{comouamuw
changeability

magnitude——extent———range
hysical_propertslecomposabilit;
physical_properts: P Y human re

property
tribute
asset- resource———"
bject_re:
quality owerfuinesa——eflectivencss
certainty

o nswer
influence mathematic

» statemen propositio

restraint «
dvice
peration
proposal schedule
rder
job
sign.

relative_quantity ~——nil
mou
time———period

cate <i\bnormal75la(e
ormal_state

ct ction

messa
bstraction

elation

communicatign

Figure 13: A Common Domain Ontology

Inference Structure
(The Recipient)

Inference Structure
(The Oiginator)

!

(1) Pairs of the same inference prinitives

Conpute the correspondence val ue
fromthe context

(Oiginator ES)

(Recipient ES)

prel.IP
FEND PR s

T

Figure 14: A message generation facility

itive in the correspondence, the correspondence
value is computed. The value is computed by
comparing the following reference knowledge com-
ponents: entity,parameter of those, value, depen-
dency relation and criteria for evaluation. The
more similar the context, the larger the value.

3. The correspondence value is propagated to pre-
and post- inference primitives.

4. After completing propagation over all inference
primitives in the correspondence, the difference
arising in the context of the correspondence with
large values can be used as a reply message to
modify the originator’s inference engine.

3-7

INDIES ENVIRONMENT

< >
-

Send a message to
— " Recipient
Send messages
back to Originator

Reference of
common Ontology

User < Recipient_ES >

Figure 15: An Overview of INDIES

3.1.3 Message Selection

When an originator sends a message to recipients, sim-
ilarity value is attached with the message. When the
recipients can generate the message with values greater
than the similarity value, the recipients can send the
messages back to the originator. On the other hand,
when an originator gets more than one reply message
from recipients, the reply message with largest corre-
spondence value is selected.

3.2 Communication between Expert Systems

Because each expert system is modeled by its own vo-
cabulary, it needs a conversion facility so that it can
understand the replay messages from other expert sys-
tems. This paper calls a wrapper the module to con-
vert one message from one expert system into another
message that can be processed in the other expert sys-
tem. When it is communicated between an originator
and a recipient, originator’s wrapper uses a common
domain ontology to convert the reply messages from
recipients.

4 INDIES Design

As the methods of modeling, operationalizing, cooper-
ating and communicating (wrapping) distributed ex-
pert systems come up, we put them together into an
interoperation environment for distributed expert sys-
tems, INDIES as shown in Figure 15. In order for
INDIES to be enacted at each development sites, each
expert systems should be manually modeled there, us-
ing REPOSIT as a common method ontology.

When one expert system finds a fault in itself(for
example, when one output was wrong or rejected by a
user), it asks INDIES to support it in changing for a

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

select_subset
e

et
son) _govee) showontey) (e ="

Figure 16: Execution of INDIES

better performance. First, the expert system (origina-
tor) broadcasts its own model description message to
other expert systems (recipients) through communica-
tion facilities. After getting the message, the recipient
tries to make correspondence between two models from
the originator and the recipient, based on SS-based co-
operation facilities. The recipient finds differences in
the context of good correspondence and also selects the
message with higher value than correspondence value
requested by the originator, based on message selection
facilities. The recipient makes them up into a reply
message. Then it sends the message to the originator
through communication facilities. The reply message
is converted into another reply message using a com-
mon domain ontology so that the originator can use
it to change itself. The originator selects the message
with highest value among received messages, using its
own message selection facilities. Finally, the originator
tries to reflect the selected message on its own imple-
mentation. When the reflection failing, the developers
manually change the implementations of the originator
based on the selected message. The modified origina-
tor’s performance is tested. If the same fault still ex-
ists, or another fault comes up, the above-mentioned
interoperation process is repeated and another reply
message is given to the originator until the origina-
tor’s performance improves or the recipients send no
reply message.

INDIES has been implemented by SWI-Prolog ver.
2.9.6 with XPCE ver. 4.9.7(Figure 16). The size of
communication and cooperation facilities is 42 KB.
The size of models of four expert systems is only 10

KB.

3-8

Table 1: Many Differences between the Results of
FIMCOES and those of CPA

| Advise ID ‘ 8 | 18‘ 50| 33{ 42 | 36| 3s| 51| 13| 56| 31{ 10| 58
CPA v v v v v|v|ow v | v
FIMCOES | v | v | v | v | v v | v v

Table 2: The Number of messages generated by inter-
operation

Troubleshooting | Scheduling | EV-design | Total
1st 14 14 19 47
2nd 15 15 19 49
(Originator ES) (Recipient ES)
FIMCOES ¢ i d =P | Troubleshooting
1 Pl
[ADD "Propagate” } % %
using Enterprise Model

1 +4. 7% Improved (34) '

Delete "select” using the mntrellahility} Difference

of Enterprise Model

(34)

Figure 17: The first interoperation among FIMCOES
and other expert systems

5 Experimental Results and Discus-
sion

Experiments have been done to how the financial man-
agement expert system FIMCOES (originator)[Gra94]
is supported by a troubleshooting, an electric power
management job scheduling and an elevator design ex-
pert systems through the interoperation in INDIES. In
Table 1, the checks mean the advises recommended by
a CPA (Certified Public Accountant) or FIMCOES.

Afterwards, the originator gets into INDIES and
sends its models and correspondence value desired (24
in this experiment) to the other three expert systems
(recipients) in INDIES. At the first interoperation, the
originator received 47 reply messages from other three
recipients, as shown in Table 2.

Although the originator got two messages with
highest correspondence value from the troubleshoot-
ing ES as shown in Figure 17, the reply message of
‘ ADD “Propagate using an enterprise model” ’ has

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

bad_part_of_the_

current_enterprise_model

a_worst_point_of_the_
current_enterprise_model

current_enterprise_state
propagate -

relational_part_of_
current_enterprise_state
select
a_effective_point_of_
the_current_enterprise_state
f
select
a_point_of_cpa_advice

bad_part_of_the_
current_enterprise_model

a_worst_point_of the_
current_enterprise model

current_enterprise_state - -
o .

--=| propagate
relational_part_of_

current_enterprise_state

a_effective_point_of_
the_current_enterprise_state

:
select [

Figure 18: Refinement of FIMCOES inference struc-
ture

been selected by a simple conflict resolution strategy
that ADD has priority over Delete. According to the
reply message, the new inference primitive of “propa-
gate using an enterprise model” has been put just be-
fore “compare” primitive in FIMCOES inference struc-
ture, as shown in Figure 18. The enterprise model is
a model of fund flow through six departments and has
been given by a user. After implementing a new FIM-
COES with the modification, we found that the mod-
ified FIMCOES had 4.7% performance gain compared
to the original FIMCOES.

At the second interoperation, the originator re-
ceived 49 reply messages from other three recipients,
as shown in Table 2. In spite of that FIMCOES has
been modified once, the reply messages with highest
correspondence were the same as ones at the first in-
teroperation. Further examination showed that two
messages, got in the interoperation except ones got in
the first interoperation, brought 11.1% performance
gain to FIMCOES but other reply messages not.

3-9

6 Related Work

In the field of CDES, much work focuses on strate-
gies of unifying solutions that include uncertainty from
multiple expert systems that use different representa-
tion of uncertainty. However, few systems try to deal
with the management of semantics, at present.

On the other hand, R.Dieng’s work [Die94] manages
issues in cooperative knowledge-based systems. The
specification to interoperate knowledge-based systems
from the point of multi-agent systems has been ana-
lyzed, but not yet launched into full implementations
and evaluation in real task-domains, as shown here.

As issues in software engineering, much work
has been done on a framework of reusable data
structures[Fow97, Pre95]. At present, little work pays
attention to method structure(ontology) and relation
between data and methods.

Recently, detailed consideration has been done
on visualizing information about conceptual hierar-
chies, specification descriptions and implementation
codes[Jon98, Luk98, RMe98, TMe98]. On the other
hand, A lot of frameworks have been proposed includ-
ing Molina’s work on integration of different models
of PROTEGE-II and KSM[Mol96]. Comparing those
frameworks, our approach is characterized by an in-
tegration of specifications and implementations in a
unified framework reinforced with ontologies.

As work on consideration about a structure of inte-
grating ontologies, deep investigation about Construc-
tion of ontologies has been done[Set98] which argues
the necessity of having two different kinds of ontologies
on different conceptual levels. It can be a theoretical
background of our construction for domain ontologies
and a standard data hierarchy.

As compared with our previous work without
REPOSIT[YMG98b], more than two weeks are needed
as a cost of reflecting received messages in the origi-
nator’s implementation, while REPOSIT reduces the
cost into at most two days.

7 Summary, Discussion and Future

Work

In order for distributed expert systems to exchange in-
formation at a conceptually acceptable level of details
for a better individual performance, REPOSIT has
been proposed. Furthermore, a cooperation method
based on specification sharing has been presented,
which focuses on the difference in context of the corre-
spondence between inference primitives of an origina-
tor and those of a recipient. The wrapper with conver-
sion facilities has also been provided, using a common
domain ontology manually constructed. After putting
them into an integrated deep interoperation environ-
ment among distributed expert systems, INDIES, the

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

experiment results have shown that the interoperation
works on the four heterogeneous expert systems. Mes-
sage selection facilities are still static and so should
change into dynamic ones, using inductive learning
techniques. Furthermore, we will pay much more at-
tention to automatic construction of a common do-
main ontology.

References

[Bre94] J.Breuker and W.Van de Velde. Common
KADS Library for Expertise Modeling, IOS Press
(1994).

[Die94] Rose Dieng: Agent-Based Method for Build-
ing a Cooperative Knowledge-Based System, Work-
shop on Heterogeneous Cooperative Knowledge-
Bases.International Symposium on Fifth Generation
Computer Systems (1994) 237-251.

[Fow97] M.Fowler, “Analysis Patterns: Peusable Ob-
ject Models”, Addison-Wesley, 1997.

[Gra94] Garcia, P. V. D., Yamaguchi, T.:
cial Management Consultation Expert System with
Constraint Satisfaction a nd Knowledge Refinement.
The Third Pacific Rim International Conference on
Artificial Intelligence. (199 4) 979-985

A Finan-

[Gen94] M.R.Genesereth and S.P.Ketchpcl: Software
Agents, CACM.0l.37.No.7. (1994) 48-53.

[Jon98] C.Jonker, R.Kremer, P.van Leeuwen, D.Pan,
J. Treur, “Mapping Visual to Textual Representa-
tion of Knowledge in DESIRE” Proc. 11th Knowl-
edge Acquisition for Knowledge-Based Systems
Workshop, 1998

[Luk98] D.Lukose, G.W.Mineau, “A Comparative
Study of Dynamic Conceptual Graphs” Proc. 11th
Knowledge Acquisition for Knowledge-Based Sys-
tems Workshop, 1998

[RMe98] R.A.F.Mendez, P.van Leeuwen, D.Lukose,
“Modeling Expertise Using KADS and MODEL-
ECS” Proc. 11th Knowledge Acquisition for
Knowledge-Based Systems Workshop, 1998

[TMe98] T.Menzies, “Evaluation Issues for Visual
Programming Languages” Proc. 11th Knowledge
Acquisition for Knowledge-Based Systems Work-
shop, 1998

[Mol96] M.Molina, Y.Shahar, J.Cuena, M.Musen, “A
Structure of Problem-Solving Methods for Real-
time Decision Support: Modeling Approaches Using
PROTEGE-IT and KSM” Proc. 10th Knowledge Ac-
quisition for Knowledge-Based Systems Workshop,
1996

3-10

[Pre95] W.Pree, “Design Pat-
terns for Object—Oriented Software Development”,
ACM-Press, 1995.

[Set98] K.Seta, M.Ikeda, O.Lakusho, R.Mizoguchi:
“Construction of a Problem Solving Ontology
— A Scheduling Task Ontology as an FExam-

2

ple -7 Japanese Society of Artificial Intelli-
gence.Vol.13.No.7. (1998) 597-608 .(in Japanese)

[YMG98b] T.Yamaguchi: DESIRE: An Interopera-
tive Environment for Distributed Expert Systems.
ECAT98 Wrokshop on Applications of Ontologies
and Problem-Solving Methods. (1998) 120-125.

N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi

3-11

