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Abstract

Ontologies and problem-solving methods are
promising candidates for reuse in Knowledge En-
gineering. Ontologies define domain knowledge
at a generic level, while problem-solving methods
specify generic reasoning knowledge. Both type
of components can be viewed as complementary
entities that can be used to configure new knowl-
edge systems from existing, reusable components.
In this paper, we give an overview of approaches
for ontologies and problem-solving methods.

1 Introduction

In 1991, the ARPA Knowledge Sharing Effort [NFF 91]
envisioned a new way in which intelligent systems could be
built. They proposed the following: “Building knowledge-
based systems today usually entails constructing new
knowledge bases from scratch. It could be done by as-
sembling reusable components. Systems developers would
then only need to worry about creating the specialized
knowledge and reasoners new to the specific task of their
system. This new system would interoperate with exist-
ing systems, using them to perform some of its reasoning.
In this way, declarative knowledge, problem-solving tech-
niques and reasoning services would all be shared among
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systems. This approach would facilitate building bigger
and better systems cheaply...”

Since then considerable progress has been made in de-
veloping the conceptual bases needed for building technol-
ogy that allows knowledge-component reuse and sharing.
However, we are still far from the ultimate objective. To
enable sharing and reuse of knowledge and reasoning be-
havior across domains and tasks, Ontologies and Problem-
Solving Methods (PSMs) have been developed. Ontologies
are concerned with static domain knowledge and PSMs
with dynamic reasoning knowledge. The integration of on-
tologies and PSMs is a possible solution to the “interaction
problem” [BC88], which hampered reuse in the eighties.
The interaction problem states that representing knowledge
for the purpose of solving some problem is strongly af-
fected by the nature of the problem and the inference strat-
egy to be applied to the problem. Through ontologies and
PSMs this interaction can be made explicit in the notion
of assumptions and taken into consideration. PSMs and
ontologies can be seen as complementary reusable compo-
nents to construct knowledge systems from reusable com-
ponents. In order to build full applications of information
and knowledge systems from reusable components, both
PSMs and ontologies are required in a tightly integrated
way.

Ontologies aim at capturing domain knowledge in a
generic way and provide a commonly agreed understanding
of a domain, which may be reused and shared across appli-
cations and groups [CJB99]. Ontologies provide a com-
mon vocabulary of an area and define -with different levels
of formality- the meaning of the terms and the relations
between them. Ontologies are usually organized in tax-
onomies and typically contain modeling primitives such as
classes, relations, functions, axioms and instances [Gru93].
Popular applications of ontologies include knowledge man-
agement, natural language generation, enterprise modeling,
knowledge-based systems, ontology-based brokers, and in-
teroperability between systems.
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Problem-solving methods (PSMs) describe the reason-
ing process of a knowledge-based system (KBS) in an
implementation- and domain-independent manner. A PSM
defines a way of how to achieve the goal of a task. It has in-
puts and outputs and may decompose a task into subtasks.
In addition, a PSM specifies the data flow between its sub-
tasks. Control knowledge determines the execution order
and iterations of the subtasks of a PSM.

In the following sections, we will discuss several aspects
of both ontologies and problem-solving methods. At the
end of the paper, we will mention some directions for future
work in this area.

2 Ontologies

The aims of this section are to provide answers to the fol-
lowing questions: What is an ontology? What principles
should I follow to build an ontology? What are the com-
ponents of an ontology? What types of ontologies exist?
How are ontologies organized in libraries? What methods
should I use to build my own ontology? Which techniques
are appropriate for each step? How do software tools sup-
port the process of building and using ontologies? What
are the most well-known ontologies? What are the uses
of ontologies? Which principles should I use to select the
best ontology for my application? To answer the above
questions, the section is organized as follows. First, the
theoretical foundations of the ontological engineering field
will be presented. This will be followed by a presentation
of some existing ontologies. The second part will address
methodologies for building ontologies. The third part will
present tools for building ontologies. Finally, the last will
be related to uses of ontologies in applications.

2.1 Theoretical Foundations

What is an ontology?

The word ontology has been taken from Philosophy, where
it means a systematic explanation of Existence. In the
Artificial Intelligent field, first Neches and colleagues
[NFF 91] defined an ontology as follows “An ontology
defines the basic terms and relations comprising the vo-
cabulary of a topic area as well as the rules for combin-
ing terms and relations to define extensions to the vocabu-
lary”. We can say that this definition tells us how to proceed
to build an ontology, giving us vague guidelines: identify
basic terms and relations between terms, identify rules to
combine them, provide definitions of such terms and rela-
tions. Note that according to this definition, an ontology
includes not only the terms that are explicitly defined in
it, but also terms that can be inferred using rules. Later, in
1993, Gruber’s definition [Gru93] becomes famous “an on-
tology is an explicit specification of a conceptualization”,
being this definition the most referenced in the literature.
In 1997, Borst [Bor97] slightly modify Gruber’s definition

saying that: “Ontologies are defined as a formal specifica-
tion of a shared conceptualization”. These two definitions
have been explained by Studer and Colleagues [SBF98] as
follows: “ Conceptualization refers to an abstract model of
some phenomenon in the world by having identified the rel-
evant concepts of that phenomenon. Explicit means that the
type of concepts used, and the constraints on their use are
explicitly defined. Formal refers to the fact that the ontol-
ogy should be machine-readable. Shared reflects the notion
that an ontology captures consensual knowledge, that is, it
is not private to some individual, but accepted by a group.”

Based on the definition of Gruber, many definitions of
what an ontology is have been proposed in the literature.
In 1995, Guarino and Giaretta [GG95] collected seven def-
initions and provided corresponding syntactic and semantic
interpretations. Other definitions are: “an ontology is a hi-
erarchically structured set of terms for describing a domain
that can be used as a skeletal foundation for a knowledge
base” [SPKR97], and “An ontology provides the means
for describing explicitly the conceptualization behind the
knowledge represented in a knowledge base.” [BLC96].

As a main conclusion to this section, we can say that the
literature provides several definitions of the word ontology.
Different definitions provide different and complementary
points of view of the same reality.

What principles should I follow to build ontologies?

Here we summarize some design criteria and a set of prin-
ciples that have been proved useful in the development of
ontologies.

Clarity and Objectivity [Gru95], which means that the
ontology should provide the meaning of defined terms
by providing objective definitions and also natural lan-
guage documentation.

Completeness [Gru95], which means that a definition
expressed in terms of necessary and sufficient condi-
tions is preferred over a partial definition (defined only
through necessary or sufficient condition).

Coherence [Gru95], to permit inferences that are con-
sistent with the definitions.

Maximum monotonic extendibility [Gru95]. It means
that new general or specialized terms should be in-
cluded in the ontology in a such way that is does not
require the revision of existing definitions.

Minimal ontological commitments [Gru95], which
means to make as few claims as possible about the
world being modeled, giving the parties committed to
the ontology freedom to specialize and instantiate the
ontology as required.

“Ontological commitments refer to agreement to use the shared vo-
cabulary in a coherent and consistent manner. They guarantee consistency,
but not completeness of an ontology” [GO94].
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Ontological Distinction Principle [BGM96], which
means that classes in an ontology should be disjoint.

Diversification of hierarchies to increase the
power provided by multiple inheritance mechanisms
[AGLP98].

Modularity [BLC96] to minimize coupling between
modules.

Minimization of the semantic distance between sib-
ling concepts [AGLP98] which means that similar
concepts are grouped and represented using the same
primitives.

Standardization of names whenever is possible
[AGLP98].

What are the components of ontologies?

Knowledge in ontologies is formalized using five kinds of
components: classes, relations, functions, axioms and in-
stances [Gru93]. Classes in the ontology are usually orga-
nized in taxonomies. Sometimes, the notion of ontology is
diluted, in the sense that taxonomies are considered to be
full ontologies [SBF98].

Concepts are used in a broad sense. A concept can
be anything about which something is said and, there-
fore, could also be the description of a task, function,
action, strategy, reasoning process, etc.

Relations represent a type of interaction between con-
cepts of the domain. They are formally defined as any
subset of a product of n sets, that is: R: C1 x C2 x ... x
Cn. Examples of binary relations include: subclass-of
and connected-to.

Functions are a special case of relations in which the
n-th element of the relationship is unique for the n-1
preceding elements. Formally, functions are defined
as: F: C1 x C2 x ... x Cn-1 Cn. Examples of
functions are Mother-of and Price-of-a-used-car that
calculates the price of a second-hand car depending
on the car-model, manufacturing date and number of
kilometers.

Axioms are used to model sentences that are always
true.

Instances are used to represent elements.

Once the main components of ontologies have been rep-
resented, the ontology can be implemented in a various lan-
guages: highly informal, semi-informal, semi-formal and
rigorously formal languages [Usc96].

What types of ontologies already exist?

Nowadays, it is easy to get information from organizations
that have ontologies on the WWW. Many ontologies like
Ontolingua ontologies at the Ontology Server [FFR97]
and WordNet [Mil90] at Princenton are freely available
over the Internet. Other ontologies, like Cyc ontologies
[LG90], are partially freely available on the web. However,
the majority of ontologies have been developed by compa-
nies for their own use and are not available. The Ontology
Page (also known as TOP) and (Onto)2Agent [AGLP98]
(an ontology-based www broker that helps to select ontolo-
gies) might help to select ontologies.

This section does not seek to give an exhaustive typol-
ogy of ontologies as presented in [vSW97, MVI95]. How-
ever, it presents the most commonly used types of ontolo-
gies.

Knowledge Representation ontologies [vSW97] cap-
ture the representation primitives used to formalize
knowledge in knowledge representation paradigms.
The most representative example is the Frame-
Ontology [Gru93], which captures the representation
primitives used in frame-based languages. It allows
other ontologies to be specified using frame-based
conventions. It is implemented in KIF 3.0 [GF92].

General/Common ontologies [Gua98] include vocab-
ulary related to things, events, time, space, causality,
behavior, function, etc.

The CYC ontology [LG90] is a common sense on-
tology that provides a vast amount of fundamental
human knowledge. The Cyc ontology is divided
into many micro-theories. Cyc Ontologies are imple-
mented in CycL language.

Top-Level Ontologies provide general notions un-
der which with all the terms in existing ontolo-
gies are related. Examples of top level ontolo-
gies are: Sowa’s boolean lattice [Sow97], PAN-
GLOSS [KL94], Penman Upper Level [BKMW90],
Cyc [LG90], Mikrokosmos [Mah96] and Guarino’s
top level proposal [Gua98].

Meta-ontologies, also called Generic Ontologies or
Core Ontologies [vSW97] are reusable across do-
mains. The Mereology ontology [Bor97] could be the
most typical example. It defines the part-of relation
and its properties. This relation allows to express that
devices are assembled of components, each of which
might -on its turn- be decomposed in subcomponents.

http://www-ksl.stanford.edu:5915 or the European mirror site at
http://www-ksl-svc-lia.dia.fi.upm.es:5915

http://www.tio.darpa.mil/Summaries95/B370-Princenton.html
http://www.cyc.com/
http://www.medg.lcs.mit.edu/doyle/top
http://delicias.dia.fi.upm.es/REFERENCE ONTOLOGY/
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Domain ontologies [MVI95, vSW97] are reusable in
a given domain. They provide vocabularies about
the concepts within a domain and their relationships,
about the activities that take place in that domain, and
about the theories and elementary principles govern-
ing that domain.

In the domain of engineering ontologies, the Eng-
Math ontology [GO94] and PhysSys [Bor97] deserve
special mention. EngMath is an Ontolingua ontol-
ogy developed for mathematical modeling in engi-
neering. PhysSys is an engineering ontology for mod-
eling, simulating and designing physical systems.

In the domain of enterprise modeling process, the En-
terprise Ontology [Usc96] is a collection of terms
and definitions relevant to business enterprises. On-
tologies built at the TOVE [GF95] (Toronto Virtual
Enterprise) project are: Enterprise Design Ontology,
Project Ontology, Scheduling Ontology, or Service
Ontology.

An illustrative example of ontologies for Knowledge
Management is the (KA) ontology [BFDGP97], to
be used by the Knowledge Annotation Initiative of the
Knowledge Acquisition Community. This ontology
is being built jointly and distributively with people at
different locations.

The most illustrative linguistic ontologies are the Gen-
eralized Upper Model [BMF95], WordNet [Mil90]
and Sensus [SPKR97]. The Generalized Upper Model
(GUM ) is a general task and domain-independent
linguistic ontology. To make it portable across dif-
ferent languages (English, German, Spanish, Italian,
etc.), the GUM ontology only includes the main lin-
guistic concepts and how they are organized across
languages, and omits details that differentiate lan-
guages. WordNet is a lexical database for English
based on psycholinguistic principles. Its information
is organized in units called “synsets”, which are sets
of synonyms that are interchangeable in a particu-
lar context and are used to represent different mean-
ings. SENSUS is a natural language based ontology
whose goal is to provide a broad conceptual struc-
ture for work in machine translation. It was developed
by merging and extracting information from existing
electronic resources.

Task ontologies [MVI95] provide a systematic vocab-
ulary of the terms used to solve problems associated
with tasks that may or may not be from the same
domain. They include generic names, generic verbs
generic adjectives and others in the scheduling tasks.

http://www.aiai.ed.ac.uk/project/enterprise
http://www.ie.utoronto.ca/EIL
http://www.aifb.uni-karlsruhe.de/WBS/broker/KA2.html
http://www.darmstadt.gmd.de/publish/komet/gen-um/newUM.html

Domain-Task ontologies are task ontologies reusable
in a given domain, but not across domains.

Method ontologies provide definitions of the relevant
concepts and relations used to specify a reasoning pro-
cess to achieve a particular task [CJB99].

Application ontologies [vSW97] contain the neces-
sary knowledge for modeling a particular application.

Meta-ontologies, domain ontologies and applications
ontologies capture static knowledge in a problem-solving
independent way, where as PSMs ontologies, task ontolo-
gies and domain-task ontologies are concerned with prob-
lem solving knowledge. All these kind of ontologies can
be combined to build a new ontology. The reusability-
usability trade-off problem [KBD 91] applied to the on-
tology field states that the more reusable an ontology is,
the less usable it is, and vice versa. The first thing to
do to model a new ontology using existing ontologies
from the library is to decide which knowledge represen-
tation paradigm to use to formalize knowledge, which
will then be committed to into a knowledge representa-
tion ontology. Having selected the knowledge represen-
tation ontology, the next step is to decide whether gen-
eral/common ontologies are needed in the new ontology.
If they are required, new ontologies are built and entered
into the library or reused from the library. This is when
knowledge-component modeling starts. Simultaneously,
domain knowledge and problem-solving knowledge can be
modeled. So, when domain knowledge is modeled, first
generic ontologies, then domain ontologies, and finally
application domain ontologies are built. When problem-
solving knowledge is modeled, first Task and PSMs on-
tologies, then domain task ontologies and finally appli-
cation domain task ontologies are modeled. Method and
task ontologies allow the assumption-based interaction be-
tween problem-solving and domain ontologies to be explic-
itly stated [BFS96, BPG96, FS98].

2.2 Methodologies for building ontologies

The ontology building process is a craft rather than an en-
gineering activity. Each development team usually follows
its own set of principles, design criteria and phases in the
ontology development process. The absence of commonly
agreed on guidelines and methods hinders the development
of shared and consensual ontologies within and between
teams, the extension of a given ontology by others and
its reuse in other ontologies and final applications. If on-
tologies are built on a small scale, some activities can be
skipped. But, if you intend to build large-scale ontologies
with some guarantees of correctness and completeness, it
is advisable to steer clear of anarchic constructions and to
follow a methodological approach.
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Uschold’s methodology [UG96, Usc96] is based on the
experience of building the Enterprise Ontology, which in-
cludes a set of ontologies for enterprise modeling, and pro-
poses the following steps: (1) identify the purpose and
scope of the ontology; (2) build the ontology by capturing
knowledge, coding knowledge and integrating the knowl-
edge with existing ontologies; (3) evaluate the ontology;
(4) documentation; and (5) guidelines for each phase.

Grüninger and Fox’s methodology [GF95] is based on
the experience of building an enterprise modeling ontology
in the framework of the TOVE project. Essentially, it in-
volves building a logical model of the knowledge that is
to be specified in the ontology. This model is not built di-
rectly. First, the specifications that are to be met by the on-
tology are described informally by identifying a set of com-
petency questions, and this description is then formalized
in a language based on first-order predicate calculus. The
competency questions are the basis for a rigorous charac-
terization of the knowledge that the ontology has to cover,
and they specify the problem and what constitutes a good
solution to the problem. By a composition and decompo-
sition mechanism, competency questions and their answers
can be used to answer more complex competency questions
in other ontologies, allowing the integration of ontologies.

The METHONTOLOGY framework [GP98, FGPPP99]
enables the construction of ontologies at the knowledge
level. It includes: (a) the identification of the ontology de-
velopment process, which refers to which tasks (planning,
control, specification, knowledge acquisition, conceptual-
ization, integration, implementation, evaluation, documen-
tation, configuration management, etc.) one should carry
out when building ontologies; (b) a life cycle based on
evolving prototypes, which identifies the stages through
which the ontology passes during its lifetime; and (c) the
methodology itself, which specifies the steps to be taken
to perform each activity, the techniques used, the prod-
ucts to be output and how they are to be evaluated. The
main phase is the conceptualization phase. During both
specification and conceptualization, a process of integra-
tion was completed using in-house and external ontolo-
gies. This framework is partially supported by a software
environment called Ontology Design Environment (ODE)
[BFGPGP98], [FGPPP99]. Several ontologies have been
developed using METHONTOLOGY and ODE: CHEM-
ICALS [FGPPP99], Environmental pollutants ontologies
[GPR99], the Reference-Ontology [AGLP98] and the re-
structured version of the (KA) ontology [BFGPGP98].
This methodology has been proposed to build ontologies by
the Foundation for Intelligent Physical Agents (FIPA ).

All these methodologies have in common that they start
from the identification of the purpose of the ontology and
the need for domain knowledge acquisition. However, hav-
ing acquired a significant amount of knowledge, Uschold’s

http://www.fipa.org

methodology proposes coding in a formal language and
METHONTOLOGY proposes expressing the idea as a set
of intermediate representations (IR). Then the ontology is
generated using translators. These IRs bridge the gap be-
tween, on the one hand, how people see a domain and,
on the other hand, the languages in which ontologies are
formalized. These intermediate representations provide a
user-friendly approach for both knowledge acquisition and
evaluation by computer scientists and domain experts who
are not knowledge engineers [ABB 98].

The need for ontology evaluation is also identified in
the three above methodologies. Uschold’s methodology
includes this activity but it does not state how it should
be carried out. Grüninger and Fox propose identifying a
set of competency questions. Once the ontology has been
expressed formally, it is compared against this set of com-
petency questions. Finally, METHONTOLOGY proposes
that evaluation activities be carried out throughout the en-
tire lifetime of the ontology development process. Most of
the evaluation is done in the conceptualization phase.

As main conclusion at this point we can say that each
group has and uses its own methodology and there does not
yet exist a common methodology that everybody agrees on.
Therefore, additional research has to be performed in this
direction.

2.3 Languages and environments for building ontolo-
gies

Which are the most commonly used languages to build on-
tologies?

Basically, several representation systems have been re-
ported for formalizing ontologies under a frame-based
modeling approach, a logic-based approach or even both.
The most representative languages are Ontolingua [Gru93],
CycL [LG90], Loom [Mac91] and FLogic [KLW95].

Ontolingua is a language based on KIF and on the Frame
Ontology, and is the ontology-building language used by
the Ontology Server. The Ontolingua language allows on-
tologies to be built in any of the following three manners:
(1) using KIF expressions; (2) using exclusively the Frame
Ontology vocabulary; (3) using both languages at the same
time, depending on ontology developer preferences. In any
case, the Ontolingua definition is composed of a heading,
an informal definition in natural language, and a formal
definition written in KIF or using the frame ontology vo-
cabulary. A GFP [CFF 97] application is required in order
to reason with Ontolingua Ontologies.

CycL is Cyc’s knowledge representation language.
CycL is a declarative and expressive language, similar to
first-order predicate calculus with extensions. CycL uses
a form of circumscription, includes the unique names as-
sumption, and can make use of the closed world assump-
tion where appropriate. CycL has an inference engine to
perform several kinds of reasonings.
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LOOM is a high-level programming language based
on first-order logic which belongs to the KL-ONE fam-
ily. The LOOM language provides: an expressive and
explicit declarative model specification language, a pow-
erful deductive support, several programming paradigms,
and knowledge-base services.

FLogic is an integration of frame-based languages and
first-order predicate calculus. It includes objects (simple
and complex), inheritance, polymorphic types, query meth-
ods and encapsulation. Its deductive system works with the
theory of predicate calculus and structural and behavioral
inheritance.

How do software tools support the process of building and
using ontologies?

The main tools for building ontologies are: The On-
tology Server [FFR97], Ontosaurus [SPKR97], ODE
[BFGPGP98, FGPPP99] and Tadzebao and Webonto
[Dom98].

The Ontology Server is the best known environment for
building ontologies in the Ontolingua language. It is a set
of tools and services that support the building of shared on-
tologies between geographically distributed groups. It was
developed in the context of the ARPA Knowledge Shar-
ing Effort by the Knowledge Systems Laboratory at Stan-
ford University. The ontology server architecture provides
access to a library of ontologies, translators to languages
(Prolog, CORBA’s IDL, CLIPS, Loom, KI) and an editor
to create and browse ontologies. There are three modes
of interaction: remote collaborators that are able to write
and inspect ontologies; remote applications that may query
and modify ontologies stored at the server over the Internet
using the generic frame protocol; and stand-alone applica-
tions.

Ontosaurus is being developed by the Information Sci-
ences Institute at the University of South California. It con-
sists of two parts: an ontology server that uses Loom as
knowledge representation system and an ontology browser
server that dynamically crates html pages (including im-
age and textual documentation) that displays the ontology
hierarchy and it uses html forms to allow the user to edit
the ontology. Translators from loom to Ontolingua, KIF,
KRSS and C++ have also been developed.

ODE (Ontology Design Environment) is being devel-
oped by the Computer Science School at Universidad
Politécnica de Madrid. The main advantage of ODE is the
conceptualization module for building ontologies, which
allows the ontologist to develop the ontology at the knowl-
edge level using a set of intermediate representations (IRs)
that are independent of the target language in which the
ontology will be implemented. Once the conceptualiza-
tion is complete, the code is generated automatically us-
ing ODE code generators (Ontolingua, FLogic and a rela-

http://indra.isi.edu:8000

tional database). So, non-experts in the languages in which
ontologies are implemented could specify and validate on-
tologies using this environment.

Tadzebao and WebOnto are complementary tools that
are being developed by the Knowledge Media Institute at
The Open University. Tadzebao enables knowledge en-
gineers to hold synchronous and asynchronous discussion
about ontologies and WebOnto supports the collaborative
browsing, creation and editing of ontologies.

2.4 Applications that use ontologies

Although ontologies can be used to communicate be-
tween systems, people, and organizations, interoperate be-
tween systems, and support the design and development of
knowledge-based and general software systems [Usc96],
the number of applications built that use ontologies to
model the application knowledge is small. That is, many
times such ontologies have been built just for a given appli-
cation without special consideration for sharing and reuse.
Several problems make difficult the reuse of existing on-
tologies in applications [AGLP98]: Ontologies are dis-
persed over several servers; the formalization differs de-
pending on the server on which the ontology is stored;
ontologies on the same server are usually described with
different levels of detail; and there is no common format
for presenting relevant information about the ontologies so
users can decide which ontology best suits their purpose.
These problems are probably the cause for the relatively
small number of known applications until now. Several
applications that use ontologies can be found in the pro-
ceedings of the workshop on Applications of ontologies
and PSMs held in conjunction with ECAI98.

There exist several applications that use natural lan-
guage ontologies. The GUM is being used in natural lan-
guage generation applications in different languages: Pen-
man [BKMW90], KOMET [Bat94], TechDoc [Ros94], Al-
Fresco [SCC 93], OntoGeneration [ABB 98], and the
language of [FvdR98]. WordNet is used by Hermes
[Hoe98] and OntoSeek [GMV99].

In the domain of enterprise modeling, the Enterprise tool
set (see:
http://www.aiai.ed.ac.uk/project/enterprise for more infor-
mation) is the most relevant environment built using the
Enterprise ontology. The Enterprise Design Workbench
and the Integrated Supply Chain Management Project use
TOVE Ontologies.

Recently, ontologies are being used by www brokers
in different domains. Ontobroker [FDES98] for knowl-
edge management in the context of the Knowledge Anno-
tation Initiative of the Knowledge Acquisition Community,
(Onto)2Agent [AGLP98] for selecting ontologies that sat-
isfy a given set of constraints and Chemical OntoAgent
[AGLP98] for teaching chemistry.

http://www.aifb.uni-karlsruhe.de/WBS/broker/
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In the domain of information systems design, Comet
[WMK95] supports the design of software systems, and
Cosmos [WMK95] supports engineering negotiation. Both
systems give design feedback to their users.

KACTUS [SWJ95] was an ESPRIT project on modeling
knowledge of complex technical systems for multiple use
and the role of ontologies to support it.

Plinius [vdVSM94] is a semi-automatic knowledge ac-
quisition system from natural language text in the domain
of ceramic materials, their properties and their production
processes.

3 Problem-Solving Methods

Problem-Solving Methods (PSMs) are nowadays recog-
nized as valuable components for constructing knowledge-
based systems (KBSs). This is manifested by the
fact that the notion of PSM is present in lead-
ing knowledge engineering frameworks such as Task
Structures [CJS92], Role-Limiting Methods [Mar88a],
CommonKADS [SWdH 94], Protégé [Mus93], MIKE
[AFS98], Components of Expertise [Ste90], EXPECT
[SG95], GDM [TvHWS93] and VITAL [DMW93]. PSMs
describe the reasoning process of a knowledge-based sys-
tem (KBS) in an implementation- and domain-independent
manner.

Work on PSMs covers different areas such as the iden-
tification of task-specific PSMs (for diagnosis, planning,
assessment, etc.), how to store and index PSMs in libraries,
how to formalize PSMs, etc. The issues involved in reusing
PSMs include finding the right PSM (that does -part of- the
job), checking whether it is applicable in the situation at
hand, and modifying it to fit the domain. In order to reuse
PSMs successfully in a real-life application, one has to un-
derstand these processes. A PSM may be characterized as
follows:

A PSM specifies which inference steps have to be car-
ried out for achieving the goal of a task.

A PSM defines one or more control structures over
these steps.

Knowledge roles specify the role that domain knowl-
edge plays in each inference step. These knowledge
roles define a domain-independent generic terminol-
ogy. There are two types of roles: static roles describe
the domain knowledge needed by the PSM; dynamic
roles form the input and output of inference steps.

PSMs play an important role in knowledge engineering
and knowledge acquisition. They can for instance be used
to efficiently achieve goals of tasks through the application
of domain knowledge [FS98], they can guide the acquisi-
tion process of domain knowledge, and they can facilitate
KBS development through their reuse.

is-realized-by

Operational specification

Comptence

Requirements/
Assumptions

uses

role1 role2 role3inf1 inf2

(inf1;inf2)*

Figure 1: The architecture of a PSM.
Before discussing different approaches to PSMs, we

will briefly present a general architecture of PSMs (taken
from[BFS96]).

3.1 Architecture of PSMs

Most approaches agree that a PSM consists of three related
parts, describing what a PSM can achieve, how it achieves
it and what it needs to achieve it, respectively referred to as
the PSM’s competence, operational specification and re-
quirements/assumptions (see Figure 1).

Competence The competence of a PSM is a declarative
description of the input-output behavior and describes
what can be achieved by the PSM.

Operational specification The operational specification
of a PSM describes the reasoning process which de-
livers the specified competence if the required knowl-
edge is provided. It consists of inference steps and the
knowledge and control-flow between them. The in-
ference steps specify the reasoning steps that together
accomplish the competence of the method. They are
described by their input/output relation and can be
achieved by either a method (which means that a PSM
can be hierarchically decomposed) or a primitive in-
ference (an atomic reasoning step which is not fur-
ther decomposed). The knowledge flow takes place
through dynamic roles, which are stores that act as in-
put and output of inferences. Finally, the control of a
PSM describes the order of execution of the inference
steps. Control knowledge can be specified in advance,
if known, or can be opportunistically determined at
run time depending on the dynamic problem-solving
situation [Ben95]. Problem-solving methods can be
used to efficiently achieve goals of tasks through the
application of domain knowledge [FS98]. They can
play several roles in the knowledge engineering pro-
cess, such as guiding the acquisition process of do-
main knowledge and facilitating KBS development
through their reuse.
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taskPSM
Domain

knowledge

Figure 2: The two possible gaps that may prevent a PSM
for being applied to its context.
Requirements/Assumptions Requirements/assumptions

of a PSM describe the domain knowledge needed by
the PSM to achieve its competence. Examples of such
requirements in a parametric design task include the
availability of heuristics that link violated constraints
to possible repair actions (fixes), and the fact that a
preference relation must describe a complete ordering.
The requirements describe what a PSM expects in re-
turn for the competence it provides.

The internal relationship between the competence and
operational descriptions of the method is that it has to be
ensured that, assuming that the knowledge requirements
are satisfied, the operational description describes a way
to achieve the competence [FS97].

A PSM in context

PSMs can be used to realize tasks by applying domain
knowledge. Thus, the external context of a PSM is formed
by two parties: a task to be realized and domain knowl-
edge to be applied. When we want to use a PSM to build a
knowledge-based system, we have thus to connect the PSM
with both the task and the domain knowledge. Since PSMs
are generic, reusable components, they may not always fit
perfectly in the context, or, in other words, there may be
gaps (see Figure 2).

These gaps can exist for several reasons. In both direc-
tions (i.e. towards the domain knowledge and the task) the
PSM may use different terminology than that of the domain
knowledge and task, in which case a renaming process can
bridge the gap. In the direction of the task, it may happen
that the PSM’s competence is not strong enough to realize
what is specified by the task. In this case, to bridge the
gap, the task may be weakened by making simplifying as-
sumptions. Towards the domain knowledge, the knowledge
required by the PSM may not be fully given by the domain
knowledge, in which case additional knowledge needs to
be acquired or can be assumed to exist.

3.2 Issues in PSM research

Problem-solving methods play an important role in knowl-
edge acquisition and knowledge engineering where they
have several purposes:

KBS construction (knowledge engineering): a PSM
can be helpful to describe the process of creating a
problem solver that achieves the goal of a particu-
lar task. Often this implies a task decomposition ap-
proach.

KBS specification (reasoning): a PSM can describe an
efficient reasoning process that achieves the goal of a
task. In this sense, a PSM concerns the product of the
creation process, and is related to the design model of
a KBS.

Cognitive modeling: a PSM can describe a cogni-
tive model of human problem-solving. An interesting
question is to what extent PSMs can be used to gener-
ate cognitively adequate explanations of the reasoning
process of a knowledge-based system.

PSM development

Work in this area is concerned with how PSMs are con-
structed in the first place. One way to do this, is by ana-
lyzing human problem-solving behavior and representing
this behavior computationally. This has been tradition-
ally the focus of Cognitive Psychology. Another way to
do this, is to perform reverse engineering of existing ex-
pert systems, as has been performed by Clancey [Cla85]
when he “discovered” Heuristic Classification. These two
ways of developing PSMs essentially involve a creative
activity, for which no methodological support exists. In
the last decade, several methodologies have been devel-
oped to support knowledge modeling and the develop-
ment of knowledge-based systems, such as CommonKADS
[SAA 99, SWdH 94], Protégé [Mus93], MIKE [AFS98],
Components of Expertise [Ste90], GDM [TvHWS93] and
VITAL [DMW93].

Other approaches propose principled or even semi-
automatic approaches to PSM development. One can for
example start with specifying the global required compe-
tence of the problem-solving method and then step-by-step
refine this competence description into an operational prob-
lem solver [WAS98]. Another approach views the con-
struction process of PSMs as a specific type of a config-
uration problem [tTvHSW98] and applies a well-known
problem-solving method to solve this problem: propose-
critique-modify. Coming up with PSMs is one thing, but
coming up with correct PSMs is another (a PSMs is correct
if it actually provides what is specified in its competence).
Formal methods are applied to develop such correct PSMs
[PG98, FS97].

Reuse and libraries of PSMs

When PSMs have been successfully developed for a par-
ticular application, it is worthwhile to formulate the PSMs
at a generic level. That is, the reusable parts of the PSMs
are identified and stored in a repository or a library. When
building a new application, this library can then be con-
sulted, preventing the system engineer from developing
a complete new system from scratch. Generally, reuse
of PSMs includes the following questions: which generic
PSMs exist and how should a library of these methods be
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organized? How can PSMs be indexed in a way to support
their selection for a given application? How can we sup-
port the process of adapting a generic PSM to the specific
circumstances of a given application? How can individual
PSMs from a library be configured into a coherent problem
solver? PSM libraries are of central importance if our aim
is to reuse as much as possible in a correct way.

Current work in the
PSM area focuses on method-description languages such
as UPML [FBMW99, GGM98]. Problem-solving meth-
ods that reside in libraries can be annotated with such lan-
guages, so that they become more accessible to others (peo-
ple and software agents).

3.3 Libraries of PSMs

PSMs represent a kind of best practice in KBS construc-
tion (cf. design patterns in object-oriented approaches
[GHJV95]). Instead of that knowledge engineers have to
construct problem solvers from scratch, they can benefit
from previous successful experiences of other developers.
The use of best-practice components has as benefits that
they reflect years of experience, enabling thorough valida-
tion and verification of the components, which enhances
the quality of the software. Once we have a collection
of such reasoning patterns, interesting issues arise such as
how to structure and organize the collection and how to in-
dex the components.

3.3.1 Types of PSM libraries

Currently, there exist several libraries with PSMs. They all
aim at facilitating the knowledge-engineering process, yet
they differ in various ways. In particular, libraries differ
along dimensions such as generality, formality, granularity
and size.

The generality dimension describes whether PSMs in
a library are developed for a particular task. Task-
specific libraries contain PSMs that are specialized in
solving (parts of) a specific task such as diagnosis or
design. Their “task-specificness” resides mainly in the
terminology in which the PSMs are formulated. Ex-
amples include libraries for design [Cha90, MZ98],
assessment [VL93], diagnosis [Ben93] and planning
[BVB96, BHB97]. The CommonKADS library can
be viewed as an extensive collection of task-specific
PSMs [BvdV94]. Task-independent libraries provide
problem-solving methods that are not formulated in
task-specific terminology [Abe93].

The formality dimension divides the libraries in in-
formal, formal and implemented ones. Implemented
libraries provide operational specifications of PSMs,
which are directly executable [PETM92, GTRM94].
Formal libraries allow for formal verification of prop-
erties of PSMs [Abe93, Abe95, BA97, tT97]. Finally,

informal libraries provide structured textual represen-
tations of PSMs. Note that within the informal ap-
proaches, PSM descriptions can vary from just tex-
tual descriptions [Cha90], to highly structured de-
scriptions using diagrams [Ben93].

The granularity dimension distinguishes between li-
braries with complex components, in the sense that the
PSMs realize a complete task [MZ98], and libraries
with fine-grained PSMs that realize a small part of the
task. Several libraries contain both large and small
building-blocks where the former are built up from the
latter [Ben93, Cha90, BVB96].

The size dimension. The most comprehensive gen-
eral library is the CommonKADS library [BvdV94]
which contains PSMs for diagnosis, prediction of
behavior, assessment, design, planning, assignment
and scheduling and engineering modeling. The most
extensive library for diagnosis [Ben93] contains 38
PSMs for realizing 14 tasks related to diagnosis. The
library for parametric design [MZ98] consists of five
PSMs, several of them being variations of Propose &
Revise [Mar88b]. The design library of [Cha90] men-
tions about 15 PSMs.

The type of a library is determined by its characteri-
zation in terms of the above dimensions. Each type has
a specific role in the knowledge engineering process and
has strong and weak points. The more general (i.e. task-
neutral) PSMs in a library are, the more reusable they are,
because they do not make any commitment to particular
tasks. However, at the same time, applying such a PSM in a
particular application requires considerable refinement and
adaptation. This phenomenon is known as the reusability–
usability trade-off [KBD 91]. Recently, research has
been conducted to overcome this dichotomy by introduc-
ing adapters that gradually adapt task-neutral PSMs to task-
specific ones [FG97] and by semi-automatically construct-
ing the mappings between task-neutral PSMs and domain
knowledge [BBvH96].

Libraries with informal PSMs provide above all support
for the conceptual specification phase of the KBS, that is,
they help significantly in constructing the reasoning part
of the expertise model of a KBS [SWB93]. Because such
PSMs are informal, they are relatively easy to understand
and malleable to fit a particular application. The disadvan-
tage is – not surprisingly – that still much work has to be
done before arriving at an implemented system. Libraries
with formal PSMs are particularly important if the PSMs
need to have some guaranteed properties, e.g. for use in
safety-critical systems such as nuclear power plants. Their
disadvantage is that they are hard to understand for hu-
mans [BH95] and limit the expressiveness of the knowl-
edge engineer. Apart from the possibility to prove prop-
erties, formal PSMs have the additional advantage of be-
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ing a step closer to an implemented system. Libraries with
implemented PSMs allow the construction of fully opera-
tional systems. The other side of the coin is, however, that
the probability that operational PSMs exactly match the re-
quirements of the knowledge engineer, is lower.

Developing a KBS using libraries with coarse-grained
PSMs, amounts to selecting the most suitable PSM and
then adapt it to the particular needs of the application
[MZ98]. The advantage is that this process is quite sim-
ple as it involves only one component. The disadvantage
is, however, that it is unlikely that such a library will have
broad coverage, since each application might need a dif-
ferent (coarse-grained) PSM. The alternative approach is
to have a library with fine-grained PSMs, which are then
combined together (i.e. configured) into a reasoner, either
manually [PETM92] or automatically [Ben95, BHB97].

3.3.2 Organization of libraries

There are several alternatives for organizing a library and
each of them has consequences for indexing PSMs and for
their selection. Finding the “best” organization principle
for such libraries is still an issue of debate. In the following,
we will present some organization principles.

Several researchers propose to organize libraries as a
task–method decomposition structure [CJS92, PETM92,
Ste93], and some available libraries are organized in this
way [Ben93, Bre94a, BVB96]. According to this organiza-
tion structure, a task can be realized by several PSMs, each
consisting of primitive and/or composite subtasks. Com-
posite subtasks can again be realized by alternative meth-
ods, etc. Principles for library design according to this prin-
ciple are discussed in [Ors96b, Ors96a]. In a library or-
ganized according to the task-method principle, PSMs are
indexed, based on two factors: (1) on the competence of
the PSMs – which specifies what a PSM can achieve, and
(2) on their assumptions – which specify the assumptions
under which the PSM can be applied correctly, such as its
requirements on domain knowledge [HY98]. Selection of
PSMs from such libraries first considers the competence
of PSMs (selecting those whose competences match the
task at hand), and then the assumptions of PSMs (select-
ing those whose assumptions are satisfied).

Libraries can also be organized, based on the functional-
ity of PSMs, in which case PSMs with similar functionality
are stored together. In addition, the functionality of PSMs
can be configured from pre-established parameters and val-
ues [tT97].

Another criterion to structure libraries of PSMs is based
on assumptions, which specify under what conditions
PSMs can be applied. Assumptions can refer to domain
knowledge (e.g. a certain PSM needs a causal domain
model) or to task knowledge (a certain PSM generates lo-
cally optimal solutions). To our knowledge, there does
not exist a library organized following this principle, but

work is currently being performed to shed more light on the
role of assumptions in libraries for knowledge engineering
[BFS96, FB98, FG97].

A last proposal to organize libraries of PSMs is based
on a suite of so-called problem types (or tasks, for the pur-
pose of this article tasks and problem types are treated as
synonyms) [Bre94a, Bre94b]. The suite describes problem
types according to the way that problems depend on each
other. The solution to one problem forms the input to an-
other problem. For example, the output of a prediction task
is a certain state, which can form the input to a monitoring
task that tries to detect problems, which on their turn can be
the input to a diagnosis task. It turns out that these problem
dependencies recur in many different tasks. According to
this principle, PSMs are stored under the problem type they
can solve. Selection of PSMs in such a library would first
identify the problem type involved (or task), and then look
at the respective PSMs for this task.

3.4 Industrial applications

Building KBSs from reusable components in an academic
setting is one thing. Doing the same for real industrial
applications is another. So far, several industrial applica-
tions have been built, but only a few have been reported
in the literature. Unilever reports on the successful use
of a library with diagnostic problem-solving methods for
building a knowledge-based system for diagnosing chem-
ical production processes [SA97, SA98]. A road traffic
management knowledge-based system [MHC98] is opera-
tional in the cities of Madrid and Barcelona in Spain. IBM,
Japan reports a knowledge system for job scheduling of
production processes [HY98]. The system has been built
by using a domain-oriented library of scheduling problem-
solving methods. Metrics show that a significant percent-
age of existing code has been reused in the new application.
Knowledge-based systems for plant classification, service
support for printing machines, and rheumatology have been
developed from reusable methods, as reported in [Pup98].

4 Conclusions and future work

In this paper, we reviewed recent work in the area of ontolo-
gies [ST99, UT98, vSW97, GP95] and problem-solving
methods [BF98]. The current state-of-the-art is that there
is now a fairly good understanding of what ontologies are
and what they do. Current work takes this body of existing
work and starts from that in new directions.

In the ontology world, emphasis is now put on integra-
tion of heterogeneous ontologies and on characterizing and
brokering ontologies on the WWW. Also, efforts are made
to connect to the object-oriented world and to databases.
Ontologies are clearly becoming more and more important
in a large variety of areas.

Also, work in the problem-solving method world
moves on. Several libraries of methods exist and
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efforts are made to make these libraries accessible
and interoperable. The European IBROW project
(http://www.swi.psy.uva.nl/projects/IBROW3/home.html)
aims at building a brokering service that can configure
knowledge system out of reusable PSMs that reside in li-
braries on the Internet.

The integration of ontologies and PSMs is also a
promising new direction, especially when ontologies and
databases are integrated. The PSMs can then provide rea-
soning services on top of these databases, which can lead
to dynamically configured active databases rather than pas-
sive repositories of static knowledge waiting to be queried.

5 Relevant links

For an extensive collection of (alphabetically ordered) links
to work on ontologies and problem-solving methods, in-
cluding proceedings and events, see:
http://www.cs.utexas.edu/users/mfkb/related.html. The
homepage of the PSM mailing list can be accessed at:
http://www.swi.psy.uva.nl/mailing-lists/kaw-
psm/home.html.

A list of relevant workshops that are accessible on the
WWW is included below:

Applications of Ontologies and Problem-Solving
Methods, ECAI’98 (European Conference on AI),
http://delicias.dia.fi.upm.es/WORKSHOP/ECAI98/index.html

Building, Maintaining, and Using Organizational
Memories, ECAI’98,
http://www.aifb.uni-karlsruhe.de/WBS/ECAI98OM/

Formal Ontologies in Information Systems
(FOIS’98),
http://krr.irst.itc.it:1024/fois98/program.html

Intelligent Information Integration, ECAI’98,
http://www.tzi.de/grp/i3/ws-ecai98/

Sharable and Reusable Components for Knowledge
Systems, KAW’98 (Workshop on Knowledge Acqui-
sition, Modeling, and Management),
http://ksi.cpsc.ucalgary.ca/KAW/KAW98/KAW98Proc.html

Ontological Engineering, AAAI Spring Symp. Series,
Stanford, Calif., 1997,
http://www.aaai.org/Symposia/Spring/1997/sss-97.html

Problem-Solving Methods, IJCAI’97 (Int’l Joint
Conf. AI),
http://www.aifb.uni-karlsruhe.de/WBS/dfe/PSM/main.html

Ontological Engineering, ECAI’96,
http://wwwis.cs.utwente.nl:8080/kbs/EcaiWorkshop/homepage.html

Sharable and Reusable Ontologies, KAW’96,
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/KAW96Proc.html

Sharable and Reusable Problem-Solving Methods,
KAW’96,
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/KAW96Proc.html
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A. Gómez Pérez, V.R. Benjamins 1-15


