Compression of a Dictionary

Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz

Dept. of Software Engineering Faculty of Mathematics and Physics Charles University

- Introduction
- Existing methods
- Trie-based methods
- Results
- Conclusion

Introduction

Why we are compressing a dictionary ?

Large Alphabet Compression

- Text Files Compression over alphabet of words or syllables.
- Alphabet (Dictionary) must be transferred with the coded message
- Word-based methods
 - Moffat 1989
- Syllable-based methods
 - Lánský, Žemlička 2005

Influence of File Size

Large files

- Dictionary takes small part of message
- Influence of compression of the dictionary on compression ratio is small
- Small files
 - Dictionary takes large part of message
 - Influence of compression of the dictionary on compression ratio is large

Existing methods

Common used methods for compression of a dictionary of words or syllables

Character by Character (CD)

Code of string is composed from

- Code of string type
 - Moffat: 2 types of words (word, non-word)
 - Lánský, Žemlička: 5 types of syllables
- Encoded length of the string
- Symbol codes

Character by Character (CD)

Examples

- code("to") = codeType(lower), codeLength(2), codeLower('t'), codeLower('o')
- code("153") = codeType(numeric), codeLength(3), codeDigit('1'), codeDigit('5'), codeDigit('3')

External Compression

- All strings from dictionary are concatenated by using separator
- This resulting string is compressed by
 - LZW (we denote LZWD)
 - Bzip2 (we denote bzipD)

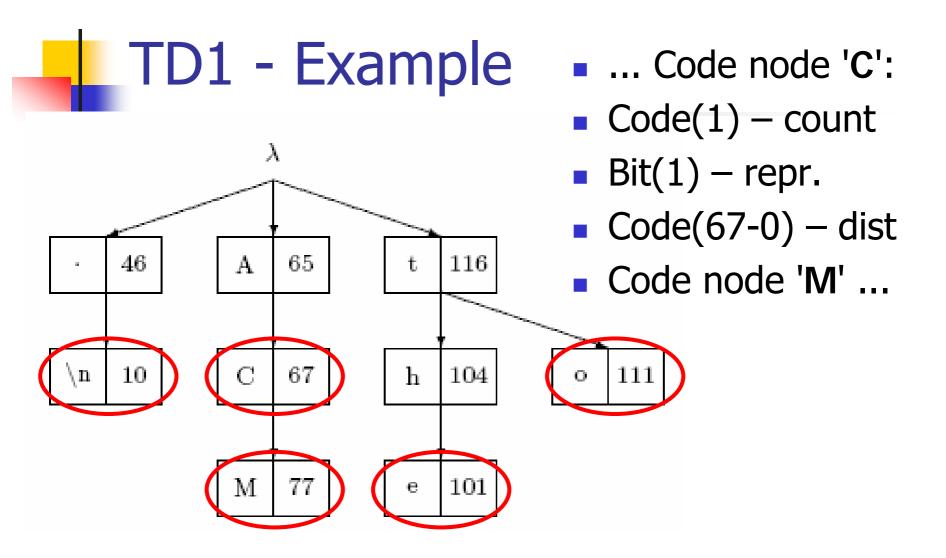
Trie-based methods TD1, TD2, TD3

Compression of a dictionary using its structure

Dictionary

Data structure trie

- Nodes may represent strings
- Father represents a prefix of its sons
- Mapping between strings and its order is unique in whole dictionary
- Order is obtained during compression


Trie data structure

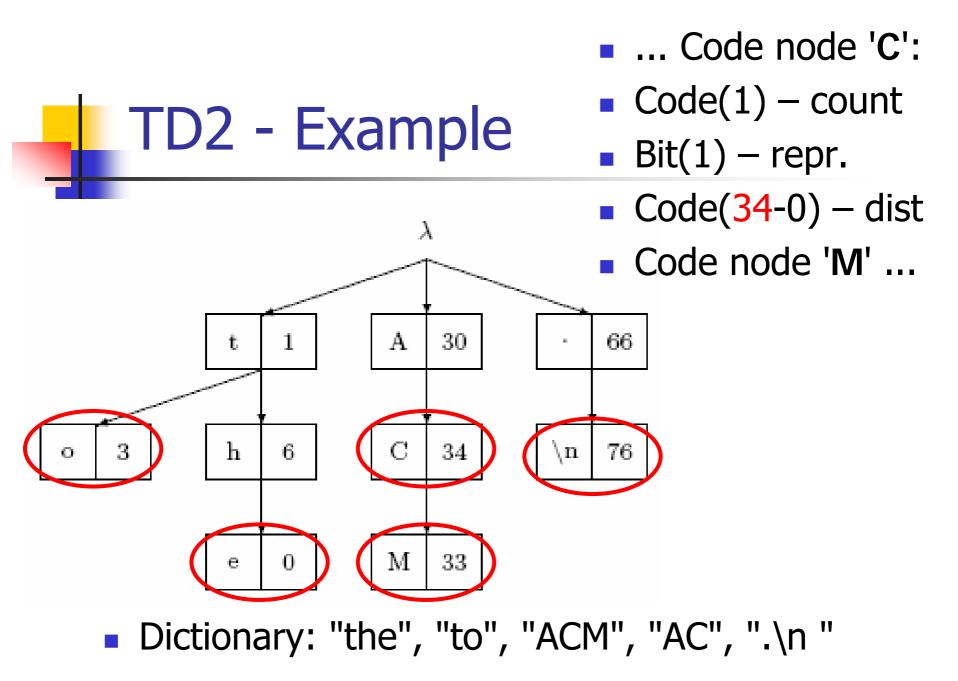
For each node we know

- Whether a node represents a string (represents)
- Number of sons (count)
- Array of sons (son)
- Extension of each son (extension)

TD1 - encoding

- EncodeTD1 ()
 - EncodeGamma number of sons count
 - Encode represents (bit 0 or 1)
 - For each son s
 - Distance = s.extension previous(s).extension
 - EncodeDelta(Distance)
 - EncodeNode(s)

Dictionary: "the", "to", "ACM", "AC", ".\n "


TD2 - Improvement

- In TD1 version the distances between sons are coded.
 - Distances are calculated according binary values of the extending symbols
- These distances are encoded by Elias delta coding representing
 - smaller numbers by shorter codes
 - larger numbers by longer codes.
- Goal decrease distances

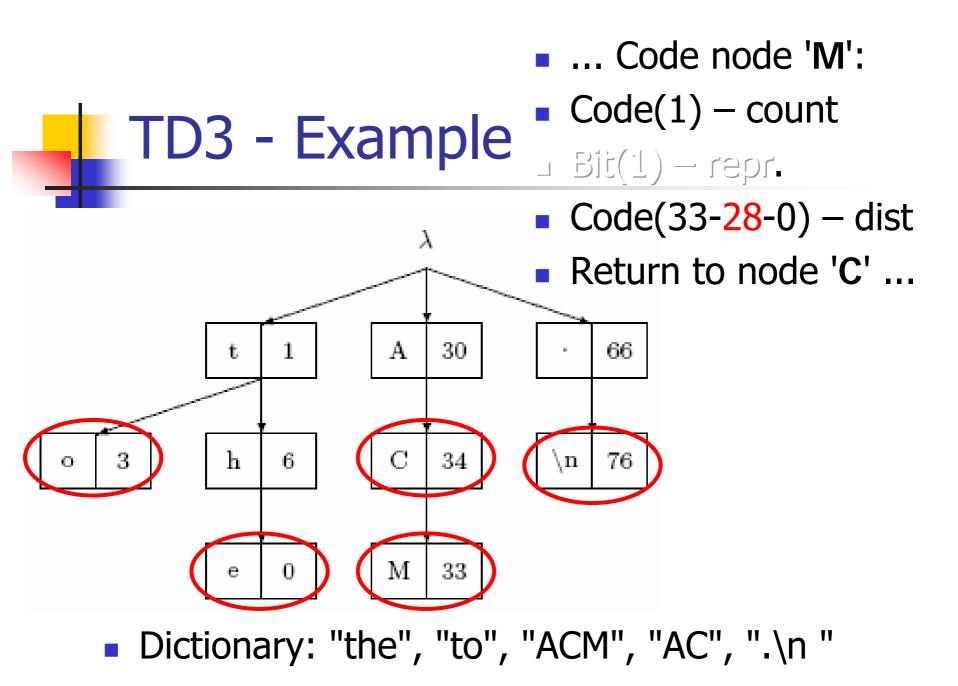
TD2 - Improvement

Reordering alphabet

- Primary according symbol type
- Secondary according symbol frequency
- 0-27 lower-case letter, 28-53 upper-case letters, 54-63 digits, 64-255 other symbols
- TD2 Distances between sons are counting in this new alphabet
 - TD2 gives shorter distances and its codes

TD3 - Improvement

5 types of words and syllables


- Lower ("hour")
- Upper ("HOUR")
- Mixed ("Hour")
- Numeric ("123")
- Other ("???")
- After coding 1-2 symbols from a string we can determine its type and improve its coding
 - 2 symbols per Mixed/ Upper, 1 symbol otherwise

TD3 - Improvement

Function first

- First(lower-case letter) = 0
- First(upper-case letter) = 28
- First(digit) = 54
- First(other) = 64

 TD3 – if we know the type of the string, we decrease the distance of the first son by the value of function **first** for the son extension

Comparison of TD1, TD2, TD3, CD, LZWD and BzipD on dictionaries of words and syllables in Czech, English and German

Results - syllables

		File size	100 R	1 kB	10 kB	50 kB	200 kB	500 kB	2 MB
	T	Method	1 kB				500 kB	2MB	5 MB
	-								5 MB
	CZ	LZWD	5.359	3.233	1.423	0.562	0.343	0.204	
	CZ	CD	3.741	2.432	1.130	0.461	0.284	0.169	
	CZ	BzipD	5.285	2.952	1.227	0.468	0.285	0.168	
	CZ	TD1	4.124	2.232	0.870	0.315	0.185	0.115	
	CZ	TD2	2.944	1.594	0.638	0.240	0.143	0.093	
	CZ	TD3	2.801	1.532	0.612	0.226	0.134	0.081	
	EN	LZWD	4.580	1.715	0.732	0.426	0.269	0.152	0.059
	EN	CD	2.983	1.287	0.583	0.360	0.234	0.133	0.052
	EN	BzipD	4.390	1.523	0.626	0.353	0.222	0.124	0.047
	EN	TD1	3.792	1.276	0.506	0.272	0.158	0.086	0.033
	EN	TD2	2.871	0.954	0.384	0.212	0.124	0.069	0.028
	EN	TD3	2.666	0.890	0.354	0.195	0.116	0.063	0.024
	GE	LZWD	4.259	2.995	1.139	0.580	0.345	0.202	0.104
	GE	CD	3.068	2.360	0.997	0.530	0.315	0.185	0.091
	GE	BzipD	4.127	2.689	0.949	0.479	0.285	0.166	0.087
	GE	TD1	3.952	2.539	0.832	0.377	0.207	0.122	0.045
	GE	TD2	3.020	1.914	0.627	0.284	0.157	0.097	0.035
	GE	TD3	2.730	1.805	0.599	0.275	0.150	0.086	0.033

Results - syllables

 TD3 outperforms other methods on all languages and file sizes

- Syllables are short
- Trie of syllables is dense
- Example
 - 10Kb Czech file
 - 770 bytes of dictionary by TD3
 - 1540 bytes of dictionary by CD (second best)

Results - words

		File size	$100 \mathrm{B}$	1 kB	10 kB	50 kB	200 kB	500 kB	$2 \mathrm{MB}$
	Lang.	Method	1 kB	10 kB	50 kB	200 kB	500 kB	2MB	5 MB
	CZ	LZWD	5.984	4.549	3.076	1.934	1.557	1.161	
	CZ	CD	4.378	3.830	2.948	1.968	1.648	1.260	
	CZ	BzipD	5.784	4.045	2.559	1.582	1.255	0.921	
	CZ	TD1	8.443	6.520	4.146	2.250	1.713	1.178	
	CZ	TD2	5.935	4.531	2.874	1.550	1.176	0.814	
	CZ	TD3	5.781	4.462	2.844	1.534	1.167	0.800	
	EN	LZWD	4.699	2.195	1.203	0.872	0.687	0.443	0.189
	EN	CD	3.100	1.776	1.095	0.847	0.695	0.454	0.197
	EN	BzipD	4.508	1.915	1.002	0.714	0.563	0.361	0.154
	EN	TD1	6.320	3.144	1.698	1.108	0.813	0.498	0.191
	EN	TD2	4.526	2.142	1.144	0.753	0.554	0.341	0.132
	EN	TD3	4.219	2.062	1.110	0.734	0.544	0.333	0.128
	GE	LZWD	4.712	3.634	1.819	1.227	0.996	0.706	0.716
	GE	CD	3.582	3.091	1.787	1.293	1.096	0.799	0.789
	GE	BzipD	4.409	3.216	1.506	1.001	0.797	0.558	0.565
	GE	TD1	7.187	5.748	2.585	1.700	1.383	0.945	0.844
	GE	TD2	4.985	3.885	1.691	1.094	0.875	0.601	0.534
	GE	TD3	4.699	3.776	1.660	1.085	0.867	0.591	0.532

Results - words

- Czech
 - On 50kB and larger files is TD3 best
 - Long words, dense trie of words
- English
 - On 200kB and larger files is TD3 best
 - Short words, quite dense trie of words
- German
 - On 2MB and larger files is TD3 best
 - Long words, quite sparse trie of words

Results - words

- How are methods succesfull on?
- Smaller files
 - 1. CD, 2.-3.TD3, 2.-3. BzipD, 4. LZWD
- Middle-sized files
 - 1. BzipD, 2. TD3, 3. CD, 4. LZWD
- Larger files
 - 1. TD3, 2. BzipD, 3. CD, 4. LZWLD

On what types of dictionaries is TD3 good ?

Conclusion

- Where is TD3 successful
 - Dense tries with short string
 - Dictionaries of syllables
 - Larger dictionaries of words
- TD3 is not bad on other types of dictionaries
 TD3 is usually at least the second best method