
A Comparison of Element-based
and Path-based
Approaches to Indexing XML Data

DATESO 2006

Michal Krátký1, michal.kratky@vsb.cz
Radim Bača1, radim.baca@vsb.cz

1Dpt. of Computer Science, VŠB–Technical University of Ostrava

Contents

Introduction – XML, query languages,
indexing XML data.
XPath Accelerator (XPA).
Multi-dimensional approach to indexing
XML data.
Experimental results.

Introduction
“Database view“: XML - approach to data modelling.
Set of documents is a database, DTD (XML Schema)
is its database schema.
XML query languages (XPath, XQL, XQuery,…).
Common approaches to indexing XML data:

Element-based methods,
Path-based methods,
Sequence-based methods.

XPath query

XPath query consists of
sequence of location steps
Format of location step –
axis::name[filter]

axis is a relation between
nodes
context node

Example:
/descendant::book[author = 'J.R.R. Tolkien']/child:title context node
//book[author = 'J.R.R Tolkien']/title

XPA - model

Dietz numbering scheme (preorder, postorder).
Every XML node is valuated by a tuple:
(preorder, postorder, parent_preorder, attribute, idT)
We can resolve axis relation for one node with
single range query.

XPA - indexes

Term index – map tags onto numbers.
XPA index – a storage of all tuples of an
XML document.

Multidimensional structures can be
utilized for better performance.

XML Content index – a storage of element
and attribute content. We utilized inverted
list.

XPA - XPath query evaluation

The query evaluation follows these steps:
axis::name resolution of the location step for
every context node.
Result is a set of nodes. We resolve a filter if
there is any.
The rest is considered to be context nodes for
the next location step.

The query is processed step by step.
Result of the last location step is the result
of the query

XPA – query evaluation
example

books/descendant::book[author = 'J.R.R. Tolkien']

context node: books

descendant::book

child::author

= 'J.R.R.Tolkien'

We retrieve context nodes from XPA
index with range query:
(0,0,0,0,0):(max,max,max,0,0)

XPA – query evaluation
example

context node: books Result: (1,13,_,0,0)

descendant::book

child::author

= 'J.R.R.Tolkien'

Evalution of the next location step is
done by range query:
(1,0,0,0,1):(max,13,max,0,1)

books/descendant::book[author = 'J.R.R. Tolkien']

XPA – query evaluation
example

context node: books Result: (1,13,_,0,0)

descendant::book

child::author

= 'J.R.R.Tolkien'

Result:

Evalution of the next location step has
to be done for each node from
previous result:
(2,0,2,0,6):(max,4,2,0,6)
(6,0,6,0,6):(max,8,6,0,6)
(10,0,10,0,6):(max,12,10,0,6)

(2,4,1,0,1)
(6,8,1,0,1)
(10,12,0,1)

books/descendant::book[author = 'J.R.R. Tolkien']

XPA – query evaluation
example

context node: books Result: (1,13,_,0,0)

descendant::book

child::author

= 'J.R.R.Tolkien'

Result:

Result: (5,3,2,0,6)
(9,7,6,0,6)
(13,11,10,0,6)

From the XML content index we get
preorder numbers of all elements
with 'J.R.R.Tolkien' content.

books/descendant::book[author = 'J.R.R. Tolkien']

(2,4,1,0,1)
(6,8,1,0,1)
(10,12,0,1)

XPA – query evaluation
example

context node: books Result: (1,13,_,0,0)

descendant::book

child::author

= 'J.R.R.Tolkien'

Result:

Result:

Result: {5,9}

books/descendant::book[author = 'J.R.R. Tolkien']

(5,3,2,0,6)
(9,7,6,0,6)
(13,11,10,0,6)

(2,4,1,0,1)
(6,8,1,0,1)
(10,12,0,1)

XPA – query evaluation
example

context node: books Result: (1,13,_,0,0)

descendant::book

child::author

= 'J.R.R.Tolkien'

Result:

Result:

Result: {5,9}

books/descendant::book[author = 'J.R.R. Tolkien']

(5,3,2,0,6)
(9,7,6,0,6)
(13,11,10,0,6)

(2,4,1,0,1)
(6,8,1,0,1)
(10,12,0,1)

XPA – query evaluation
example

context node: books Result: (1,13,_,0,0)

descendant::book

child::author

= 'J.R.R.Tolkien'

Result:

Result:

Result: {5,9}

books/descendant::book[author = 'J.R.R. Tolkien']

(5,3,2,0,6)
(9,7,6,0,6)
(13,11,10,0,6)

(2,4,1,0,1)
(6,8,1,0,1)
(10,12,0,1)

Multi-dimensional approach to
indexing XML data

A graph is a set of the paths. XML document is
decomposed to paths and labelled paths.
labelled path: lp: s0,s1,...,slPN
path: p: idU(u0),idU(u1),...,idU(ulLP),s
idU(ui) – unique number of a node ui

Indexes

Term index – a storage of strings si of an
XML document and their idT(si).
Labelled path index – a storage of points
representing labelled paths.
Path index – a storage of points
representing paths.

Example
labelled path index, path index
Labelled paths:

books,book,id – point (0,1,2), idLP = 0
books,book,title – point (0,1,4), idLP = 1
books,book,author – point (0,1,6), idLP = 2

For example, the path to value The Two Towers
belongs to the labelled path books,book,title with
idLP 1. Vector (1,0,1,3,5) is
created using
idLP, unique
numbers idU of
elements, and
idT of the term.

Query for values of elements
and attributes

books/book[author=“Joseph Heller”]

context node: books (0)

descendant::book (1)

child::author (6)

= ‘Joseph Heller’ (12)

Search for appropriate labelled
paths.

Query for values of elements
and attributes

books/book[author=“Joseph Heller”]

context node: books (0)

descendant::book (1)

child::author (6)

= ‘Joseph Heller’ (12)

Result: books,book,author
(0,1,6)
Search in the labelled path index:
point query (0,1,6)

Query for values of elements
and attributes

books/book[author=“Joseph Heller”]

Result: books,book,author
(0,1,6)
Result: idLP 2
Search points in the path index:
(2,0,0,0,12):(2,max,max,max,12)

context node: books (0)

descendant::book (1)

child::author (6)

= ‘Joseph Heller’ (12)

Query for values of elements
and attributes

books/book[author=“Joseph Heller”]

Result: books,book,author
(0,1,6)
Result: idLP 2
Result: idU 0,9,12

context node: books (0)

descendant::book (1)

child::author (6)

= ‘Joseph Heller’ (12)

Query for values of elements
and attributes

books/book[author=“Joseph Heller”]

Result: books,book,author
(0,1,6)
Result: idLP 2
Result: idU 0,9,12 – desired
element

context node: books (0)

descendant::book (1)

child::author (6)

= ‘Joseph Heller’ (12)

Index data structures

Paged and balanced multi-dimensional data
structures – (B)UB-trees, variants of R-trees.
They provide point and range queries.
Problems:

● narrow range query – the signature is applied
for efficient processing – Signature R-tree.

● indexing points with different dimensions –
BUB-forest, R-forest. Each tree indexes space
of different dimension.

Experimental results

XMARK collection
the document size: 111MB
number of XML nodes: 2,082,854
number of different tags: 376,906

XPA utilized R-tree
Queries:
Q1:/site/regions/africa/item[location=’United’]
Q2:/site/closed_auctions/closed_auction/annotation

/description/parlist/listitem/parlist/listitem/text/em
ph/keyword/

Experimental results

XPA Q2 query evaluation

Experimental results

XPA Q1 query evaluation

Experimental results

Query Q1

Query Q2

Conclusion

We compared XPA element-based approach
and MDA path-based approach.
Results show that path-based approach
overcomes element-based approach.
Query processing without extensive structural
joins.

References

M. Krátký, J. Pokorný, V. Snášel: Implementation of XPath
Axes in the Multi-dimensional Approach to Indexing XML
Data. Accepted at International Workshop on Database
Technologies for Handling XML information on the
Web, DataX, Int'l Conference on EDBT, Heraklion - Crete,
Greece, 2004.
M. Krátký, T. Skopal, and V. Snášel: Multidimensional
Term Indexing for Efficient Processing of Complex
Queries. Kybernetika, Journal of the Academy of Sciences
of the Czech Republic, 2004, accepted.
T. Grust. Accelerating XPath Location Steps. In
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison, USA. ACM
Press, June 4-6, 2002.

	A Comparison of Element-based and Path-based�Approaches to Indexing XML Data
	Contents
	Introduction
	XPath query
	XPA - model
	XPA - indexes
	XPA - XPath query evaluation
	XPA – query evaluation example
	XPA – query evaluation example
	XPA – query evaluation example
	XPA – query evaluation example
	XPA – query evaluation example
	XPA – query evaluation example
	XPA – query evaluation example
	Multi-dimensional approach to indexing XML data
	Indexes
	Example�labelled path index, path index
	Query for values of elements and attributes
	Query for values of elements and attributes
	Query for values of elements and attributes
	Query for values of elements and attributes
	Query for values of elements and attributes
	Index data structures
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Conclusion
	References

