CellStore — the Vision of Pure Object Database

Jan Vrany

Department of Computer Science, FEE, Czech Technical University in Prague,
Karlovo namésti 13, 120 00, Praha, Czech Republic
vranyjl@fel.cvut.cz

Abstract. This paper describes a vision of CellStore, a kind of univer-
sal database system, which would be capable of storing and operating on
several different data models — object, network, hierarchical and even re-
lational one. Features of CellStore will be described as well as underlying
storage model and database architecture.

1 DMotivation

The world’s mainstream programming paradigm for robust, large scale, mission-
critical application is object-oriented programming (OOP). Many of such ap-
plications need support of database to maintain its data. But nobody doubts
that the database should be relational or object-relational one. The semantic
gap between those two totally different paradigms brings some problems, that
has to be solved. Basically, there are three possible solutions:

— The application operates on data in a “relational way”, i.e. the programmer
has to use SQL queries to access data directly. In this case, usage of objects
is limited only to usage of OO libraries for GUI and so on.

— Some kind of object-relational mapper is used (GLORP [5] or Hibernate [6]
are examples of such O-R mappers). This allows programmers to manipulate
data in a “object” way, but architecture and capabilities of O-R mapper
limits the design of application and underlying database schema.

— Network or object database is used instead of relational one.

2 Currently available object-oriented databases

There are currently many so-called “object databases” — OmniBase, DB4Objects,
ZODB, GOODS, Elephant, GemStone/S. In fact many of them are network
rather than object ones. Both network and object database are very similar.
Both can store any arbitrary object structure. The difference is that an object
database also stores code (methods) together with regular data. Object database
can execute any code stored in it itself, no client environment is needed.

V. Snésel, K. Richta, J. Pokorny (Eds.): Dateso 2006, pp. 32-39, ISBN 80-248-1025-5.

CellStore — the Vision of Pure Object Database 33

2.1 OmniBase

OmniBase [7] is embedded network database written in smalltalk. It is available
for many different smalltalk dialects — Doplhin Smalltalk, Squeak, VisualWorks,
Smalltalk/X and VAST. OmniBase supports multi-version concurrency control,
object clustering, online backups and thread-safe operations.

Garbage collecting is supported, but cannot be performed on live database.

2.2 DB4Objects
DB4Objects [8] is less or more similar to OmniBase, but there are two differences:

1. DB4Objects is targeted on Java and .NET (C+#) platforms.
2. DB40Objects can operate as embedded database or can run as normal data-
base server which communicates with clients over the network.

2.3 GemStone/S

GemStone/S [9] is full-featured object database based on smalltalk dialect called
Smalltalk DB. GemStone application consists of three parts: a client (usually
VisualWorks smalltalk), a Gem (a part of GemStone responsible for evaluating,
transaction processing and so on) and a Stone (a part responsible for managing
low-level storage). Each part can run on different node in a network. A special
Gem called GeGem is responsible for garbage collecting, which is performed
during normal processing of client requests.

3 The CellStore project

The basic motivation for CellStore project was development of an experimental
database, which can be used as a basis for experimenting with various database
algorithms like locking and caching strategies, transaction policies, different data
type models, etc.

The project is divided into three relatively independent parts:

— CellStore low-level storage, which provides a basic storage management,
— CellStore/OODB, an experimental object database,
— CellStore/XML, an experimental native XML database.

The design and implementation of CellStore is focused more on simple OO
design and modularity than on implementation performance. As long as Cell-
Store is experimental system, saving several bytes of memory or several processor
instructions doesn’t matter.

34 Jan Vrany

3.1 The low-level storage model

The low-level storage model gave CellStore its name. It is combination of storage
models of Lisp, Smalltalk and Oracle RDBM. Basically, the storage is divided
into two main spaces.

— Cell space, which contains only the structural information about stored data.
Structure is kept in fixed-size cells. Each cell has several fields, which can
contain pointer to another cell in the cell space or a pointer to a record
in the data space. Cells describe only relationships between data elements
(objects) stored in a CellStore database.

— Data space, which contain actual data, i.e. a byte arrays. Data space is
organised into blocks, each block may contain several records. Each record
in data space is identified by a unique data pointer. The internal organisation
of data space is similar to data blocks in Oracle or in any other relational
database.

This approach has several advantages:

1. usage of fixed-length cell simplifies cell allocation and automatic storage
reclamation
2. it is possible to store many different object models

The second advantage is a more important one. It allows to store different
data (class-based objects, prototype-based objects, XML data and even rela-
tional data) together in the same database. Thus CellStore can act as a pure
object database or as an XML database. Note that data are stored in their native
form, mapping of data to cell and data space is less or more straightforward.
This is why we call CellStore a universal database.

Mapping objects into cell and data space In this section, mapping of
objects will be described. Consider class-based object model and eight-field cells.

Each object occupies at least one cell, called the head cell and zero or more
cells called tail cells.

The head cell contains cell header, which contains cell type (non-indexable
class-based instance for example), other information like the number of cells
occupied by this instance, gc support information, tail-cell flag and more.

Second field of the head cell contains pointer to ACL set, pointer to another
object (in fact, pointer to another object’s head cell), which contains all informa-
tion needed for access control to this object (because we are designing multi-user
database).

Third field of the head cell contains pointer to object’s class, which is also
an object represented by head cell.

Other fields contain pointers to ordinary instance variables. If all instance
variables cannot be stored in a single cell, the last field contains pointer to the
next (possibly tail) cell. Another possibility is to use something like indirect
pointers as used in inode-based file systems.

CellStore — the Vision of Pure Object Database 35

Data of indexed classes (arrays, byte arrays) are stored in the data space.
An example of objects structure and its mapping to cell and data space is
on figure 1 and figure 2. Note, that integers are stored as immediate values [1].

a Person(Bob)

/ Person
.a Car(id 1234)
a Car(id 5678)
o @)
. a MethodDictionary

a CarModel(Ford)

Fig. 1. Example of object structure

Mapping XML data into cell and data space Another example of data
that can be stored in CellStore is XML data. Although XML data can be stored
into CellStore as normal objects (DOM nodes) as shown above, we are using
more efficient, XML specific mapping.

There are 9 types of cells:

— character data cell

— attribute cell

— element cell

— document cell

— document type cell

— processing instruction cell
— comment cell

— xml resource cell

— collection cell

The last two cell types represent XML:DB objects as described in [2]. Each
cell has a pointer to its parent cell, first child cell and sibling cell. Meanings of
the last four fields depend of the type of the cell (see table 1).

Children of any cell are linked through the sibling pointer and parent holds
pointer to the first child.

36 Jan Vrany

Fig. 2. Example mapping objects into the cell and data space

Cell Space

aclpointer class instvar | instvar2 instvar3 instvard instvar 5

’\N a Person(Bob)

‘ Person

| “Bob’

‘ a Car(id 1234)

‘ a Car(id 5678)

‘ a CarModel(Ford)

‘ a MethodDictionary

Data Space

Bob|Alice

3.2 The CellStore’s virtual machine

Classic virtual machine consists of an object memory and an interpreter. Object
memory is responsible for managing objects in memory, for efficient storage
reclamation and the interpreter defines all the execution semantics. We think
that it’s possible to implement virtual machine on the top of CellStore storage,
so one can think about CellStore as one large multi-user virtual machine with
persistent, transaction-capable object memory.

The idea is to move as much functionality as possible to CellStore’s virtual
machine. This includes indexing algorithms, garbage collector, jitter etc. The
CellStore should provide only basic object memory management and common,

Table 1. Meanings of fields in XML cells

Field
Cell type 5 [6 [7 8
character data data 1 (data 2) (data 3) (data 3)
attribute local name |namespace qualifier namespace uri value
element local name |namespace qualifier namespace uri|first attribute
document document type encoding unused unused
document type public id system id unused unused
processing instruction target data unused unused
comment data 1 (data 2) (data 3) (data 3)
xml resource resource name unused unused unused
collection name unused unused first resource

CellStore — the Vision of Pure Object Database 37

flexible object model. Everything else could be implemented on the top of Cell-
Store.

This allows user (programmer) to experiment with different algorithms, jit-
ters, garbage collectors and, as long as the interpreter itself will be implemented
on the top of CellStore, with different programming languages and code seman-
tics.

The CellStore’s virtual machine should provide only the following:

— object memory management supporting only common object model as de-
scribed in section 3.1

— dumb, built-in interpreter which is capable if interpreting simple, limited
language (bytecode) — we called it the bootstrap interpreter

— capability of trap out unknown language (bytecode) and let user-level inter-
preter to evaluate them.

— basic support for installing native (jitted) code into VM’s native code cache

There is no need for speed of any interpreter as long as the interpreter will be
able to interpret jitter (implemented in any language). The jitter can translate
itself into the native code to make itself fast and then translate the rest.

3.3 Architecture of CellStore database
The high level architecture of CellStore is shown on figure 3.

CellStore/OODB ' CellStore/XML

St. interpreter
Object memory

Java interpreter

! | XQuery/XPath
executor

,,,

Low-level

| CacheManager |
storage
| StorageMamager |

Cell space Data space

Fig. 3. High level architecture of CellStore

From the VM’s side of view, OODB transaction manager plays the role of
object memory, so it should provide interface similar to Smalltalk-80’s object

38 Jan Vrany

memory [1]. In addition, it must provide an interface for transaction managing
(start, commit, abort) and an interface for garbage collector.

3.4 Status of the CellStore project

The Cellstore project is developed at Department of Computer Science, FEE
CTU Prague by Michal Valenta, Jan Vrany, Pavel Strnad, Karel Prihoda and
Jan Zak.

Whole the project is developed in Smalltalk/X — a free smalltalk imple-
mentation. Smalltalk/X has been chosen because of its pure object orientation,
source code availability, outstanding development tools and because of its ex-
treme agility. To achieve practical performance, system can be translated to C
[4].

In these days, only the lowest level storage manager is implemented. It can
manage cell and data spaces. First experiments show that the storage is able to
store whole INEX database [10] (about 500MB of XML documents) using map-
ping described in section 3.1 without significant performance lost, that means
that the document reconstruction time of single, randomly chosen document n
was almost independent on database size.

First versions of cache and XML transaction managers are implemented and
tested but they are not integrated to the rest of the system, yet.

4 Conclusion and future work

This paper presented the vision of a pure object database built on the top
of CellStore storage model. In CellStore virtual machine, as much components
as possible is lifted up to “user-space”, making experiments with different lan-
guages, semantics, jitter, garbage collectors and other algorithms and techniques
very easy.

To make such system working, several things has to be developed:

OODB transaction manager and its interface to bootstrap interpreter.
tiny bootstrap interpreter

— experimental, naive one-to-one non optimising jitter

other language interpreter

Once things mentioned above will be implemented and tested, we will have a
working database system, which can be used as test bed for many different algo-
rithms. Such system will make development of new approaches and algorithms
very easy.

References

1. A. Goldberg, D. Robson. Smalltalk-80: The Language and its Implementation,
Addison-Wesley, 1983.

© Y XD

CellStore — the Vision of Pure Object Database 39

XML:DB initiative. XML:DB Working Draft, http://xmldb-org.sourceforge.
net/xapi/xapi-draft.html

Camp Smalltalk. VM Issues, http://wiki.cs.uiuc.edu/CampSmalltalk/VM+
Issues

D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay. Back to the Future. The
Story of Squeak, A Practical Smalltalk Written in Itself http://users.ipa.net/
~dwighth/squeak/oopsla_squeak.html

Camp Smalltalk. GLORP: Generic Lightweight Object-Relational Persistence,
http://glorp.org/

Relational Persistence for Java and .NET, http://www.hibernate.org/
OmniBase, http://wwu.gorisek.com

DB/ Objects, http://dbdobjects.org

GemStone/S, http://www.gemstone.com

INEX: Initiative for the Fwvaluation of XML Retrieval, http://inex.is.
informatik.uni-duisburg.de/2006/

