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Abstract 

Vast amount of geospatial datasets are now 

available through numerous public and private 

organizations. These datasets usually cover 

different areas, have different accuracy and level 

of details, and are usually provided in the vector 

data format, where the latitude and longitude of 

each object is clearly specified. However, there 

are scenarios in which the spatial attributes of the 

objects are intentionally transformed to a 

different, and usually unknown, (alien) system. 

Moreover, it is possible that the datasets were 

generated from a legacy system or are 

represented in a native coordinate system. An 

example of this scenario is when a very accurate 

vector data representing the road network of a 

portion of a country is obtained with unknown 

coordinate. In this paper, we propose a solution 

that can efficiently and accurately find the area 

that is covered by this vector data simply by 

matching it with the (possibly inaccurate and 

abstract) data with known geocoordinates. In 

particular, we focus on vector datasets that 

represent road networks and our approach 

identifies the exact location of the vector dataset 

of alien system by comparing the distribution of 

the detected road intersection points between two 

datasets. Our experiment results show that our 

technique can match road vector datasets that are 

composed of thousands of arcs in a relatively 

short time with 91% precision and 92.5% recall 

for the matched road feature points.  

1. Introduction 

With the rapid improvement of geospatial data collection 

techniques, the growth of Internet and the implementation 

of Open GIS, a large amount of geospatial data are now 

readily available on the web. The examples of well-

known vector datasets are US Census TIGER/Line files
1

(covering most roads over the United States), 

NAVSTREETS from NAVTEQ,
2
 VPF data from NGA 

(U.S. National Geospatial-Intelligence Agency),
3

 and 

DLG data from USGS (U.S. Geological Survey).
4
 The 

Yahoo Map Service,
5
 Google Map Service,

6
 Microsoft 

TerraService
7
 [1] are good examples of map or satellite 

imagery repositories. These datasets usually cover 

different areas, have different accuracy and level of 

details, and some of them are provided in the vector data 

format, where the latitude and longitude of each vector 

object is clearly specified. However, there are scenarios in 

which the spatial attributes of the vector objects are 

intentionally transformed to a different, and usually 

unknown, (alien) system. Moreover, it is also possible that 

the datasets were generated from a legacy system or are 

represented in a native coordinate system. 

Figure 1 illustrates a scenario where we want to locate 

the area of a USGS raster topographic map (as shown in 

                                                          
1 http://www.census.gov/geo/www/tiger/

2 http://www.navteq.com/

3 http://www.nga.mil/

4 http://tahoe.usgs.gov/DLG.html

5 http://maps.yahoo.com/

6 http://maps.google.com

7 http://terraserver-usa.com/
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Figure 1(a)). The map covers partial area of St. Louis 

County, MO in U.S.A., but its exact geocoordinates are 

inaccessible. The map is first processed to extract road 

network (as shown in Figure 1(b)) by using a 

text/graphics separation technique developed by us [2] . 

Obviously, the extracted road network is in a native 

coordinate system (i.e., raster pixel x/y in Cartesian 

system). Meanwhile, a larger road network covering this 

county is publicly available from US Census 

TIGER/Lines. By identifying matched features between 

the two road networks, the system can then automatically 

infer the geocoordinate of the extracted map road network 

(as the area highlighted in Figure 1(c)). 

There have been a number of efforts to automatically 

or semi-automatically detect matched features across 

different road vector datasets [3, 4, 5, 6, 7]. Given a 

feature point from one dataset, these approaches utilize 

different matching strategies to discover the 

corresponding point within a predetermined distance (i.e., 

a localized area). This implies that these existing 

algorithms only handle the matching of vector datasets in 

the same geometry system (i.e., the same coordinate 

system
8
). Hence, to the best of our knowledge, no general 

method exits to resolve the matching of two vector data in 

unknown geometry systems. Furthermore, processing 

large vector datasets often requires significant CPU time. 

Our methodology, described in this paper, is able to 

automatically and efficiently handle the matching of 

diverse and potentially large vector datasets, independent 

of the coordinate system used. In particular, we focus on 

vector datasets that represent road networks.  

The basic idea of our approach is to find the 

transformation T between the layout (with relative 

distances) of the feature point set on one road network 

and the corresponding feature point set on the other road 

network. This transformation achieves global matching 

between two feature point sets by locating the common 

point pattern among them. More precisely, the system can 

detect feature points from both road networks. The 

                                                          
8  In this paper, we use the terms “geometry system” and 

“coordinate system” interchangeably. 

distribution of detected feature points from each road 

network forms a particular (and probably unique) point 

pattern for the road network. In order to improve the 

running time, our approach exploits auxiliary spatial 

information to reduce the search space for the 

transformation T. Once the matched points across 

different road networks are identified, the system can then 

utilize this transformation to map the road network of 

alien geometry (coordinate) system into a known 

coordinate system (e.g., geodetic coordinate system).  

To illustrate the usefulness of our approach, consider 

the matching of two road networks: one is in an unknown 

coordinate system but with more accurate geometry and 

the other has rich attributes and a known coordinate 

system but with poor geometry. Applying our matching 

algorithm to these two road networks can result in a 

superior road network that combines the accuracy of the 

road geometry from one vector dataset and rich attributes 

from the other. Furthermore, these matched points can be 

used as control points to conflate these two road network 

datasets [6].

The remainder of this paper is organized as follows. 

Section 2 describes our approach in details. Section 3 

provides experimental results. Section 4 discusses the 

related work and Section 5 concludes the paper by 

discussing our future plans. 

2. Proposed Approach 

In this section, we first describe our overall approach to 

match two road networks. Then, we describe the details of 

our techniques. 

2.1   Approach Overview 

Intuitively, matching road networks relies on the process 

of matching the road segments from two vector datasets to 

find the corresponding road segments. However, this is a 

challenging task for two large road networks, especially 

when one of the road networks is in a different or 

unknown geometry system. To address this issue, we 

propose to match two datasets based on some feature 

points detected from the road networks. In particular, we 

(a) A USGS topographic map (b) The extracted road network in 

a native coordinate system 

(c) The U.S. Census TIGER/Lines road 

network 

Figure 1: Two road networks cover overlapping areas
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utilize road intersections as the feature points. Road 

intersections are good candidates for being matched, 

because road intersections are salient points to capture the 

major features of the road network and the road shapes 

around intersections are often well-defined. In addition, 

various GIS and computer vision researchers have shown 

that the intersection points on the road networks are good 

candidates to be identified as an accurate set of matched 

points [7, 8, 9, 10]. 

After detecting a set of intersection points from each 

road network separately, the remaining problem is how to 

match these intersection points effectively and efficiently 

to locate a common distribution (or pattern) from these 

intersections. Our system perceives the distribution of 

detected intersections from each road network as the 

fingerprint of the road network. Then our system finds the 

transformation T between the layout (with relative 

distances) of the feature point set on one road network 

data and the feature point set on the other road network. 

This transformation achieves global alignment between 

two intersection point sets by locating the common point 

pattern among them. 

Figure 2 shows our overall approach. Using detected 

road intersections as input, the system locates the 

common point pattern across these two point sets by 

computing a proper transformation between them. The 

system can then utilize this transformation to map the 

road network in unknown geometry system into a known 

coordinate system. We describe our detailed techniques in 

the following sections. 

2.2   Finding the feature points from vector datasets 

The technique to detect road intersections from road 

network relies on the underlying road vector data 

representation. Typically, there are two common ways to 

represent the geometry of a road vector dataset: (1). The 

road network is composed of multiple road segments 

(polylines), and the line segments are split at intersections 

(as the example shown in Figure 3(a)). (2). The road 

network is composed of multiple road segments 

(polylines), but the line segments are not split (if not 

necessary) at intersections (see Figure 3(b)).  

This generation of our system focus on handling 

vector data represented in the first way (i.e., the line 

segments are split at intersections), because most of the 

popular road vector datasets (such as US Census 

TIGER/Line files and NAVSTREETS from NAVTEQ) 

represent their datasets in such way. Based on this sort of 

road segment representation, the process of finding the 

intersection points from the road network is divided into 

two steps.  First, the system examines all line segments in 

the vector data to label the endpoints of each segment as 

the candidate intersection points.  Second, the system 

examines the connectivity of these candidate points to 

determine if they are intersection points.  In this step, each 

candidate point is verified to see if there are more than 

two line segments connected at this point.  If so, this point 

is marked as an intersection point and the directions of the 

segments that are connected at the intersection point are 

calculated. In practice, the search of road intersections 

from large road networks is supported efficiently by 

spatial access method  R-tree [11]. 

2.3   Finding the matched feature points by Point 

Pattern Matching (PPM)  

Now that we have described how to detect feature points 

from a road network, we now describe how this 

Detected intersectionsA road network with 

known coordinate system 

A road network with  

unknown coordinate system 
Detected intersections

Point Pattern 

Matching (PPM)

?

?

lat/long

lat/long
Detected intersectionsA road network with 

known coordinate system 

A road network with  

unknown coordinate system 
Detected intersections

Point Pattern 

Matching (PPM)

?

?

lat/long

lat/long

Figure 2: The overall approach 

(a) Road segments are split at intersections 

(b) Road segments are not split at intersections 

Figure 3: Different ways to represent a cross-

shaped road network with one intersection 
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information can be used to automatically match two road 

networks. Let U= {ui | ui= (xi, yi ), where (xi, yi ) is the 

location of intersections of the first road network} and  

V= {vj | vj= (mj, nj), where (mj, nj) is the location of 

intersections of the second road network}. Our objective 

is to locate the set: {RelPat={(ui,vj) | where ui is the 

intersection on the first vector dataset and vj is the 

corresponding intersection (if any) on the second dataset. 

That is, point ui and vj are formed by the same intersected 

road segments}. Consider identifying matched point 

pattern between two road networks. If the system can 

recognize the names of road segments that meet at 

intersections, it can use these road names to infer the set

RelPat. However, road vector data may not include the 

non-spatial attribute, road name. Instead, we propose our 

approach that relies on some prominent geometric 

information, such as the distribution of points, the degree 

of each point and the direction of incident road segments, 

to locate the matched point pattern. In other words, the 

problem of point pattern matching is at its core a 

geometric point sets matching problem. The basic idea is 

to find the transformation T between the layout (with 

relative distances) of the point set U and V.

The key computation of matching the two sets of 

points is calculating a proper transformation T, which is a 

2D rigid motion (rotation and translation) with scaling. 

Because the majority of vector datasets are oriented such 

that north is up, we only compute the translation 

transformation with scaling. Without loss of generality, 

we consider how to compute the transformation where we 

map from a fraction α of the points of U to the points of 

V. The reason that only a fraction α of the points of U is 

considered is that one road vector dataset could be 

detailed while the other one is represented abstractly or 

there may be some missing/noisy points from each road 

network. The transformation T brings at least a fraction α

of the points of U into a subset of V. This implies: 

∃ T and U’ ⊆ U , such that  T(U’) ⊆ V , where | U’ | ≥

α| U | and T(U’) denotes the set of points that results from 

applying T to the points of U’. Or equivalently, for a 2D 

point (x, y) in the point set U’ ⊆ U, ∃ T in the matrix form 













1

00

00

TyTx

Sy

Sx

(Sx and Sy are scale factors along x and y

direction, respectively, while Tx and Ty are translation 

factors along x and y directions, respectively), such that 

[x, y, 1] * 













1

00

00

TyTx

Sy

Sx

= [m , n, 1] , where  | U’ | ≥

α| U | and the 2D point (m, n) belongs to the intersection 

point set V on the second vector dataset.  With this setting, 

we do not expect point coordinates to match exactly 

because of finite-precision computation or small errors in 

the datasets. Therefore, when checking whether a 2D 

point p belongs to the point set V, we declare that p ∈ V,

if there exists a point in V that is within Euclidean 

distance δ of p for a small fixed positive constant δ, which 

controls the degree of inaccuracy. The minimum δ such 

that there is a match for U’ in V is called Hausdorff 
distance. Different computations of the minimum 

Hausdorff distance have been studied in great depth in the 

computational geometry literature [12]. We do not seek to 

minimize δ but rather adopt an acceptable threshold for δ.

The threshold is relatively small compared to the average 

inter-point distances in V. In fact, this sort of problem was 

categorized as “Nearly Exact” point matching problem in 

[13].

Given the parameters α and δ, to obtain a proper 

transformation T, we need to compute the values of the 

four unknown parameters Sx, Sy, Tx and Ty. This implies 

that at least four different equations are required. A 

straightforward (brute-force) method is first choosing a 

point pair (x1, y1) and (x2, y2) from U, then, for every pair 

of distinct points (m1, n1) and (m2, n2) in V, the 

transformation T’ that map the point pair on U to the point 

pair on V is computed by solving the following four 

equations: 

Sx* x1  + Tx = m1   Sy* y1  + Ty = n1

Sx* x2  + Tx = m2   Sy* y2  + Ty = n2

Each generated transformation T’ is thus applied to the 

entire points in U to check whether there are more than 

α|U| points that can be aligned with some points on V

within the threshold δ. This process is repeated for each 

possible point pair from U, which implies that it could 

require examining O(|U|
2
) pairs in the worst case. Since 

for each such pair, the algorithm needs to try all possible 

point pairs on V (i.e., O(|V|
2

)) and spends O(|U| log|V|) 

time to examine the generated transformation T’, this 

method has a worst case running time of O(|U|
3
 |V|

2

log|V|). The advantage of this approach is that we can find 

a mapping (if the mapping exists) with a proper threshold 

δ, even in the presence of very noisy data. However, it 

suffers from high computation time. One way to improve 

the efficiency of the algorithm is to utilize randomization 

in choosing the pair of points from U as proposed in [14], 

thus achieving the running time of  O(|V|
2
 |U| log|V|). 

However, their approach is not appropriate for our 

datasets because it is possible one vector dataset is in 

detailed level while other vector dataset is represented 

abstractly.  

In fact, in our previous work [15], we utilized the 

similar technique to match two point sets detected from a 

raster map and an image. More precisely, in [15], we 

proposed an enhanced point pattern matching algorithm to 

find the overlapping area of a map and an imagery by 

utilizing map-scale to prune the search space of possible 

point pattern matches (by reducing the numbers of 

potential matching point pairs needed to be examined). In 

the following sections, we focus on finding the matching 
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between different road networks and developing more 

efficient techniques by utilizing some additional spatial 

information that can be inferred from the road vector 

datasets. In addition, we also discuss how to prioritize the 

potential matching point pairs needed to be examined. 

2.4   Enhanced PPM Algorithm: Prioritized Geo-PPM 

Due to the poor performance of the brute-force point 

pattern matching algorithm mentioned in the previous 

section, PPM cannot be applied to large datasets where 

the number of points (or intersections) is in the order of 

thousands (such as the road networks covering large 

areas). Consequently, we utilize some auxiliary 

information that can be extracted from the road vector 

data to improve the performance of PPM for larger road 

networks. With the goal to reduce the numbers of 

potential matching point pairs needed to be examined, the 

intuition here is to exclude all unlikely matching point 

pairs. For example, given a point pair (x1, y1) and (x2, y2)

in S1, we only need to consider pairs (x’1, y’1) and (x’2,

y’2) in S2 as candidate pairs such that the real world 

distance and angle between (x1, y1) and (x2, y2) is close to 

the real world distance and angle between (x’1, y’1) and 

(x’2, y’2). In addition, (x’1, y’1) would be considered as a 

possible matching point for (x1, y1) if and only if they 

have similar connectivity and road directions. We 

categorize the auxiliary information we utilize to the 

following groups.  

1. Point connectivity: We define the connectivity of a 

point as the number of the road segments that intersect at 

that point. Clearly, if datasets S1 and S2 have very close 

densities (i.e., number of intersections per one unit of 

area), a candidate matching point P’1 in S2 for a point P1

in S1 must have the same connectivity as P1. Note that if 

the densities of the datasets are different (i.e., one dataset 

is detailed and the other one is represented abstractly), 

this condition will not be valid for a large portion of the 

intersections and may only be valid for major roads’ 

intersections. 

2. Angles of the point: The angles of a point are defined 

as the angles of the road segments that intersect at that 

point. Similar to the connectivity, a point P’1 in S2 can 

only be considered as a candidate for point P1 in S1 only if 

the two points have similar angles, or the difference 

between their angles is less than a threshold value. To 

illustrate, consider comparing two road networks as the 

example shown in Figure 4(a). Whenever the system 

chooses a point (as the point shown in the left figure of 

Figure 4(b)) in one road network, it only has to consider 

the candidate matched points with same connectivity and 

similar directions of intersected road segments from the 

other network (as some possible candidates marked in the 

right figure of Figure 4(b)). Note that if the densities of 

the datasets are different (i.e., one dataset is detailed and 

the other one is represented abstractly), this condition will 

not be valid for a large portion of the intersections and 

may only be valid for major roads’ intersections. 

3. Angle between the points: The angle between two 

points is defined as the angle of the straight line that 

connects the points. Clearly, a pair (P’1,P’2) can be 

considered as a possible candidate for the pair (P1,P2) only 

if the angle between P’1 and P’2 is similar to the angle 

between P1 and P2, or the difference between their angles 

is less than a threshold value. Note that this feature can 

only be utilized when the second dataset is not rotated and 

has the same direction as the first dataset. Consider the 

example shown in Figure 4(c). Whenever the system 

chooses a point pair (as the point pair shown in the left 

figure of Figure 4(c) and the angle between these two 

points is about 110 degree) in one road network, it only 

has to consider the candidate matched point pairs with the 

(a) The two networks to compare 

(b) Using Point connectivity and Angles of the point to prune the search space 

(110)(110)

(c) Using Angles between the points to prune the search space 

Figure 4: Comparing two road networks by using Geo-PPM 
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similar angle (as some possible candidate point pairs 

marked as dash lines in the right figure of Figure 4(c)). 

4. Distance between the points: The distance between 

two points is defined as the length of the straight line that 

connects the points in Euclidean space. Similar to the 

previous case, a pair (P’1,P’2) can be considered as a 

possible candidate for the pair (P1,P2) only if the length of 

the line connecting P’1 and P’2 is similar to the length of 

the line connecting P1 and P2, or the difference between 

the lengths is less than a threshold value. Note that this 

feature can only be utilized when the relationship between 

the geometry of the datasets is known and hence, the 

distances between objects in two datasets are comparable. 

By applying the above conditions simultaneously, the 

Geo-PPM approach can be defined as a specialization of 

PPM where only the candidate pairs that have similar 

point connectivity, angles of the point, angles between the 

points, and distances between the points, will be 

considered. This will greatly reduce the size of the search 

space. However, this is still a very complex approach 

when the number of points in the datasets is in the order 

of thousands. Hence, we propose prioritized Geo-PPM 

that can dramatically reduce the complexity of Geo-PPM 

for large networks by examining the points that have the 

minimum number of candidates. 

Prioritized Geo-PPM 

The intuition behind prioritized Geo-PPM is to increase 

the possibility of examining the correct matching pair 

from the candidates by first examining the pairs of points 

that have the minimum number of candidates. Suppose 

that there are n1, n2, n3 and n4 points in the pool of 

candidates for points P1, P2, P3, and P4, respectively. This 

means that the number of possible candidate pairs for (P1,

P2) and (P3, P4) that must be examined by Geo-PPM is 

n1n2 and n3n4, respectively. Note that the values of n1 to n4

could be very large, especially for urban areas where the 

road networks follow a grid pattern and hence, a large 

portion of the intersections have the same connectivity 

and angles. Also note that from these possible candidate 

pairs, only (a maximum of) one pair is the correctly 

matching one. Hence, by first examining the combination 

that contains the minimum number of points, we can 

significantly increase the possibility of finding the correct 

matching pair sooner. Consider the example shown in 

Figure 5. Our system can start the matching process by 

first examining the combination that contains the 

minimum number of points. As the point pair chosen in 

the left figure of Figure 5(b), it has less potential matching 

point pairs as shown in the right figure of Figure 5(b), 

comparing to the point pair examined in the left figure of 

Figure 5(a). 

3.   Evaluations 

We performed several experiments with real world 

datasets to examine the performance of our prioritized 

Geo-PPM. We used three road networks obtained from 

USGS, NGA and US Census, covering the streets in the 

area of (-122.5015, 37.78) to (-122.3997, 37.8111). Figure 

6(a) shows USGS road network with accurate geometry 

but with poor attributes. Figure 6(b) shows the US Census 

TIGER/Lines road network with rich attributes (e.g., road 

names, road classifications) but with poor geometry. 

Figure 6(c) shows the NGA road network with some 

specific attributes (e.g., road surface type). Also note that, 

as shown in the figure, while the data from USGS and US 

Census have almost similar granularity, the NGA data is 

an abstract level data (i.e., only major roads are stored). 

We manually transformed each dataset to unknown 

geometry systems by multiplying and subsequently 

adding different values to latitudes and longitudes of the 

vector objects in each dataset.  Moreover, we filtered the 

south west quarter of the datasets to generate datasets with 

smaller sizes to examine how our approach behaves for 

different sizes of data. 

Figure 7 shows the partial result of matched feature 

point sets for the USGS and US Census road networks. 

We also performed a quantitative analysis to measure the 

performance of our approach. Toward that end, we 

developed two metrics, precision and recall, to measure 

the performance of our Geo-PPM technique, since the 

accuracy of the matched points significantly affects the 

matching of the two road networks. Let the point pattern 

generated by Geo-PPM be defined as a set: 

(a) A bad starting point pair candidate (several potential point pairs needed to be examined in the other 

road network) 

(b) A better starting point pair candidate (only two potential point pairs needed to be examined in the 

other road network) 

Figure 5: Picking up proper point pair by using Prioritized Geo-PPM 
6



RetPat={(mi, sj) | where mi is the intersections on the 

first vector dataset and sj is the corresponding 

intersections located by prioritized Geo-PPM} 

To measure the performance of Geo-PPM, we need to 

compare the set RetPat with respect to the real matched 

point pattern set RelPat (defined in Section 2.3). 

Using this term, we define 

||

||
Precision

pat

patpat

Ret

RelRet h
=

   

||

||
Recall

pat

patpat

Rel

RelRet h
=

Intuitively, precision is the percentage of correctly 

matched road intersections with respect to the total 

matched intersections detected by prioritized Geo-PPM. 

Recall is the percentage of the correctly matched road 

intersections with respect to the actual matched 

intersections. Table 1 shows the results of our 

experiments for three combinations of these datasets. As 

shown in the table, the average number of candidates (i.e., 

the number of points in the second dataset with the same 

connectivity and angles as compared to a point in the first 

dataset) varies between 371 and 637. This shows that the 

possibility of selecting 2 pairs from the candidate pool 

which are exactly matched to 2 points selected from the 

first dataset is very low, meaning that random selection of 

points in Geo-PPM will result to a very large number of 

possibilities and hence, to a very large processing time. 

For example, for the USGS+US Census combination, the 

possibility that randomly selected pair of points from the 

pool of candidates is exactly matched to the pair of points 

selected from the first dataset is 405769

1

637

1

637

1
=×

.

However, as shown in the table, by utilizing prioritized 

Geo-PPM we could achieve an acceptable precision (i.e., 

over 80% for USGS+NGA data and over 90% for other 

cases) and recall (i.e., over 90%) by examining between 

33 and 52 candidate pairs. This means that using the 

prioritized Geo-PPM, the possibility of selecting the 

actual matching pair is between 100

3

to 100

2

, which is 

up to 4 orders of magnitude better than that of Geo-PPM. 

4.   Related Work 

There have been a number of efforts to automatically or 

semi-automatically detect matched features across 

different road vector datasets [3, 4, 5, 6, 7]. Given a 

feature point from one dataset, these approaches utilize 

different matching strategies to discover the 

corresponding point within a predetermined distance (i.e., 

a localized area). This implies that these existing 

algorithms only handle the matching of vector datasets in 

the same geometry systems (i.e., the same coordinate 

system). Hence, to the best of our knowledge, no general 

method exits to resolve the matching of two vector data in 

unknown geometry systems. In addition, various GIS 

systems (such as ESEA MapMerger
9

) have been 

implemented to achieve the matching of vector datasets 

with different accuracies. However, most of the existing 

systems require manual interventions to transform two 

road networks into same geocoordinates beforehand. 

Thus, they are not suitable for handling road networks in 

unknown geometry systems, while our approach can 

match two road networks in unknown geometry systems. 

Finally, our approach discussed in this paper utilizes a 

specialized point pattern matching algorithm to find the 

corresponding point pairs on both datasets. The geometric 

                                                          
9

http://www.esea.com/products/

Datasets USGS+ 

 US Census 

USGS+

NGA 

USGS+

 US Census 

Number of 

Intersections 

2367 + 2456 2367 + 

133

920 + 1035 

Average 

Number of 

Candidates 

637 514 371 

Point Pairs 

Examined 

43 52 33 

Processing 

Time  

946 sec. 48 sec. 132 sec. 

Precision 91% 82% 95.8% 

Recall 92.5% 96.5% 95.8% 

Table 1: Experimental Results (on a PC with 3.2GHz CPU) 

(a) USGS road network (b) US Census road network (c) NGA road network 

Figure 6: Different road networks used in the experiments 
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point set matching in two or higher dimensions is a well-

studied family of problems with application to area such 

as computer vision, biology, and astronomy [12, 14].  

5.   Conclusion and Future Work 

In this paper, we proposed an efficient and accurate 

technique, termed prioritized Geo-PPM, to locate the 

matched points between two road network datasets when 

the spatial attributes of the datasets are in unknown 

systems. In our solution, we first select pairs of points in 

the first dataset with the minimum number of candidates 

(i.e., point with similar connectivity and angles) in the 

second dataset, and then perform our PPM method on 

these pairs. Although our technique matches road 

networks at the point level (not at the road segment level), 

it takes the road connectivity, road directions and global 

distribution of road intersections into consideration. Our 

experiments show that this approach provides acceptable 

precision and recall values by only examining a very 

small number of pairs.  

We plan to extend our approach in several ways. First, 

we plan to examine prioritized Geo-PPM for even larger 

road networks and for different patterns of road networks 

(e.g., rural roads and urban roads), and consider the 

orientations of the road networks as well. Second, we 

intend to investigate the appropriate order of utilizing the 

auxiliary information described in Section 2.4. Third, we 

would like to perform comprehensive comparisons 

between our approach and the related techniques 

described in Section 4. Finally, we also plan to use these 

matched points as control points to integrate different 

road network datasets. 
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(a) USGS road network (b) U.S. Census road network

Figure 7: The partial result of matched points from two road networks (some matched points are labelled in 

order to show the corresponding points) 
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