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Abstract. In previous work, we have introduced probabilistic description logic
programs (or pdl-programs), which are a combination of description logic pro-
grams (or dl-programs) under the answer set and well-founded semantics with
Poole’s independent choice logic. Such programs are directed towards sophisti-
cated representation and reasoning techniques that allow for probabilisticuncer-
tainty in the Rules, Logic, and Proof layers of the Semantic Web. In this paper,
we continue this line of research. We concentrate on the special case of strati-
fied probabilistic description logic programs (or spdl-programs). In particular, we
present an algorithm for query processing in such pdl-programs, which is based
on a reduction to computing the canonical model of stratified dl-programs.

1 Introduction

TheSemantic Webinitiative [2,9] aims at an extension of the current World Wide Web
by standards and technologies that help machines to understand the information on
the Web so that they can support richer discovery, data integration, navigation, and
automation of tasks. The main ideas behind it are to add a machine-readable meaning to
Web pages, to use ontologies for a precise definition of shared terms in Web resources,
to make use of KR technology for automated reasoning from Webresources, and to
apply cooperative agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where theOntology layer,
in form of the OWL Web Ontology Language[30,18] (recommended by the W3C),
is currently the highest layer of sufficient maturity. OWL consists of three increasingly
expressive sublanguages, namelyOWL Lite, OWL DL, andOWL Full. OWL Lite and
OWL DL are essentially very expressive description logics with an RDF syntax [18].
As shown in [16], ontology entailment in OWL Lite (resp., OWL DL) reduces to knowl-
edge base (un)satisfiability in the description logicSHIF(D) (resp.,SHOIN (D)).
On top of the Ontology layer, theRules, Logic, andProof layersof the Semantic Web
will be developed next, which should offer sophisticated representation and reasoning
capabilities. As a first effort in this direction,RuleML(Rule Markup Language) [3] is
an XML-based markup language for rules and rule-based systems, whereas the OWL
Rules Language [17] is a first proposal for extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Semantic Web is to integrate the
Rules and the Ontology layer. In particular, it is crucial toallow for building rules on top
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of ontologies, that is, for rule-based systems that use vocabulary from ontology knowl-
edge bases. Another type of combination is to build ontologies on top of rules, which
means that ontological definitions are supplemented by rules or imported from rules.
Towards this goal, the works [7,8] have proposeddescription logic programs(or dl-
programs), which are of the formKB = (L,P ), whereL is a knowledge base in a de-
scription logic andP is a finite set of description logic rules (ordl-rules). Such dl-rules
are similar to usual rules in logic programs with negation asfailure, but may also con-
tain queries toL in their bodies, which are given by special atoms (on which possibly
default negation may apply). Another important feature of dl-rules is that queries toL
also allow for specifying an input fromP , and thus for aflow of information fromP
toL, besides the flow of information fromL toP , given by any query toL. Hence, de-
scription logic programs allow for building rules on top of ontologies, but also (to some
extent) building ontologies on top of rules. In this way, additional knowledge (gained
in the program) can be supplied toL before querying. The semantics of dl-programs
was defined in [7] and [8] as an extension of the answer set semantics by Gelfond and
Lifschitz [12] and the well-founded semantics by Van Gelder, Ross, and Schlipf [29],
respectively, which are the two most widely used semantics for nonmonotonic logic
programs. The description logic knowledge bases in dl-programs are specified in the
well-known description logicsSHIF(D) andSHOIN (D).

In [22], towards sophisticated representation and reasoning techniques that also al-
low for modeling probabilistic uncertainty in the Rules, Logic, and Proof layers of the
Semantic Web, we have presentedprobabilistic description logic programs(or pdl-
programs), which generalize dl-programs under the answer set and well-founded se-
mantics by probabilistic uncertainty. They have been developed as a combination of
dl-programs with Poole’s independent choice logic (ICL) [25].

It is important to point out that Poole’s ICL is a powerful representation and rea-
soning formalism for single- and also multi-agent systems,which combines logic and
probability, and which can represent a number of important uncertainty formalisms,
in particular, influence diagrams, Bayesian networks, Markov decision processes, and
normal form games [25]. Furthermore, Poole’s ICL also allows for natural notions of
causes and explanations as in Pearl’s structural causal models [10].

In this paper, we continue this line of research. We concentrate on the special case of
stratified pdl-programs (orspdl-programs). In particular, as a main new contribution, we
present an algorithm for query processing in spdl-programs. It is based on a reduction
to computing the canonical model of stratified dl-programs,which can be done by a
finite sequence of finite fixpoint iterations. This shows especially that query processing
in spdl-programs is conceptually easier than query processing in general pdl-programs,
which is reducible to computing the set of all answer sets of general dl-programs and
solving linear optimization problems. To my knowledge, this paper and [22] are the first
works that combine description logic programs with probabilistic uncertainty.

The rest of this paper is organized as follows. In Section 2, we recall the description
logicsSHIF(D) andSHOIN (D) as well as stratified description logic programs.
Section 3 defines stratified probabilistic description logic programs, and Section 4 deals
with query processing in such programs. In Section 5, we discuss related work. Sec-
tion 6 summarizes the main results and gives an outlook on future research.



2 Preliminaries

In this section, we first recall the description logicsSHIF(D) andSHOIN (D). We
then recall positive and stratifieddescription logic programs(or dl-programs) under
their canonical semantics [7], which combine description logics and normal programs.
They consist of a knowledge baseL in a description logic and a finite set of description
logic rulesP . Such rules are similar to usual rules in logic programs withnegation as
failure, but may also containqueries toL, possibly default negated.

2.1 SHIF(D) and SHOIN (D)

We first describeSHOIN (D). We assume a setD of elementary datatypes. Each
d∈D has a set ofdata values, called thedomainof d, denoteddom(d). Letdom(D) =⋃

d∈D
dom(d). A datatypeis either an element ofD or a subset ofdom(D) (called

datatype oneOf). Let A, RA, RD, andI be nonempty finite pairwise disjoint sets of
atomic concepts, abstract roles, datatype roles, andindividuals, respectively. LetR−

A

denote the set of all inversesR− of abstract rolesR∈RA.
A role is an element ofRA ∪R−

A
∪RD. Conceptsare inductively defined as fol-

lows. EveryC ∈A is a concept, and ifo1, o2, . . . ∈ I, then{o1, o2, . . .} is a concept
(calledoneOf). If C andD are concepts and ifR∈RA ∪R−

A
, then(C ⊓D), (C ⊔D),

and¬C are concepts (calledconjunction, disjunction, andnegation, respectively), as
well as∃R.C, ∀R.C,≥nR, and≤nR (calledexists, value, atleast, andatmost restric-
tion, respectively) for an integern≥ 0. If d∈D andU ∈RD, then∃U.d, ∀U.d, ≥nU ,
and≤nU are concepts (calleddatatype exists, value, atleast, andatmost restriction, re-
spectively) for an integern≥ 0. We write⊤ and⊥ to abbreviateC ⊔ ¬C andC ⊓ ¬C,
respectively, and we eliminate parentheses as usual.

An axiomis of one of the following forms: (1)C ⊑D, whereC andD are concepts
(concept inclusion); (2)R⊑S, where eitherR,S ∈RA orR,S ∈RD (role inclusion);
(3) Trans(R), whereR∈RA (transitivity); (4) C(a), whereC is a concept anda∈ I
(concept membership); (5)R(a, b) (resp.,U(a, v)), whereR∈RA (resp.,U ∈RD) and
a, b∈ I (resp.,a∈ I andv ∈dom(D)) (role membership); and (6)a= b (resp.,a 6= b),
wherea, b∈ I (equality(resp.,inequality)). A knowledge baseL is a finite set of axioms.
For decidability, number restrictions inL are restricted to simpleR∈RA [19].

The syntax ofSHIF(D) is as the above syntax ofSHOIN (D), but without the
oneOf constructor and with theatleastandatmostconstructors limited to0 and1.

For the semantics ofSHIF(D) andSHOIN (D), we refer the reader to [16].

Example 2.1.An online store (such asamazon.com) may use a description logic knowl-
edge base to classify and characterize its products. For example, suppose that (1) text-
books are books, (2) personal computers and cameras are electronic products, (3) books
and electronic products are products, (4) every product hasat least one related product,
(5) only products are related to each other, (6)tb ai andtb lp are textbooks, which are
related to each other, (7)pc ibm andpc hp are personal computers, which are related to
each other, and (8)ibm andhp are providers forpc ibm andpc hp, respectively. This
knowledge is expressed by the following description logic knowledge baseL1:

Textbook ⊑ Book ; PC ⊔ Camera ⊑ Electronics; Book ⊔ Electronics ⊑ Product ;



Product ⊑ ≥ 1 related ; ≥ 1 related ⊔ ≥ 1 related− ⊑ Product ;
Textbook(tb ai); Textbook(tb lp); PC (pc ibm); PC (pc hp);
related(tb ai, tb lp); related(pc ibm, pc hp);
provides(ibm, pc ibm); provides(hp, pc hp).

2.2 Syntax of Description Logic Programs

We assume a function-free first-order vocabularyΦ with nonempty finite sets of con-
stant and predicate symbols, and a setX of variables. Aterm is a constant symbol
from Φ or a variable fromX . If p is a predicate symbol of arityk≥ 0 from Φ and
t1, . . ., tk are terms, thenp(t1, . . ., tk) is anatom. A negation-as-failure(NAF) literal
is an atoma or a default-negated atomnot a. A normal ruler is of the form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m≥ k≥ 0 , (1)

wherea, b1, . . . , bm are atoms. We refer toa as theheadof r, denotedH(r), while
the conjunctionb1, . . . , bk,not bk+1, . . . ,not bm is the body of r; its positive(resp.,
negative) part isb1, . . . , bk (resp.,not bk+1, . . . ,not bm). We defineB(r) = B+(r) ∪
B−(r), whereB+(r) = {b1, . . . , bk} andB−(r) = {bk+1, . . . , bm}. A normal pro-
gramP is a finite set of normal rules. Informally, a dl-program consists of a descrip-
tion logic knowledge baseL and a generalized normal programP , which may contain
queries toL. In such a query, it is asked whether a certain description logic axiom or its
negation logically follows fromL or not. Formally, adl-queryQ(t) is either

(a) a concept inclusion axiomF or its negation¬F ; or
(b) of the formsC(t) or¬C(t), whereC is a concept andt is a term; or
(c) of the formsR(t1, t2) or¬R(t1, t2), whereR is a role andt1, t2 are terms.

A dl-atomhas the formDL[S1op1p1, . . . , Smopm pm;Q](t), where eachSi is a con-
cept or role,opi ∈{⊎, −∪}, pi is a unary resp. binary predicate symbol,Q(t) is a dl-
query, andm≥ 0. We callp1, . . . , pm its input predicate symbols. Intuitively, opi =⊎
(resp.,opi = −∪) increasesSi (resp.,¬Si) by the extension ofpi. A dl-rule r is of
form (1), where anyb∈B(r) may be a dl-atom. Adl-programKB =(L, P ) consists
of a description logic knowledge baseL and a finite set of dl-rulesP . Ground terms,
atoms, literals, etc., are defined as usual. TheHerbrand baseof P , denotedHBP , is
the set of all ground atoms with standard predicate symbols in P and constant symbols
in Φ. Let ground(P ) be the set of all ground instances of dl-rules inP w.r.t. HBP .

Example 2.2.Consider the dl-programKB1 =(L1, P1), whereL1 is the description
logic knowledge base from Example 2.1, andP1 is the following set of dl-rules:

(1) pc(pc 1); pc(pc 2); pc(pc 3);
(2) brand new(pc 1); brand new(pc 2);
(3) vendor(dell, pc 1); vendor(dell, pc 2); vendor(dell, pc 3);
(4) avoid(X)← DL[Camera](X),not offer(X);
(5) offer(X)← DL[PC ⊎ pc;Electronics](X),not brand new(X);



(6) provider(P )← vendor(P, X), DL[PC ⊎ pc;Product ](X);
(7) provider(P )← DL[provides](P, X), DL[PC ⊎ pc;Product ](X);
(8) similar(X, Y )←DL[related ](X, Y );
(9) similar(X, Z)← similar(X, Y ), similar(Y, Z).

The above dl-rules express that (1)pc 1, pc 2, andpc 3 are additional personal com-
puters, (2)pc 1 andpc 2 are brand new, (3)dell is the vendor ofpc 1, pc 2, andpc 3,
(4) a customer avoids all cameras that are not on offer, (5) all electronic products that
are not brand new are on offer, (6) every vendor of a product isa provider, (7) every
entity providing a product is a provider, (8) all related products are similar, and (9) the
binary similarity relation on products is transitively closed.

2.3 Semantics of Positive Description Logic Programs

In the sequel, letKB=(L, P ) be a dl-program. AninterpretationI relative toP is any
I ⊆HBP . We say thatI is amodelof a∈HBP underL, denotedI |=L a, iff a∈ I. We
say thatI is amodelof a ground dl-atoma=DL[S1op1 p1, . . . , Smopmpm;Q](c) un-
derL, denotedI |=L a, iff L∪

⋃m

i=1
Ai(I) |= Q(c), whereAi(I)= {Si(e) | pi(e)∈I},

for opi =⊎; andAi(I)= {¬Si(e) | pi(e)∈I}, for opi = −∪. A ground dl-atoma ismono-
tonic relative toKB = (L,P ) iff I ⊆ I ′⊆HBP implies that ifI |=L a thenI ′ |=L a. In
this paper, we consider only monotonic ground dl-atoms, butobserve that one can also
define dl-atoms that are not monotonic; see [7]. We say thatI is amodelof a ground
dl-rule r iff I |=L H(r) wheneverI |=LB(r), that is,I |=L a for all a∈B+(r) and
I 6|=L a for all a∈B−(r). We say thatI is a modelof a dl-programKB = (L,P ),
denotedI |=KB , iff I |=L r for everyr∈ ground(P ). We say thatKB is satisfiable
(resp.,unsatisfiable) iff it has some (resp., no) model.

We say thatKB=(L, P ) is positive iff no dl-rule in P contains default-negated
atoms. Like ordinary positive programs, every positive dl-programKB is satisfiable and
has a unique least model, denotedMKB , that canonically characterizes its semantics.

2.4 Semantics of Stratified Description Logic Programs

We next define stratified dl-programs and their canonical semantics. They are intuitively
composed of hierarchic layers of positive dl-programs linked via default negation. Like
ordinary stratified normal programs, they are always satisfiable and can be assigned a
canonical minimal model via a number of iterative least models.

For any dl-programKB = (L,P ), we denote byDLP the set of all ground dl-atoms
that occur inground(P ). An input atomof a∈DLP is a ground atom with an in-
put predicate ofa and constant symbols inΦ. A (local) stratification ofKB =(L,P )
is a mappingλ : HBP ∪DLP → {0, 1, . . . , k} such that (i)λ(H(r))≥λ(b′) (resp.,
λ(H(r))>λ(b′)) for eachr ∈ ground(P ) andb′ ∈ B+(r) (resp.,b′ ∈ B−(r)), and
(ii) λ(a)≥λ(b) for each input atomb of eacha ∈ DLP , wherek≥ 0 is thelengthof λ.
For i∈{0, . . . , k}, let KB i = (L,Pi)= (L, {r∈ ground(P ) |λ(H(r)) = i}), and let
HBPi

(resp.,HB⋆

Pi
) be the set of allb∈HBP such thatλ(b)= i (resp.,λ(b)≤ i). A dl-

programKB =(L,P ) is (locally) stratifiediff it has a stratificationλ of some length
k≥ 0. We define its iterative least modelsMi⊆HBP with i∈{0, . . . , k} as follows:



(i) M0 is the least model ofKB0;
(ii) if i> 0, thenMi is the least model ofKB i such thatMi|HB

⋆

Pi−1
=Mi−1|HB

⋆

Pi−1
.

The canonical model of the stratified dl-programKB , denotedMKB , is then defined
asMk. Observe thatMKB is well-defined, since it does not depend on a particularλ.
Furthermore,MKB is in fact a minimal model ofKB .

3 Stratified Probabilistic Description Logic Programs

In this section, we define stratified probabilistic dl-programs as a combination of dl-
programs with Poole’s independent choice logic (ICL) [25].Poole’s ICL is based on
ordinary acyclic logic programs under different “atomic choices”, where each atomic
choice along with an acyclic logic program produces a first-order model, and one then
obtains a probability distribution over the set of first-order models by placing a distri-
bution over the different atomic choices. In stratified probabilistic dl-programs, we here
use stratified dl-programs rather than ordinary acyclic logic programs.

3.1 Syntax

We assume a function-free first-order vocabularyΦ with nonempty finite sets of con-
stant and predicate symbols, and a set of variablesX , as in Section 2. We useHBΦ

(resp.,HU Φ) to denote the Herbrand base (resp., universe) overΦ. In the sequel, we as-
sume thatHBΦ is nonempty. We defineclassical formulasby induction as follows. The
propositional constantsfalseand true, denoted⊥ and⊤, respectively, and all atoms
are classical formulas. Ifφ andψ are classical formulas, then also¬φ and (φ∧ψ).
A conditional constraintis of the form(ψ|φ)[l, u] with reals l, u∈ [0, 1] and classi-
cal formulasφ andψ. We defineprobabilistic formulasinductively as follows. Every
conditional constraint is a probabilistic formula. IfF andG are probabilistic formu-
las, then also¬F and(F ∧G). We use(F ∨G), (F ⇐G), and(F ⇔G) to abbreviate
¬(¬F ∧¬G),¬(¬F ∧G), and(¬(¬F ∧G)∧¬(F ∧¬G)), respectively, and adopt the
usual conventions to eliminate parentheses.Ground terms, ground formulas, substitu-
tions, andground instancesof probabilistic formulas are defined as usual.

A choice spaceC is a set of pairwise disjoint and nonempty setsA⊆HBΦ. Any
memberA∈C is called analternativeof C and any elementa∈A an atomic choice
of C. A total choiceof C is a setB⊆HBΦ such that|B∩A|= 1 for allA∈C. A prob-
ability µ on a choice spaceC is a probability function on the set of all total choices
of C. SinceC and all its alternatives are finite,µ can be defined by (i) a mapping
µ :

⋃
C→ [0, 1] such that

∑
a∈A

µ(a)= 1 for all A∈C, and (ii) µ(B)=Πb∈Bµ(b)
for all total choicesB of C. Intuitively, (i) associates a probability with each atomic
choice ofC, and (ii) assumes independence between the alternatives ofC.

A probabilistic dl-program(or pdl-program) KB =(L,P,C, µ) consists of a dl-
program(L,P ), a choice spaceC such that (i)

⋃
C ⊆HBP and (ii) no atomic choice

in C coincides with the head of any dl-rule inground(P ), and a probabilityµ onC. A
stratified probabilistic dl-program(orspdl-program) is a pdl-programKB=(L,P,C, µ)
where(L,P ) is stratified. Aprobabilistic queryto KB has the form?F or the form



?(β|α)[L,U ], whereF is a probabilistic formula,β, α are classical formulas, andL,U
are variables. Thecorrect answerto ?F is the set of all substitutionsθ such thatFθ is
a consequence ofKB . Thetight answerto ?(β|α)[L,U ] is the set of all substitutionsθ
such that?(β|α)[L,U ]θ is a tight consequence ofKB . In the following paragraphs, we
define the notions ofconsequenceandtight consequence.

Example 3.1.Consider the spdl-programKB1 =(L1, P1, C1, µ1), whereL1 is as in
Example 2.1, andP1 is as in Example 2.2 except that the dl-rules (4) and (5) are replaced
by the dl-rules (4’) and (5’), respectively, and the dl-rules (10) and (11) are added:

(4’) avoid(X)← DL[Camera](X),not offer(X), avoid pos;
(5’) offer(X)← DL[PC ⊎ pc;Electronics](X),not brand new(X), offer pos;
(10) buy(C, X)← needs(C, X), view(X),notavoid(X), v buy pos;
(11) buy(C, X)← needs(C, X), buy(C, Y ), also buy(Y, X), a buy pos.

Furthermore, letC1 be given by{{avoid pos, avoid neg}, {offer pos, offer neg},
{v buy pos, v buy neg}, {a buy pos, a buy neg}}, and letµ1(avoid pos) = 0.9,
µ1(avoid neg) = 0.1, µ1(offer pos) = 0.9, µ1(offer neg) = 0.1, µ1(v buy pos) =
0.7, µ1(v buy neg) = 0.3, µ1(a buy pos) = 0.7, andµ1(a buy neg) = 0.3.

Here, the new dl-rules (4’) and (5’) express that the dl-rules (4) and (5) actually
only hold with the probability0.9. Furthermore, (10) expresses that a customer buys a
needed product that is viewed and not avoided with the probability 0.7, while (11) says
that a customer buys a needed productx with probability 0.7, if she bought another
producty, and every customer that previously had boughty also boughtx.

In a probabilistic query, one may ask for the tight probability bounds that a cus-
tomerc buys a needed productx, if (i) c bought another producty, (ii) every customer
that previously had boughty also boughtx, (iii) x is not avoided, and (iv)c has been
shown productx (the result to this query may, e.g., help to decide whether itis useful
to make a customer automatically also view productx when buyingy):

?(buy(c, x) |needs(c, x)∧buy(c, y)∧also buy(y, x)∧view(x)∧notavoid(x))[L, U ] .

3.2 Semantics

A world I is a subset ofHBΦ. We useIΦ to denote the set of all worlds overΦ. A vari-
able assignmentσ maps each variableX ∈X to an element ofHU Φ. It is extended to
all terms byσ(c)= c for all constant symbolsc fromΦ. Thetruth of classical formulas
φ in I underσ, denotedI |=σ φ (or I |= φ whenφ is ground), is inductively defined by:

• I |=σ p(t1, . . ., tk) iff p(σ(t1), . . ., σ(tk)) ∈ I ;
• I |=σ ¬φ iff not I |=σ φ ; andI |=σ (φ ∧ ψ) iff I |=σ φ andI |=σ ψ.

A probabilistic interpretationPr is a probability function onIΦ (that is, sinceIΦ

is finite, a mappingPr : IΦ→ [0, 1] such that allPr(I) with I ∈IΦ sum up to 1).
Theprobability of a classical formulaφ in Pr under a variable assignmentσ, denoted
Prσ(φ) (or Pr(φ) whenφ is ground), is defined as the sum of allPr(I) such that
I ∈IΦ andI |=σ φ. For classical formulasφ andψ with Prσ(φ)> 0, we usePrσ(ψ|φ)
to abbreviatePrσ(ψ ∧φ) /Prσ(φ). Thetruth of probabilistic formulasF in Pr under
a variable assignmentσ, denotedPr |=σ F , is inductively defined as follows:



• Pr |=σ (ψ|φ)[l, u] iff Prσ(φ)= 0 or Prσ(ψ|φ)∈ [l, u] ;
• Pr |=σ ¬F iff not Pr |=σ F ; andPr |=σ (F ∧G) iff Pr |=σ F andPr |=σ G.

A probabilistic interpretationPr is amodelof a probabilistic formulaF iff Pr |=σ

F for every variable assignmentσ. We say thatPr is thecanonical modelof an spdl-
programKB = (L,P,C, µ) iff every world I ∈IΦ with Pr(I)> 0 is the canonical
model of(L, P ∪{p← | p∈B}) for some total choiceB ofC such thatPr(I)=µ(B).
Notice that everyKB has a unique canonical modelPr . A probabilistic formulaF is
a consequenceof KB , denotedKB ‖∼F , iff every model ofKB is also a model ofF .
A conditional constraint(ψ|φ)[l, u] is a tight consequenceof KB , denotedKB ‖∼ tight

(ψ|φ)[l, u], iff l (resp.,u) is the infimum (resp., supremum) ofPrσ(ψ|φ) subject to all
modelsPr of KB and all variable assignmentsσ with Prσ(φ)> 0. Here, we assume
thatl=1 andu= 0, whenPrσ(φ)= 0 for all modelsPr of KB and allσ.

4 Query Processing

The canonical model of an ordinary positive (resp., stratified) normal logic programP
has a fixpoint characterization in terms of an immediate consequence operatorTP ,
which generalizes to dl-programs. This can be used for a bottom-up computation of the
canonical model of a positive (resp., stratified) dl-program, and thus also for computing
the canonical model of an spdl-program and for query processing in spdl-programs.

4.1 Canonical Models of Positive Description Logic Programs

For a dl-programKB = (L,P ), define the operatorTKB on the subsets ofHBP as
follows. For everyI ⊆HBP , let

TKB (I) = {H(r) | r∈ ground(P ), I |=L ℓ for all ℓ∈B(r)} .

If KB is positive, thenTKB is monotonic. Hence,TKB has a least fixpoint, denoted
lfp(TKB ). Furthermore,lfp(TKB ) can be computed by finite fixpoint iteration (given
finiteness ofP and the number of constant symbols inΦ). For everyI ⊆HBP , we
defineT i

KB (I) = I, if i = 0, andT i

KB (I) = TKB (T i−1

KB (I)), if i > 0.

Theorem 4.1. For every positive dl-programKB =(L,P ), it holds thatlfp(TKB ) =
MKB . Furthermore,lfp(TKB )=

⋃n

i=0
T i

KB (∅)=Tn

KB (∅), for somen≥ 0.

4.2 Canonical Models of Stratified Description Logic Programs

We next describe a fixpoint iteration for stratified dl-programs. Using Theorem 4.1, we
can characterize the canonical modelMKB of a stratified dl-programKB =(L,P ) as
follows. Let T̂ i

KB (I) = T i

KB (I) ∪ I, for all i ≥ 0.

Theorem 4.2. SupposeKB =(L,P ) has a stratificationλ of lengthk≥ 0. DefineMi ⊆

HBP , i∈{−1, 0, . . . , k}, as follows:M−1 = ∅, andMi = T̂ni

KBi
(Mi−1) for i≥ 0, where

ni≥ 0 such thatT̂ni

KBi
(Mi−1)= T̂ni+1

KBi
(Mi−1). Then,Mk =MKB .



4.3 Query Processing in Stratified Probabilistic Description Logic Programs

Fig. 1 shows Algorithm canonicalmodel, which computes the canonical modelPr of a
given spdl-programKB = (L,P,C, µ). This algorithm is essentially based on a reduc-
tion to computing the canonical model of stratified dl-programs (see step (4)), which
can be done using the above finite sequence of finite fixpoint iterations.

Algorithm canonical model

Input : spdl-programKB = (L, P, C, µ).
Output : canonical modelPr of KB .

1. for every interpretationI ∈IΦ do
2. Pr(I) := 0;
3. for every total choiceB of C do begin
4. compute the canonical modelI of the stratified dl-program(L, P ∪{p← | p∈B});
5. Pr(I) := µ(B);
6. end;
7. return Pr .

Fig. 1.Algorithm canonicalmodel

Fig. 2 shows Algorithm tightanswer, which computes tight answersθ= {L/l, U/u}
for a given query?(β|α)[L,U ] to a given spdl-programKB . The algorithm first com-
putes the canonical model ofKB in step (1) and then the tight answer in steps (2)–(8).

Algorithm tight answer

Input : spdl-programKB = (L, P, C, µ) and probabilistic query?(β|α)[L, U ].
Output : tight answerθ = {L/l, U/u} for ?(β|α)[L, U ] to KB .

1. Pr := canonicalmodel(KB);
2. l := 1;
3. u := 0;
4. for every ground instanceβ′|α′ of β|α do begin
5. l := min(l,Pr(β′|α′));
6. u := max(u,Pr(β′|α′));
7. end;
8. return θ = {L/l, U/u}.

Fig. 2.Algorithm tight answer

5 Related Work

Related approaches can be roughly divided into (a) description logic programs with
non-probabilistic uncertainty, (b) probabilistic generalizations of description logics, and
(c) probabilistic generalizations of web ontology languages. Note that related work on
description logic programs without uncertainty is discussed in [7,8,22].



As for (a), Straccia [28] combines description logic programs withnon-probabilistic
uncertaintyusing interval annotations. To my knowledge, the present paper and [22] are
the first ones on description logic programs withprobabilistic uncertainty.

As for (b), Giugno and Lukasiewicz [13] present a probabilistic generalization of the
expressive description logicSHOQ(D) behind DAML+OIL, which is based on lexico-
graphic probabilistic reasoning. In earlier work, Heinsohn [15] and Jaeger [20] present
probabilistic extensions to the description logicALC, which are essentially based on
probabilistic reasoning in probabilistic logics. Koller et al. [21] present a probabilistic
generalization of the CLASSIC description logic, which uses Bayesian networks as un-
derlying probabilistic reasoning formalism. Note that fuzzy description logics, such as
the ones by Straccia [26,27], are less closely related to probabilistic description logics,
since fuzzy uncertainty deals with vagueness, rather than ambiguity and imprecision.

As for (c), especially the works by Costa [4], Pool and Aikin [24], and Ding and
Peng [6] present probabilistic extensions to OWL. In particular, Costa’s work [4] is
semantically based on multi-entity Bayesian networks, while [6] has a semantics in
standard Bayesian networks. In closely related work, Fukushige [11] proposes a ba-
sic framework for representing probabilistic relationships in RDF. Finally, Nottelmann
and Fuhr [23] present pDAML+OIL, which is a probabilistic generalization of the web
ontology language DAML+OIL, and a mapping to stratified probabilistic datalog.

6 Summary and Outlook

We have continued the research on probabilistic dl-programs. We have focused on the
special case of stratified probabilistic dl-programs. In particular, we have presented an
algorithm for query processing in such probabilistic dl-programs, which is based on a
reduction to computing the canonical model of stratified dl-programs.

A topic of future research is to further enhance stratified probabilistic dl-programs
towards a possible use for Web Services. This may be done by exploiting and general-
izing further features of Poole’s ICL for dynamic and multi-agent systems [25].
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