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Abstract. In previous work, we have introduced probabilistic description logic
programs (or pdl-programs), which are a combination of descriptigit loro-
grams (or dl-programs) under the answer set and well-foundedrd@® with
Poole’s independent choice logic. Such programs are directed tewaphisti-
cated representation and reasoning techniques that allow for probalitistc-
tainty in the Rules, Logic, and Proof layers of the Semantic Web. In thisrpape
we continue this line of research. We concentrate on the special casatef s
fied probabilistic description logic programs (or spdl-programs). itiqdar, we
present an algorithm for query processing in such pdl-programishvigbased

on a reduction to computing the canonical model of stratified dl-programs

1 Introduction

The Semantic Wemnitiative [2,9] aims at an extension of the current Worlddé/iWeb
by standards and technologies that help machines to uaddr¢tie information on
the Web so that they can support richer discovery, data riatieg, navigation, and
automation of tasks. The main ideas behind it are to add aim&cbadable meaning to
Web pages, to use ontologies for a precise definition of shterens in Web resources,
to make use of KR technology for automated reasoning from ¥&eburces, and to
apply cooperative agent technology for processing therimétion of the Web.

The Semantic Web consists of several hierarchical laydrsyetheOntology layer
in form of the OWL Web Ontology Languad&0,18] (recommended by the W3C),
is currently the highest layer of sufficient maturity. OWL s@ts of three increasingly
expressive sublanguages, nam@ivL Lite OWL DL, andOWL Full. OWL Lite and
OWL DL are essentially very expressive description logicthvain RDF syntax [18].
As shown in [16], ontology entailment in OWL Lite (resp., OWL Pileduces to knowl-
edge base (un)satisfiability in the description lo§iHZF (D) (resp..SHOZIN (D)).
On top of the Ontology layer, thRules Logic, andProof layersof the Semantic Web
will be developed next, which should offer sophisticategresentation and reasoning
capabilities. As a first effort in this directioRuleML (Rule Markup Language) [3] is
an XML-based markup language for rules and rule-basedmegstehereas the OWL
Rules Language [17] is a first proposal for extending OWL byrHdause rules.

A key requirement of the layered architecture of the Sernafiéb is to integrate the
Rules and the Ontology layer. In particular, it is cruciahtiow for building rules on top
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of ontologies, that is, for rule-based systems that usebrdasy from ontology knowl-
edge bases. Another type of combination is to build ontel®gin top of rules, which
means that ontological definitions are supplemented by roémported from rules.
Towards this goal, the works [7,8] have proposkxbcription logic programgor dl-
programg, which are of the formKB = (L, P), whereL is a knowledge base in a de-
scription logic andP is a finite set of description logic rules (dkrules). Such dl-rules
are similar to usual rules in logic programs with negatioffieélsre, but may also con-
tain queries toL in their bodies, which are given by special atoms (on whicbspay
default negation may apply). Another important featurelaiutes is that queries té
also allow for specifying an input fron, and thus for d&low of information fromP

to L, besides the flow of information froth to P, given by any query td.. Hence, de-
scription logic programs allow for building rules on top oftologies, but also (to some
extent) building ontologies on top of rules. In this way, #iddal knowledge (gained
in the program) can be supplied fobefore querying. The semantics of dl-programs
was defined in [7] and [8] as an extension of the answer setr#g@ady Gelfond and
Lifschitz [12] and the well-founded semantics by Van Geldwss, and Schlipf [29],
respectively, which are the two most widely used semantcsibnmonotonic logic
programs. The description logic knowledge bases in dlH4anmg are specified in the
well-known description logic§ HZF (D) andSHOZN (D).

In [22], towards sophisticated representation and reagaeichniques that also al-
low for modeling probabilistic uncertainty in the Rules,dio, and Proof layers of the
Semantic Web, we have presentababilistic description logic programéor pdl-
programg, which generalize dI-programs under the answer set anBfagided se-
mantics by probabilistic uncertainty. They have been dged as a combination of
dl-programs with Poole’s independent choice logic (ICL][2

It is important to point out that Poole’s ICL is a powerful repentation and rea-
soning formalism for single- and also multi-agent systewtsch combines logic and
probability, and which can represent a number of importarttettainty formalisms,
in particular, influence diagrams, Bayesian networks, Mar#ecision processes, and
normal form games [25]. Furthermore, Poole’s ICL also afidar natural notions of
causes and explanations as in Pearl’s structural causasjd®d].

In this paper, we continue this line of research. We conegamtin the special case of
stratified pdl-programs (@pdI-program In particular, as a main new contribution, we
present an algorithm for query processing in spdl-progrdiis based on a reduction
to computing the canonical model of stratified dI-programiich can be done by a
finite sequence of finite fixpoint iterations. This shows eggdly that query processing
in spdl-programs is conceptually easier than query praogds general pdl-programs,
which is reducible to computing the set of all answer setsemfegal dl-programs and
solving linear optimization problems. To my knowledgestpaper and [22] are the first
works that combine description logic programs with probstit uncertainty.

The rest of this paper is organized as follows. In Sectionerereall the description
logics SHZF (D) and SHOZN (D) as well as stratified description logic programs.
Section 3 defines stratified probabilistic descriptiondgmiograms, and Section 4 deals
with query processing in such programs. In Section 5, weudiscelated work. Sec-
tion 6 summarizes the main results and gives an outlook emduesearch.



2 Preliminaries

In this section, we first recall the description log&s(ZF (D) andSHOZN (D). We
then recall positive and stratifiedkescription logic programgor dl-programg under
their canonical semantics [7], which combine descriptmgids and normal programs.
They consist of a knowledge bagen a description logic and a finite set of description
logic rulesP. Such rules are similar to usual rules in logic programs wébation as
failure, but may also contaigueries tol, possibly default negated.

2.1 SHIF(D)and SHOIN (D)

We first describeSHOZN (D). We assume a sdd of elementary datatypeg€ach
d € D has a set oflata valuescalled thedomainof d, denotedlom(d). Letdom(D) =
Ugep dom(d). A datatypeis either an element dD or a subset oflom(D) (called
datatype oneQf Let A, R4, Rp, andI be nonempty finite pairwise disjoint sets of
atomic conceptsabstract roles datatype rolesandindividuals respectively. LeR
denote the set of all inverség™ of abstract roleR € R 4.

A role is an element oR 4 UR; UR p. Conceptsare inductively defined as fol-
lows. EveryC € A is a concept, and ib1, 0o, ... €I, then{oy,02,...} is @ concept
(calledoneOj. If C andD are concepts and R €« R4 UR, then(C'M D), (Cu D),
and —-C are concepts (calledonjunction disjunction andnegation respectively), as
well as3R.C, VR.C, >nR, and<nR (calledexists value atleast andatmost restric-
tion, respectively) for an integer> 0. If d € D andU € R p, then3U.d, VU.d, >nU,
and<nU are concepts (calledatatype existsralug atleast andatmost restrictionre-
spectively) for an integet > 0. We write T and_L to abbreviate” L -C andC M -C,
respectively, and we eliminate parentheses as usual.

An axiomis of one of the following forms: (1§’ C D, whereC' and D are concepts
(concept inclusiopy (2) RC S, where eithe?, S € R4 or R, S € Rp (role inclusion;
(3) Trans(R), whereR € R 4 (transitivity); (4) C(a), whereC'is a concept and € I
(concept membershin(5) R(a, b) (resp.U(a,v)), whereR € R 4 (resp..U € Rp) and
a,bel (resp.,a €I andv € dom(D)) (role membership and (6)a ="b (resp.,a #b),
wherea, b € I (equality(resp.jnequality)). A knowledge basé is a finite set of axioms.
For decidability, number restrictions ihare restricted to simpl& € R 4 [19].

The syntax ofSHZ F(D) is as the above syntax SSHOZN (D), but without the
oneOf constructor and with thetleastandatmostconstructors limited t6 and1.

For the semantics #HZF (D) andSHOZIN (D), we refer the reader to [16].

Example 2.1.An online store (such aamazon.cofmay use a description logic knowl-
edge base to classify and characterize its products. Fonrasuppose that (1) text-
books are books, (2) personal computers and cameras atr@pieproducts, (3) books
and electronic products are products, (4) every producahlesast one related product,
(5) only products are related to each other,#{6): andtb_lp are textbooks, which are
related to each other, (%y_ibm andpc_hp are personal computers, which are related to
each other, and (8pm andhp are providers fopc_ibm andpc_hp, respectively. This
knowledge is expressed by the following description logiowledge basé :

Textbook T Book; PC U Camera T Electronics; Book U Electronics C Product;



Product T > 1 related; > 1 related LI > 1 related” T Product;
Textbook(tb_ai); Textbook(tb.lp); PC(pc_ibm); PC(pc-hp);
related (tb_ai, tb_Ip); related(pc_ibm, pc_hp);

provides(ibm, pc_ibm); provides(hp, pc_hp).

2.2 Syntax of Description Logic Programs

We assume a function-free first-order vocabul@rwith nonempty finite sets of con-
stant and predicate symbols, and a &ebf variables. Atermis a constant symbol
from & or a variable fromX. If p is a predicate symbol of aritg >0 from ¢ and
t1,...,tg are terms, them(ty,. .., t;) is anatom A negation-as-failurgNAF) literal
is an atom or a default-negated atonvt a. A normal ruler is of the form

a<«—by,...,bg,notbygy1,...,n0tby,,, m>k>0, Q)
wherea, by, ..., b, are atoms. We refer te as theheadof r, denotedH (r), while
the conjunctionby, ..., by, not biy1,...,not by, is thebody of r; its positive (resp.,

negative part isby, . . ., by (resp.,not by11, ..., notb,,). We defineB(r) = BT (r) U
B~ (r), whereBT(r) = {by,...,bx} and B~ (r) = {bx11,--.,bm}. A normal pro-
gram P is a finite set of normal rules. Informally, a dl-program dsts of a descrip-
tion logic knowledge basé and a generalized normal progrdy which may contain
queries tal. In such a query, it is asked whether a certain descriptigit laxiom or its
negation logically follows froni or not. Formally, al-queryQ(t) is either

(a) aconcept inclusion axiotf or its negation-F'; or
(b) of the formsC(t) or =C(t), whereC'is a concept andis a term; or
(c) of the formsR(t1,t2) or =R(t1,t2), whereR is a role and, ¢, are terms.

A dl-atomhas the formD L[S  0p1p1, . . ., Smop,,, Pm; Q](t), where eacltp; is a con-
cept or role,op, € {W,J}, p; is a unary resp. binary predicate symb@iit) is a dI-
query, andn > 0. We callpy, ..., p,, its input predicate symbaoldntuitively, op, =
(resp.,op; =U) increasesS; (resp.,—.S;) by the extension op;. A dl-rule r is of
form (1), where any € B(r) may be a dl-atom. All-program KB = (L, P) consists
of a description logic knowledge badeand a finite set of dl-rule®. Ground terms
atoms literals, etc., are defined as usual. THerbrand baseof P, denotedHBp, is
the set of all ground atoms with standard predicate symbatsand constant symbols
in &. Let ground(P) be the set of all ground instances of dl-ruledimw.r.t. HBp.

Example 2.2.Consider the dl-progrankB, = (L1, P1), where L; is the description
logic knowledge base from Example 2.1, adis the following set of dl-rules:

(1) pe(pel); pe(pe2); pe(pe3);

(2) brand_new(pc.1); brand_new(pc.2);

(3) wendor(dell,pc1); wvendor(dell,pc_2); wvendor(dell,pc-3);
(4) avoid(X) «— DL[Camera](X), not offer(X);

(5) offer(X) «— DL[PC W pc; Electronics](X), not brand_new(X);



(6) provider(P) «— vendor(P,X), DL[PC W pc; Product](X);

(7) provider(P) «— DL[provides](P, X), DL[PC W pc; Product](X);
(8) similar(X,Y) < DL[related](X,Y);

9) similar(X, Z) « similar(X,Y), similar(Y, Z).

The above dl-rules express that (&)1, pc_2, andpc_3 are additional personal com-
puters, (2pc_1 andpc_2 are brand new, (3jell is the vendor opc_1, pc_2, andpc_3,
(4) a customer avoids all cameras that are not on offer, (8ledtronic products that
are not brand new are on offer, (6) every vendor of a produatpsovider, (7) every
entity providing a product is a provider, (8) all related gwets are similar, and (9) the
binary similarity relation on products is transitively skx.

2.3 Semantics of Positive Description Logic Programs

In the sequel, lekKB=(L, P) be a dl-program. Ainterpretation! relative toP is any
I C HBp. We say thaf is amodelof « € HB p underL, denoted |=y, a, iff a € I. We
say that/ is amodelof a ground dl-atona = DL[S10p; p1, - - -, S 0P, Pm; Q](c) UN-
derL, denoted =1, a, iff LU |J;", 4;(I) E Q(c), whereA;(I) ={S;(e) | p;(e)€l},
for op; =W; andA;(I) = {—S;(e) | pi(e)€l}, for op, = J. Aground dl-atormu is mono-
tonicrelative toKB = (L, P) iff I CI' C HBp implies thatif] =y, a thenI’ =1 a. In
this paper, we consider only monotonic ground dl-atomspbserve that one can also
define dl-atoms that are not monotonic; see [7]. We say thata modelof a ground
dl-rule r iff I}=1 H(r) wheneverl =, B(r), thatis,I =1 a for all a€ BT (r) and
Ilp a for all ae B~ (r). We say that/ is a modelof a dl-programKB = (L, P),
denoted! = KB, iff I |=r, r for everyr € ground(P). We say thatkB is satisfiable
(resp.,unsatisfiablgiff it has some (resp., no) model.

We say thatKB=(L, P) is positiveiff no dl-rule in P contains default-negated
atoms. Like ordinary positive programs, every positivpdigramKkB is satisfiable and
has a unique least model, denofeld, 5, that canonically characterizes its semantics.

2.4 Semantics of Stratified Description Logic Programs

We next define stratified dI-programs and their canonicabsdits. They are intuitively
composed of hierarchic layers of positive dl-programsduhkia default negation. Like
ordinary stratified normal programs, they are always salifiand can be assigned a
canonical minimal model via a number of iterative least niede

For any dl-prograniKB = (L, P), we denote byDLp the set of all ground dl-atoms
that occur inground(P). An input atomof a € DLp is a ground atom with an in-
put predicate of: and constant symbols . A (local) stratification of KB = (L, P)
is a mapping\: HBp U DLp — {0,1,...,k} such that ()A(H(r)) > A(V') (resp.,
MH (1)) > X)) for eachr € ground(P) andd’ € BT (r) (resp.,b’ € B~ (r)), and
(i) M(a) > A(b) for each input atond of eacha € DLp, wherek >0 is thelengthof \.
Forie{0,...,k}, let KB; = (L, P;) = (L, {r € ground(P) | \(H(r)) = i}), and let
HBp, (resp.,HB},) be the set of alb € HB p such that\(b) =i (resp. \(b) <1). AdI-
programKB = (L, P) is (locally) stratifiediff it has a stratification\ of some length
k> 0. We define its iterative least modelg; C HBp with i € {0, ..., k} as follows:



(i) M, is the least model oK By;
(i) if >0, then); is the least model oK B; such thatM;| HBp, | = M;_1|HBYp, .

The canonical model of the stratified dI-progrdt®, denotedM kg, is then defined
as M. Observe thall/kp is well-defined, since it does not depend on a particilar
Furthermore M kg is in fact a minimal model ofB.

3 Stratified Probabilistic Description Logic Programs

In this section, we define stratified probabilistic dl-praxgis as a combination of dI-
programs with Poole’s independent choice logic (ICL) [Z5dole’s ICL is based on
ordinary acyclic logic programs under different “atomicoites”, where each atomic
choice along with an acyclic logic program produces a firsieomodel, and one then
obtains a probability distribution over the set of first-@ranodels by placing a distri-
bution over the different atomic choices. In stratified @oitistic dl-programs, we here
use stratified dl-programs rather than ordinary acycliedpgograms.

3.1 Syntax

We assume a function-free first-order vocabul@&rwith nonempty finite sets of con-
stant and predicate symbols, and a set of variaileas in Section 2. We usHBg
(resp.,HU ¢) to denote the Herbrand base (resp., universe)@ver the sequel, we as-
sume that B4 is nonempty. We definelassical formula®y induction as follows. The
propositional constantilse andtrue, denotedL and T, respectively, and all atoms
are classical formulas. i and+ are classical formulas, then als@ and (¢ A ).
A conditional constraints of the form (¢|¢)[l, u] with realsl,« € [0,1] and classi-
cal formulas¢ and. We defineprobabilistic formulasinductively as follows. Every
conditional constraint is a probabilistic formula. Aif and G are probabilistic formu-
las, then alse-F and(F A G). We use(F' V G), (F < G), and(F < G) to abbreviate
—(-FA=Q),~(=F ANG), and(—~(=F AG) A —=(F A —Q)), respectively, and adopt the
usual conventions to eliminate parenthes&sund termsground formulassubstitu-
tions andground instancesf probabilistic formulas are defined as usual.

A choice spacé&” is a set of pairwise disjoint and nonempty sdts HBg. Any
memberA € C is called analternativeof C' and any element € A anatomic choice
of C. A total choiceof C'is asetB C HB4 suchthatBn A|=1forall A< C. A prob-
ability 1 on a choice spac€' is a probability function on the set of all total choices
of C. SinceC and all its alternatives are finite, can be defined by (i) a mapping
p: UC—10,1] such thaty” . , p(a)=1for all Ac C, and (i) u(B) = ITye pu(b)
for all total choicesB of C. Intuitively, (i) associates a probability with each atomi
choice ofC, and (ii) assumes independence between the alternativeés of

A probabilistic dl-program(or pdl-progranm) KB = (L, P,C, 1) consists of a dI-
program(L, P), a choice spac€' such that (i) J C C HBp and (ii) no atomic choice
in C coincides with the head of any dI-rule gmound(P), and a probability: onC. A
stratified probabilistic dl-prograngor spdl-progran)is a pdl-progrankB=(L, P, C, 1)
where(L, P) is stratified. Aprobabilistic queryto KB has the form? F' or the form



?(Bla)[L, U], whereF is a probabilistic formulag, « are classical formulas, ard U
are variables. Theorrect answeto ?F' is the set of all substitutions such thatF'd is

a consequence dfB. Thetight answerto ?(5|«)[L, U] is the set of all substitutions
such tha?(8|«)[L, U]6 is a tight consequence &fB. In the following paragraphs, we
define the notions afonsequencandtight consequence

Example 3.1.Consider the spdl-prografiB, = (Ly, P1,C1, p1), whereL; is as in
Example 2.1, and; is as in Example 2.2 except that the dl-rules (4) and (5) anlaced
by the dl-rules (4’) and (5’), respectively, and the dI-gu{@0) and (11) are added:

(4) avoid(X) «— DL[Camera](X), not offer(X), avoid_pos;

(5") offer(X) « DL[PC W pc; Electronics|(X), not brand_new(X), offer_pos;
(10) buy(C, X) < needs(C, X), view(X), notavoid(X), v-buy_pos;

(11) buy(C, X) « needs(C, X), buy(C,Y), also_buy (Y, X), a_buy_pos.

Furthermore, let”; be given by{{avoid_pos, avoid_neg}, {offer_pos, offer_neg},
{v_buy_pos, v_buy_neg}, {a_-buy_pos, a_buy_neg}}, and letu, (avoid_pos) = 0.9,
p1(avoid_neg) = 0.1, py (offer_pos) = 0.9, 1 (offer_neg) = 0.1, pq (v_buy_pos) =
0.7, p1(v-buy_neg) = 0.3, p1(a-buy_pos) = 0.7, andu, (a_buy_neg) = 0.3.

Here, the new dl-rules (4’) and (5’) express that the dlsui¢) and (5) actually
only hold with the probability).9. Furthermore, (10) expresses that a customer buys a
needed product that is viewed and not avoided with the piittyab.7, while (11) says
that a customer buys a needed produatith probability 0.7, if she bought another
producty, and every customer that previously had boughtso bought.

In a probabilistic query, one may ask for the tight prob&piiounds that a cus-
tomerc buys a needed produgt if (i) ¢ bought another produgt, (ii) every customer
that previously had bought also boughtz, (iii) « is not avoided, and (iv} has been
shown product: (the result to this query may, e.g., help to decide whethisruseful
to make a customer automatically also view produethen buyingy):

?(buy(c, x) | needs(c, x) Nbuy(c, y)Aalso_buy(y, ) Aview () Anot avoid(z))[L, U] .

3.2 Semantics

A world I is a subset ofiBg. We useZy to denote the set of all worlds oveér A vari-

able assignment maps each variabl& € X’ to an element oH/U 5. It is extended to
all terms byo (¢) = ¢ for all constant symbols from &. Thetruth of classical formulas
¢ in I undero, denoted =, ¢ (or I |= ¢ wheng is ground), is inductively defined by:

o] ’:0' p(tla .- ~7tk) iff p(a(tl)v' . '7J(tk)) €l;
o I =, ~¢iffnot I =, ¢;andl =, (¢ AY)iff I =, ¢ andl =, 9.

A probabilistic interpretationPr is a probability function orfg (that is, sinceZs
is finite, a mappingPr: Zg — [0,1] such that allPr(I) with 7 € Zg sum up to 1).
The probability of a classical formula in Pr under a variable assignment denoted
Pr,(¢) (or Pr(¢) when¢ is ground), is defined as the sum of &t (I) such that
I €7y andl =, ¢. For classical formulag andy) with Pr,(¢) > 0, we usePr, (1|¢)
to abbreviatePr, (v A ¢) / Pr,(¢). Thetruth of probabilistic formulag’ in Pr under
a variable assignmeant, denotedPr |=, F, is inductively defined as follows:



o Pri=q (Y|9)[l,u] iff Pro(¢)=00rPrq(¢|¢) < l,ul;
o Pr =, —F iff not Pr =, F;andPr |=, (FAG) iff Prl=, FandPr =, G.

A probabilistic interpretatiorPr is amodelof a probabilistic formuld’ iff Pr =,
F for every variable assignment We say thatPr is thecanonical modebf an spdl-
program KB = (L, P,C, u) iff every world I € Zs with Pr(I)>0 is the canonical
model of(L, PU{p — | p € B}) for some total choic® of C such thatPr(I) = u(B).
Notice that everyKB has a unique canonical modgt. A probabilistic formulal’ is
aconsequencef KB, denotedKB |~ F, iff every model of KB is also a model of".
A conditional constrainty|¢)[l, u] is atight consequencef K3, denotedkB |t ,; .,
(W|@)[l, ul, iff I (resp.,u) is the infimum (resp., supremum) &%, (v|¢) subject to all
modelsPr of KB and all variable assignmentswith Pr,(¢) > 0. Here, we assume
that! =1 andu =0, when Pr,(¢$) = 0 for all modelsPr of KB and allo.

4 Query Processing

The canonical model of an ordinary positive (resp., stedjfinormal logic progran®
has a fixpoint characterization in terms of an immediate egunsnce operatdfp,
which generalizes to dI-programs. This can be used for afetip computation of the
canonical model of a positive (resp., stratified) dl-proagrand thus also for computing
the canonical model of an spdl-program and for query pracg$s spdl-programs.

4.1 Canonical Models of Positive Description Logic Programs

For a dl-programkB = (L, P), define the operatdfxs on the subsets offBp as
follows. For everyl C HBp, let

Txp(I) = {H(r) | re€ground(P), I = ¢forall £ B(r)}.

If KB is positive, therl'xp is monotonic. Hencel 'k has a least fixpoint, denoted
Ifp(Tkp). Furthermore/fp(Txp) can be computed by finite fixpoint iteration (given
finiteness of P and the number of constant symbols@). For everyl C HBp, we
defineT}pz(I) = I,if i = 0, andTi 5 (1) = Trp(Tig (1)), if i > 0.

Theorem 4.1. For every positive dl-progrank B = (L, P), it holds thatlfp(Tkg) =
Mgp. Furthermore lfp(Tkg) = Ui, Tip(0) = T5(0), for somen > 0.

4.2 Canonical Models of Stratified Description Logic Prograns

We next describe a fixpoint iteration for stratified dl-pragis. Using Theorem 4.1, we
can characterize the canonical modéjs of a stratified dl-progrankB = (L, P) as

follows. LetT%. (1) = Tz (I) U, for alli > 0.

Theorem 4.2. SupposéiB = (L, P) has a stratification\ of lengthk > 0. DefineM; C
HBp,i€{-1,0,...,k}, asfollows:M_, =0, andM; = Ty}, (M;_,)fori >0, where
n; >0 such thatl iy, (M;_1) =T ™ (M;_y). Then, My, = M.



4.3 Query Processing in Stratified Probabilistic Descripthn Logic Programs

Fig. 1 shows Algorithm canonicahodel, which computes the canonical mogéelof a
given spdl-progrank B = (L, P, C, ). This algorithm is essentially based on a reduc-
tion to computing the canonical model of stratified dl-peogs (see step (4)), which
can be done using the above finite sequence of finite fixp@ratibns.

Algorithm canonical_model

Input: spdl-programKB = (L, P, C, ).
Output: canonical modePr of KB.

for every interpretation/ € Zs do
Pr(I) := 0;

for every total choiceB of C do begin
compute the canonical modebf the stratified dI-prograniL, P U {p — | p € B});
Pr(I) := u(B);

end,

return Pr.

NogrwhE

Fig. 1. Algorithm canonicalmodel

Fig. 2 shows Algorithm tighinswer, which computes tightanswées {L/l, U /u}
for a given query?(5|«)[L, U] to a given spdl-progrank B. The algorithm first com-
putes the canonical model &fB in step (1) and then the tight answer in steps (2)—(8).

Algorithm tight _answer

Input : spdl-programkB = (L, P, C, 1) and probabilistic query(5|«)[L, U].
Output: tight answeid = {L/l, U /u} for ?(8|a)[L, U] to KB.

Pr := canonicalmodel KB);
l:=1;
u:=0;

for every ground instancg’|«’ of 3|« do begin
l:=min(l, Pr(8'|a));
u := max(u, Pr(8'|a));

end,

return 6 ={L/l,U/u}.

ONoOTOAWONE

Fig. 2. Algorithm tight answer

5 Related Work

Related approaches can be roughly divided into (a) degmmipdgic programs with
non-probabilistic uncertainty, (b) probabilistic generaions of description logics, and
(c) probabilistic generalizations of web ontology langesigNote that related work on
description logic programs without uncertainty is disedsi [7,8,22].



As for (a), Straccia [28] combines description logic pragsawithnon-probabilistic
uncertaintyusing interval annotations. To my knowledge, the presep¢pand [22] are
the first ones on description logic programs witlbbabilistic uncertainty

As for (b), Giugno and Lukasiewicz [13] present a probatidigeneralization of the
expressive description log&HO Q(D) behind DAML+OIL, which is based on lexico-
graphic probabilistic reasoning. In earlier work, Heins¢h5] and Jaeger [20] present
probabilistic extensions to the description logdC, which are essentially based on
probabilistic reasoning in probabilistic logics. Kolldra. [21] present a probabilistic
generalization of the Cassic description logic, which uses Bayesian networks as un-
derlying probabilistic reasoning formalism. Note thatfyzlescription logics, such as
the ones by Straccia [26,27], are less closely related togtitistic description logics,
since fuzzy uncertainty deals with vagueness, rather thdrgaiity and imprecision.

As for (c), especially the works by Costa [4], Pool and Aik#4], and Ding and
Peng [6] present probabilistic extensions to OWL. In palicuCosta’'s work [4] is
semantically based on multi-entity Bayesian networks,levf6] has a semantics in
standard Bayesian networks. In closely related work, Foikes[11] proposes a ba-
sic framework for representing probabilistic relatioqshin RDF. Finally, Nottelmann
and Fuhr [23] present pDAML+OIL, which is a probabilisticrggealization of the web
ontology language DAML+OIL, and a mapping to stratified fabitistic datalog.

6 Summary and Outlook

We have continued the research on probabilistic dl-prograffe have focused on the
special case of stratified probabilistic dl-programs. Irtipalar, we have presented an
algorithm for query processing in such probabilistic dbgmams, which is based on a
reduction to computing the canonical model of stratifieghigrams.

A topic of future research is to further enhance stratifieabpbilistic dI-programs
towards a possible use for Web Services. This may be donegigiting and general-
izing further features of Poole’s ICL for dynamic and mutient systems [25].
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