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Abstract. In the Semantic Web information would be retrieved, pro-
cessed, combined, shared and reused in the maximum automatic way
possible. Obviously, such procedures involve a high degree of uncertainty
and imprecision. For example ontology alignment or information retrieval
are rarely true or false procedures but usually involve confidence degrees
or provide rankings. Furthermore, it is often the case that information
itself is imprecise and vague like the concept of a “tall” person, a “hot”
place and many more. In order to be able to represent and reason with
such type of information in the Semantic Web (SW), as well as, enhance
SW applications we present an extension of the Description Logic SHIN
with fuzzy set theory. We present the semantics as well as detailed rea-
soning algorithms for the extended language.

1 Introduction

Uncertainty, like imprecision and vagueness, is a factor that can cause the degra-
dation of the performance of a system. To this end, many applications and do-
mains have incorporated mathematical frameworks that deal with such type of
information, resulting in the improvement of their effectiveness. Applications like
robotics [1], computer vision [2] and many more have embraced frameworks like
fuzzy set theory [3] in order to improve their performance. On the other hand, in
the Semantic Web context, little work has been carried out towards this direc-
tion. Apart from the fact that uncertainty is many times a feature of information
itself, as for example the concepts of a “tall” man, a “fast” car, a “blue” sky
and many more, applications like information retrieval, automatic information
sharing and reuse are hardly true or false procedures but rather a matter of a
degree. The need for covering vagueness in the Semantic Web has been stressed
many times the past years [4–6]. It has been pointed out that dealing with such
information would improve many Semantic Web applications [7–9].

Knowledge in the SW is usually structured in the form of ontologies [10].
This has led to considerable efforts to develop a suitable ontology language,
culminating in the design of the OWL Web Ontology Language [11], which is now
a W3C recommendation. The OWL recommendation actually consists of three



languages of increasing expressive power, namely OWL Lite, OWL DL and OWL
Full. OWL Lite and OWL DL are, basically very expressive description logics;
they are almost3 equivalent to the SHIF(D+) and SHOIN (D+) DLs. OWL
Full is clearly undecidable because it does not impose restrictions on the use
of transitive properties. Although the above DL languages are very expressive,
they feature expressive limitations regarding their ability to represent vague and
imprecise knowledge. As obvious, in order to make applications that use DLs
able to cope with vague and uncertain information we have to extend them with
a theory capable of representing this kind of information. One such important
theory is fuzzy set theory.

In the current paper we extend the results obtained in [9] for fuzzy SI (f-SI)
to the language SHIN , thus creating f-SHIN . SHIN extends SI [12] with
number restrictions and role hierarchies [13]. Number restrictions give us the
ability to restrict the number of objects that a certain object is related to by a
specific relation. For example we can state that a car has exactly four wheels,
writing Car ≡ Vehicleu≥ 4hasWheelu≤ 4hasWheel. But though this definition is
correct, it faces many limitations, for example, in the context of image processing
where several wheels of a car in an image might be hidden. Hence a detected
object can belong to a concept like, ≥ 4hasWheel, only to a certain degree. On
the other hand role hierarchies allow us to state sub-role/super-role relations,
as for example the relation that holds between the hasChild and hasOffspring
roles. Regarding expressive power, SHIN is more expressive than OWL-Lite,
ignoring data-types. In the following we will introduce the syntax of f-SHIN
and present a detailed procedure to reason with the extended language.

2 Syntax and Semantics of f-SHIN

In this section we introduce the DL f-SHIN . As pointed out in the fuzzy DL
literature [9,14], fuzzy extensions of DLs involve only the assertion of individuals
to concepts and the semantics of the new language. Hence, as usual we have an
alphabet of distinct concept names (C), role names (R) and individual names
(I). f-SHIN -roles and f-SHIN -concepts are defined as follows:

Definition 1. Let RN ∈ R be a role name, R an f-SHIN -role, C,D f-SHIN -
concepts. Valid f-SHIN -roles are defined by the abstract syntax: R ::= RN | R−.
The inverse relation of roles is symmetric, and to avoid considering roles such as
R−−, we define a function Inv, which returns the inverse of a role, more precisely
Inv(R) := RN− if R = RN and Inv(R) := RN if R = RN−.

The set of f-SHIN concepts is the smallest set such that:

1. every concept name C ∈ CN is an f-SHIN -concept,
2. if C and D are f-SHIN -concepts, R is an f-SHIN -role, S a simple f-

SHIN -role [15] and p ∈ N, then (C tD), (C uD), (¬C), (∀R.C), (∃R.C),
(≥ pS) and (≤ pS) are also f-SHIN concepts.

3 They also provide annotation properties, which Description Logics don’t.



Table 1. Semantics of f-SHIN -concepts

>I(a) = 1

⊥I(a) = 0
(¬C)I(a) = 1− CI(a)

(C tD)I(a) = max(CI(a), DI(a))
(C uD)I(a) = min(CI(a), DI(a))
(∀R.C)I(a) = infb∈∆I{max(1−RI(a, b), CI(b))}
(∃R.C)I(a) = supb∈∆I{min(RI(a, b), CI(b))}
(≥ pR)I(a) = supb1,...,bp∈∆I minp

i=1 RI(a, bi)

(≤ pR)I(a) = infb1,...,bp+1∈∆I maxp+1
i=1 {1−RI(a, bi)}

(R−)I(b, a) = RI(a, b)

A fuzzy TBox is a finite set of fuzzy concept axioms. Let A be a concept
name, C a f-SHIN -concept. Fuzzy concept axioms of the form A v C are
called fuzzy inclusion introductions; fuzzy concept axioms of the form A ≡ C
are called fuzzy equivalence introductions. Note that how to deal with general
fuzzy concept inclusions [12] still remains an open problem in fuzzy concept
languages. A fuzzy RBox is a finite set of fuzzy role axioms. Fuzzy role axioms
of the form Trans(RN), where RN is a role name, are called fuzzy transitive
role axioms; fuzzy role axioms of the form R v S are called fuzzy role inclusion
axioms. We use the notation v* to denote the transitive-reflexive closure of v.
A role R is called sub-role (super-role) of a role S if R v* S (S v* R). A fuzzy
ABox is a finite set of fuzzy assertions. A fuzzy assertion [14] is of the form
〈a : C./n〉, 〈(a, b) : R./n〉, where ./ stands for ≥, >,≤ or < or a 6 .= b, for a, b ∈ I.
Intuitively, a fuzzy assertion of the form 〈a : C ≥ n〉 means that the membership
degree of a to the concept C is at least equal to n. We call assertions defined
by ≥, > positive assertions, while those defined by ≤, < negative assertions [9].
A fuzzy knowledge base Σ is a triple 〈T ,R,A〉, where T is a fuzzy TBox,
R is a fuzzy RBox and A is a fuzzy ABox. A pair of assertions are called
conjugated if they impose contradicting restrictions. For example, the pair of
assertions 〈φ ≥ n〉 and 〈φ < m〉, with n ≥ m contradict to each other. In the
presence of role hierarchies one should also take into consideration possible sub-
or super-roles when checking for such contradictions. For example the assertions
〈(a, b) : R ≥ 0.7〉 and 〈(a, b) : P ≤ 0.4〉, with P v* R are conjugated. For a detailed
description of the possible conjugated pairs the reader is referred to [14].

The semantics of fuzzy DLs are provided by a fuzzy interpretation [9, 14]. A
fuzzy interpretation is a pair I = 〈∆I , ·I〉 where the domain ∆I is a non-empty
set of objects and ·I is a fuzzy interpretation function, which maps an individ-
ual name a to elements of aI ∈ ∆I and a concept name A (role name R) to
a membership function AI : ∆I → [0, 1] (RI : ∆I × ∆I → [0, 1]). Moreover,
fuzzy interpretations are extended to interpret arbitrary f-SHIN -concepts and
roles. The complete set of semantics is depicted in Table 1, where inf stands
for the infimum and sup for the supremum of a set. Note that apart from the



fuzzy number restrictions, the interpretation of fuzzy concepts and concept con-
structors is the usual one found in the DL literature [9,14,16], where the Gödel
conjunction (t(a,b)=min(a,b)), the Gödel disjunction (u(a,b)=max(a,b)) and
the Kleen-Dienes fuzzy implication (J (a,b)=max(1-a,b)) are used for perform-
ing the fuzzy set theoretic operations. The semantics of fuzzy number restric-
tions were first presented in [17]. We chose to follow these semantics because,
as pointed out in [17], they are derived by the First-Order formulae of classical
number restrictions [17]. In [9] the naming fKD-SI was used due to the usage
of the Kleen-Dienes fuzzy implication. Since we also use the same implication
here, from now on, we will refer to the extended language as fKD-SHIN .

An fKD-SHIN -concept C is satisfiable iff there exists some fuzzy interpre-
tation I for which there is some a ∈ ∆I such that CI(a) = n, and n ∈ (0, 1].
A fuzzy interpretation I satisfies a fuzzy TBox T iff ∀a ∈ ∆I , AI(a) ≤ CI(a)
for each A v C in T and AI(a) = CI(a) for each A ≡ C in T . The seman-
tics of fuzzy inclusion axioms is the usual one found in fuzzy set theory [3].
A fuzzy interpretation I satisfies a fuzzy RBox R iff ∀a, b, c ∈ ∆I , RI(a, c) ≥
supb∈∆I{min(RI(a, b), RI(b, c))} for each Trans (R) inR, and ∀〈a, b〉 ∈ ∆I×∆I ,
RI(a, b) ≤ SI(a, b) for each R v S. Note that the semantics of role inclusion ax-
ioms R v S imply Inv(R) v Inv(S). A fuzzy relation R, defined over the domain
X × X, is called sup-min transitive iff R(x, z) ≥ supy∈X min(R(x, y), R(y, z)).
Given a fuzzy interpretation I, I satisfies 〈a : C ≥ n〉 if CI(aI) ≥ n, I satis-
fies 〈(a, b) : R ≥ n〉 if RI(aI , bI) ≥ n, while I satisfies a 6 .= b if aI 6= bI . The
satisfiability of fuzzy assertions with ≤, > and < is defined analogously. A fuzzy
interpretation satisfies a fuzzy ABox A if it satisfies all fuzzy assertions in A.
In this case, we say I is a model of A. If A has a model then we say that it
is consistent. Finally, a fuzzy knowledge base Σ is satisfiable iff there exists a
fuzzy interpretation I which satisfies all axioms in Σ. Moreover, Σ entails an
assertion 〈φ./n〉 or a fuzzy concept inclusion axiom C v D, written Σ |= 〈φ./n〉
or Σ |= C v D, iff any model of Σ also satisfies the fuzzy assertion or fuzzy con-
cept inclusion axiom, respectively. The problems of entailment and subsumption
can be reduced to fuzzy knowledge base satisfiability as is shown in [14].

Since a fuzzy ABox A might contain many positive assertions for the same
individual (pair of individuals), without forming a contradiction, it is in our
interest to compute what is the best lower and upper truth-value bounds of a
fuzzy assertion. In [14] the concept of greatest lower bound of a fuzzy assertion
w.r.t. Σ was defined as glb(Σ, φ) = sup{n : Σ |= 〈φ ≥ n〉}, and that of a least
upper bound as, lub(Σ, φ) = inf{n : Σ |= 〈φ ≤ n〉}, where φ represents a crisp
assertion of the form a : C or (a, b) : R. Observe that sup ∅ = 0 and inf ∅ = 1.
A procedure to solve the best truth-value bound was provided in [14]. Such a
procedure can also be used in our framework.

3 A fuzzy tableau for fKD-SHIN ABoxes

Most of the inference services of fuzzy DLs, can be reduced to the problem of con-
sistency checking for ABoxes [14]. Consistency is usually checked with tableaux



algorithms that try to construct a fuzzy tableau for a fuzzy ABox A [9], which is
an abstraction of a model of A [13]. The tableau has a forest-like structure with
nodes representing the individuals that appear in A, and edges between nodes,
which represent the relations that hold between two individuals. Each node is
labelled with a set of triples of the form 〈D, ./, n〉, which denote the concept,
the type of inequality and the membership degree that the individual of the
node has been asserted to belong to D. We call such triples membership triples.
For triples of a single node, the concepts of conjugated, positive and negative
triples can be defined in the obvious way. Since the expansion rules decompose
the initial concept, the concepts that appear in triples are sub-concepts of the
initial concept. Sub-concepts of a concept D are denoted by sub(D). The set of
all sub-concepts that appear within an ABox is denoted by sub(A).

Since the De’Morgan laws are satisfied by the operations we use in the current
paper [3] all concepts are assumed to be in their negation normal form (NNF)
[18]. In the following we use the symbols B and C as a placeholder for the
inequalities ≥, > and ≤, < and the symbol ./ as a placeholder for all types of
inequations. Furthermore we use the symbols ./−,B− and C− to denote their
reflections. For example the reflection of ≤ is ≥ and that of > is <.

Definition 2. Let A be an fKD-SHIN ABox, RA the set of roles occurring in
A together with their inverses, IA the set of individuals in A, X the set {≥, >
,≤, <} and R a fuzzy RBox. A fuzzy tableau T for A w.r.t. R is a quadruple
(S, L, E, V) such that:

– S is a non-empty set of individuals (nodes),
– L : S → 2sub(A) ×X × [0, 1] maps each element of S to membership triples,
– E : RA → 2S×S ×X × [0, 1] maps each role to membership triples,
– V : IA → S maps individuals occurring in A to elements in S.

For all s, t ∈ S, C, E ∈ sub(A), and R ∈ RA, T satisfies:

1. If 〈¬C, ./, n〉 ∈ L(s), then 〈C, ./−, 1− n〉 ∈ L(s),

2. If 〈C u E, B, n〉 ∈ L(s), then 〈C, B, n〉 ∈ L(s) and 〈E, B, n〉 ∈ L(s),

3. If 〈C t E, C, n〉 ∈ L(s), then 〈C, C, n〉 ∈ L(s) and 〈E, C, n〉 ∈ L(s),

4. If 〈C t E, B, n〉 ∈ L(s), then 〈C, B, n〉 ∈ L(s) or 〈E, B, n〉 ∈ L(s),

5. If 〈C u E, C, n〉 ∈ L(s), then 〈C, C, n〉 ∈ L(s) or 〈E, C, n〉 ∈ L(s),

6. If 〈∀R.C, B, n〉 ∈ L(s) and 〈〈s, t〉, B′, n1〉 ∈ E(R) is conjugated with 〈〈s, t〉, B−, 1−
n〉, then 〈C, B, n〉 ∈ L(t),

7. If 〈∃R.C, C, n〉 ∈ L(s) and 〈〈s, t〉, B, n1〉 ∈ E(R) is conjugated with 〈〈s, t〉, C, n〉,
then 〈C, C, n〉 ∈ L(t),

8. If 〈∃R.C, B, n〉 ∈ L(s), then there exists t ∈ S such that 〈〈s, t〉, B, n〉 ∈ E(R) and
〈C, B, n〉 ∈ L(t),

9. If 〈∀R.C, C, n〉 ∈ L(s), then there exists t ∈ S such that 〈〈s, t〉, C−, 1− n〉 ∈ E(R)
and 〈C, C, n〉 ∈ L(t),

10. If 〈∃S.C, C, n〉 ∈ L(s), and 〈〈s, t〉, B, n1〉 ∈ E(R) is conjugated with 〈〈s, t〉, C, n〉,
for some R v* S with Trans(R), then 〈∃R.C, C, n〉 ∈ L(t),



11. If 〈∀S.C, B, n〉 ∈ L(s) and 〈〈s, t〉, B′, n1〉 ∈ E(R) is conjugated with 〈〈s, t〉, B−, 1−
n〉, for some R v* S with Trans(R), then 〈∀R.C, B, n〉 ∈ L(t),

12. 〈〈s, t〉, ./, n〉 ∈ E(R) iff 〈〈t, s〉, ./, n〉 ∈ E(Inv(R)),

13. If 〈〈s, t〉, B, n〉 ∈ E(R) and R v* S then, 〈〈s, t〉, B, n〉 ∈ E(S),

14. If 〈≥ pR, B, n〉 ∈ L(x), then |{t ∈ S | 〈〈s, t〉, B, n〉 ∈ E(R)}| ≥ p,

15. If 〈≤ pR, C, n〉 ∈ L(x), then |{t ∈ S | 〈〈s, t〉, C−, 1− n〉 ∈ E(R)}| ≥ p + 1,

16. If 〈≥ pR, C, n〉 ∈ L(x), then |{t ∈ S | 〈〈s, t〉, B, ni〉 ∈ E(R)}| ≤ p − 1, conjugated
with 〈〈s, t〉, C, n〉,

17. If 〈≤ pR, B, n〉 ∈ L(x), then |{t ∈ S | 〈〈s, t〉, B′, ni〉 ∈ E(R)}| ≤ p conjugated with
〈〈s, t〉, B−, 1− n〉,

18. There do not exist two conjugated triples in any label of any individual x ∈ S,

19. If 〈a : C./n〉 ∈ A, then 〈C, ./, n〉 ∈ L(V(a)),

20. If 〈(a, b) : R./n〉 ∈ A, then 〈〈V(a),V(b)〉, ./, n〉 ∈ E(R),

21. If a 6 .= b ∈ A, then V(a) 6= V(b)

Properties 10 and 11 are a consequence of the fact that the supremum and
infimum restrictions have to be preserved, when relations that have transitive
sub-roles participate in negative existential and positive value restrictions. The
membership degrees that the concepts are being propagated, in Properties 10 and
11, is the same as in the nodes that cause propagation. The proof of this property
is quite technical and omitted here. Properties 14-17 are a direct consequence of
the semantics of fuzzy number restrictions and the fact that from the De’ Morgan
laws we can establish equivalences between negative and positive triples.

Lemma 1. An fKD-SHIN -ABox A is consistent w.r.t. R iff there exists a
fuzzy tableau for A w.r.t. R.

3.1 The Tableaux Algorithm

In order to decide ABox consistency a procedure that constructs a fuzzy tableau
for an fKD-SHIN ABox has to be determined. In the current section we will
provide the technical details for constructing a correct tableaux algorithm. As
pointed out in [13] algorithms that decide consistency of an ABox work on
completion-forests rather than on completion-trees. This is because an ABox
might contain several individuals with arbitrary roles connecting them. Such a
forest is a collection of trees that correspond to the individuals in the ABox.

Nodes in the completion-forest are labelled with a set of triples L(x) (node
triples), which contain membership triples. More precisely we define L(x){〈C, ./, n〉},
where C ∈ sub(A) and n ∈ [0, 1]. Furthermore, edges 〈x, y〉 are labelled with a
set L(〈x, y〉) (edge triples) defined as, L(〈x, y〉) = {〈R, ./, n〉}, where R ∈ RA.
The algorithm expands the tree either by expanding the set L(x), of a node x
with new triples, or by adding new leaf nodes.

If nodes x and y are connected by an edge 〈x, y〉, then y is called a successor
of x and x is called a predecessor of y, ancestor is the transitive closure of
predecessor. A node x is called an S − neighbour of a node x if for some R with



Table 2. Tableaux expansion rules

Rule Description
(¬) if 1. 〈¬C, ./, n〉 ∈ L(x)

2. and 〈C, ./−, 1− n〉 6∈ L(x)

then L(x) → L(x) ∪ {〈C, ./−, 1− n〉}
(uB) if 1. 〈C1 u C2, B, n〉 ∈ L(x), x is not indirectly blocked, and

2. {〈C1, B, n〉, 〈C2, B, n〉} 6⊆ L(x)
then L(x) → L(x) ∪ {〈C1, B, n〉, 〈C2, B, n〉}

(tC) if 1. 〈C1 t C2, C, n〉 ∈ L(x), x is not indirectly blocked, and
2. {〈C1, C, n〉, 〈C2, C, n〉} 6⊆ L(x)

then L(x) → L(x) ∪ {〈C1, C, n〉, 〈C2, C, n〉}
(tB) if 1. 〈C1 t C2, B, n〉 ∈ L(x), x is not indirectly blocked, and

2. {〈C1, B, n〉, 〈C2, B, n〉} ∩ L(x) = ∅
then L(x) → L(x) ∪ {C} for some C ∈ {〈C1, B, n〉, 〈C2, B, n〉}

(uC) if 1. 〈C1 u C2, C, n〉L(x), x is not indirectly blocked, and
2. {〈C1, C, n〉, 〈C2, C, n〉} ∩ L(x) = ∅

then L(x) → L(x) ∪ {C} for some C ∈ {〈C1, C, n〉, 〈C2, C, n〉}
(∃B) if 1. 〈∃R.C, B, n〉 ∈ L(x), x is not blocked,

2. x has no R-neighbour y connected with a triple 〈P∗, B, n〉, P v* R and 〈C, B, n〉 ∈ L(y)
then create a new node y with L(〈x, y〉) = {〈R, B, n〉}, L(y) = {〈C, B, n〉},

(∀C) if 1. 〈∀R.C, C, n〉 ∈ L(x), x is not blocked,

2. x has no R-neighbour y connected with a triple 〈P∗, C−, 1− n〉, P v* R and 〈C, C, n〉 ∈ L(y)

then create a new node y with L(〈x, y〉) = {〈R, C−, 1− n〉}, L(y) = {〈C, C, n〉},
(∀B) if 1. 〈∀R.C, B, n〉 ∈ L(x), x is not indirectly blocked, and

2. x has an R-neighbour y with 〈C, B, n〉 6∈ L(y) and

3. 〈∗, B−, 1− n〉 is conjugated with the positive triple that connects x and y
then L(y) → L(y) ∪ {〈C, B, n〉},

(∃C) if 1. 〈∃R.C, C, n〉 ∈ L(x), x is not indirectly blocked and
2. x has an R-neighbour y with 〈C, C, n〉 6∈ L(y) and
3. 〈∗, C, n〉 is conjugated with the positive triple that connects x and y

then L(y) → L(y) ∪ {〈C, C, n〉},
(∀+) if 1. 〈∀R.C, B, n〉 ∈ L(x), x is not indirectly blocked, and

2. there is some P , with Trans(P ), and P v* R, x has a P -neighbour y with, 〈∀P.C, B, n〉 6∈ L(y), and

3. 〈∗, B−, 1− n〉 is conjugated with the positive triple that connects x and y
then L(y) → L(y) ∪ {〈∀P.C, B, n〉},

(∃+) if 1. 〈∃R.C, C, n〉 ∈ L(x), x is not indirectly blocked and
2. there is some P , with Trans(P ), and P v* R, x has a P -neighbour y with, 〈∃P.C, C, n〉 6∈ L(y), and
3. 〈∗, C, n〉 is conjugated with the positive triple that connects x and y

then L(y) → L(y) ∪ {〈∃P.C, C, n〉},
(≥B) if 1. 〈≥ pR, B, n〉 ∈ L(x), x is not blocked,

2. there are no p R-neighbours y1, ..., yp connected to x with a triple 〈P∗, B, n〉, P v* R,
3. and yi 6= yj for 1 ≤ i < j ≤ p

then create p new nodes y1, ..., yp, with L(〈x, yi〉) = {〈R, B, n〉} and yi 6= yj for 1 ≤ i < j ≤ p

(≤C) if 1. 〈≤ pR, C, n〉 ∈ L(x), x is not blocked,

then apply (≥B)-rule for the triple 〈≥ (p + 1)R, C−, 1− n〉
(≤B) if 1. 〈≤ pR, B, n〉 ∈ L(x), x is not indirectly blocked,

2. there are p + 1 R-neighbours y1, ..., yp+1 connected to x with a triple 〈P∗, B′, ni〉, P v* R,

3. which is conjugated with 〈P∗, B−, 1− n〉, and there are two of them y, z, with no y 6 .= z and
4. y is neither a root node nor an ancestor of z

then 1. L(z) → L(z) ∪ L(y) and
2. if z is an ancestor of x
then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. L(〈x, y〉) −→ ∅
4. Set u 6 .= z for all u with u 6 .= y

(≥C) if 1. 〈≥ pR, C, n〉 ∈ L(x), x is not indirectly blocked,

then apply (≤B)-rule for the triple 〈≤ (p− 1)R, C−, 1− n〉
(≤rB ) if 1. 〈≤ pR, B, n〉 ∈ L(x),

2. there are p + 1 R-neighbours y1, ..., yp+1 connected to x with a triple 〈P∗, B′, ni〉, P v* R,

3. conjugated with 〈P∗, B−, 1− n〉, and there are two of them y, z, both root nodes, with no y 6 .= z
then 1. L(z) → L(z) ∪ L(y) and

2. For all edges 〈y, w〉:
i. if the edge 〈z, w〉 does not exist, create it with L(〈z, w〉) = ∅
ii. L(〈z, w〉) −→ L(〈z, w〉) ∪ L(〈y, w〉)

3. For all edges 〈w, y〉:
i. if the edge 〈w, z〉 does not exist, create it with L(〈w, z〉) = ∅
ii. L(〈w, z〉) −→ L(〈w, z〉) ∪ L(〈w, y〉)

4. Set L(y) = ∅ and remove all edges to/from y
5. Set u 6 .= z for all u with u 6 .= y and set y

.
= z

(≥rC ) if 1. 〈≥ pR, C, n〉 ∈ L(x),

then apply (≤rB )-rule for the triple 〈≤ (p− 1)R, C−, 1− n〉



R v* S either y is a successor of x and L(〈x, y〉) = 〈R, ./, n〉 or y is a predecessor
of x and L(〈y, x〉) = 〈Inv(R), ./, n〉. We then say that the edge triple connects x
and y to a degree of n.

A node x is blocked iff it is not a root node and it is either directly or indirectly
blocked. A node x is directly blocked iff none of its ancestors is blocked, and it
has ancestors x′, y and y′ such that: (i) y is not a root node, (ii) x is a successor
of x′ and y a successor of y′, (iii) L(x) = L(y) and L(x′) = L(y′) and, (iv)
L(〈x′, x〉) = L(〈y′, y〉). In this case we say that y blocks x. A node y is indirectly
blocked iff none of its ancestors is blocked, or it is a successor of a node x and
L(〈x, y〉) = ∅.

The algorithm initializes a forest FA to contain a root node xi
0, for each

individual ai ∈ IA occurring in the ABoxA and additionally {〈Ci, ./, n〉}∪L(xi
0),

for each assertion of the form 〈ai : Ci./n〉 in A, and an edge 〈xi
0, x

j
0〉 if A contains

an assertion 〈(ai, aj) : Ri./n〉, with {〈Ri, ./, n〉}∪L(〈xi
0, x

j
0〉) for each assertion of

the form 〈(ai, aj) : Ri./n〉 in A. At last we initialize the relation 6 .= as xi
0 6

.= xj
0 if

ai 6
.= aj ∈ A and the relation .= to be empty. FA is then expanded by repeatedly

applying the rules from Table 2. We use the notation R∗ to denote either the
role R or the role returned by Inv(R), and the notation 〈∗, ./, n〉, to denote any
role that participates in such a triple.

For a node x, L(x) is said to contain a clash if it contains one of the following:
(a) two conjugated pairs of triples, (b) one of the triples 〈⊥,≥, n〉, 〈>,≤, n〉,
with n > 0, n < 1, 〈⊥, >, n〉, 〈>, <, n〉 〈C,<, 0〉 or 〈C,>, 1〉, (c) some triple
〈≤ pR, B, n〉 ∈ L(x) and x has p + 1 R-neighbours y0, ..., yp, connected to x
with a triple 〈P ∗,B′, ni〉, P v* R, which is conjugated with 〈P ∗,B−, 1− n〉, and
yi 6= yj , for all 0 ≤ i < j ≤ p, or (d) some triple 〈≥ pR, C, n〉 ∈ L(x) and x has p
R-neighbours y0, ..., yp−1, connected to x with a triple 〈P ∗,B, ni〉, P v* R, which
is conjugated with 〈P ∗,C, n〉, and yi 6= yj , for all 0 ≤ i < j ≤ p. A completion-
forest is clash-free if none of its nodes contains a clash, and it is complete if none
of the expansion rules is applicable.

Lemma 2. Let A be an fKD-SHIN ABox and R a fuzzy RBox. Then

1. when started for A and R the tableaux algorithm terminates
2. A has a fuzzy tableau w.r.t. R if and only if the expansion rules can be applied

to A and R such that they yield a complete and clash-free completion forest.

4 Related Work

Much work has been carried out towards combining fuzzy logic and description
logics during the last decade. The initial idea was presented by Yen in [19], where
a structural subsumption algorithm was provided in order to perform reasoning.
The DL language used was a sub-language of the basic DL ALC. Reasoning in
fuzzy ALC was latter presented in [14], as well as in other approaches [20, 21],
where an additional concept constructor, called membership manipulator was
included in the extended language. In all these approaches tableaux decision
procedures were presented for performing reasoning services. The operations



used to interpret the concept constructors in all these approaches were the same
ones as in our context. Approaches towards more expressive DLs, are presented
in [16], where the DL is ALCQ, and in [17], where the language is SHOIN (D+).
The former one also included fuzzy quantifiers, which is a new novel idea for fuzzy
DLs. Unfortunately, in both these approaches only the semantics of the extended
languages were provided and no reasoning algorithms. As far as we know the
most expressive fuzzy DL presented till now, which also covers reasoning, is
fKD-SI, appeared in [9]. The present work provides an extension of the latter
one to an even more expressive DL, namely SHIN .

5 Conclusions

The importance and role that uncertainty, like vagueness (fuzziness) and im-
precision, plays in the Semantic web context, as well as to many applications
that use DLs to capture, represent and perform reasoning with domain knowl-
edge has been stressed many times in the literature [4–8]. To this extent we
have presented an extension of the very expressive description logic SHIN with
fuzzy set theory. Description logics are very powerful and expressive logical for-
malisms, which are used by ontology creation languages in the Semantic Web
context. Moreover, fuzzy set theory is one very important theory for capturing
and dealing with vagueness. Additionally, we have presented a detailed reasoning
algorithm for deciding fuzzy ABox consistency. In order to achieve this goal we
have provided an investigation of the properties of fuzzy cardinalities, in order
to provide sound rules for such types of concept constructors. As far as future
directions are concerned, these will include the extension of the SHOIN (G) de-
scription with fuzzy set theory. SHOIN (G) extends SHIN with nominals [22]
and datatype groups [23].

Acknowledgements.

This work is supported by the FP6 Network of Excellence EU project Knowledge
Web (IST-2004-507482).

References

1. Kim, W., Ko, J., Chung, M.: Uncertain robot environment modelling using fuzzy
numbers. Fuzzy Sets and Systems 61 (1994) 53–62

2. Krishnapuram, R., Keller, J.: Fuzzy set theoretic approach to computer vision: An
overview. In: IEEE International Conference on Fuzzy Systems. (1992) 135–142

3. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall (1995)

4. Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: A fuzzy extension of swrl, W3C
Workshop on Rule Languages for Interoperability (2005)

5. Matheus, C.: Using ontology-based rules for situation awareness and information
fusion, W3C Work. on Rule Languages for Interoperability (2005)



6. Kifer, M.: Requirements for an expressive rule language on the semantic web, W3C
Workshop on Rule Languages for Interoperability (2005)

7. Zhang, L., Yu, Y., Zhou, J., Lin, C., Yang, Y.: An enhanced model for searching
in semantic portals. In: Int. WWW Conference Committee. (2005)

8. Bechhofer, S., Goble, C.: Description Logics and Multimedia - Applying Lessons
Learnt from the GALEN Project. In: KRIMS 96 Workshop on Knowledge Repre-
sentation for Interactive Multimedia Systems, ECAI 96, Budapest (1996)

9. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: A fuzzy description
logic for multimedia knowledge representation, Proc. of the International Workshop
on Multimedia and the Semantic Web (2005)

10. Lassila, O., R.Swick, R.: Resource Description Framework (RDF) Model and Syn-
tax Specification – W3C Recommendation 22 February 1999. Technical report,
World Wide Web Consortium (1999)

11. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., eds., L.A.S.: OWL Web Ontology Language Reference (2004)

12. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. Journal of Logic and Computation 9 (1999) 385–410

13. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with Individuals for the Descrip-
tion Logic SHIQ. In MacAllester, D., ed.: CADE-2000. Number 1831 in LNAI,
Springer-Verlag (2000) 482–496

14. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence and Research 14 (2001) 137–166

15. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In: Proceedings of the 6th International Conference on Logic for Program-
ming and Automated Reasoning (LPAR’99). Number 1705 in LNAI, Springer-
Verlag (1999) 161–180

16. Sánchez, D., Tettamanzi, G.: Generalizing quantification in fuzzy description logic.
In: Proceedings 8th Fuzzy Days in Dortmund. (2004)

17. Straccia, U.: Towards a fuzzy description logic for the semantic web. In: Proceed-
ings of the 2nd European Semantic Web Conference. (2005)

18. Hollunder, B., Nutt, W., Schmidt-Schaus, M.: Subsumption algorithms for concept
description languages. In: European Conference on Artificial Intelligence. (1990)
348–353

19. Yen, J.: Generalising term subsumption languages to fuzzy logic. In: In Proc of
the 12th Int. Joint Conf on Artificial Intelligence (IJCAI-91). (1991)

20. Tresp, C., Molitor, R.: A description logic for vague knowledge. In: In proc of the
13th European Conf. on Artificial Intelligence (ECAI-98). (1998)
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