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Abstract. Ontology Learning from text aims at generating domain ontologies
from textual resources by applying natural language processing and machine
learning techniques. It is inherent in the ontology learning process that the ac-
quired ontologies represent uncertain and possibly contradicting knowledge. From
a logical perspective, the learned ontologies are potentially inconsistent knowl-
edge bases that thus do not allow meaningful reasoning directly. In this paper we
present an approach to generate consistent OWL ontologies from learned ontol-
ogy models by taking the uncertainty of the knowledge into account. We further
present evaluation results from experiments with ontologies learned from a Digi-
tal Library.

1 Introduction

Ontology Learning from text aims at generating domain ontologies from a given collec-
tion of textual resources by applying natural language processing and machine learning
techniques. Due to an increasing demand for efficient support in knowledge acquisi-
tion, a number of tools for automatic or semi-automatic ontology learning have been
developed during the last years. Common to all of them is the need for handling the
uncertainty which is inherent in any kind of knowledge acquisition process. Moreover,
ontology-based applications which rely on learned ontologies have to face the challenge
of reasoning with large amounts of imperfect information resulting from automatic on-
tology generation systems.

Causes for the imperfection of information can be found thrice. According to [1]
imperfection can be due toimprecision, inconsistencyor uncertainty. Imprecision and
inconsistency are properties of the information itself - either more than one world (in
the case of ambiguous, vague or approximate information) or no world (if contradictory
conclusions can be derived from the information) is compatible with the given informa-
tion. Uncertainty means that an agent, i.e. a computer or a human, has only partial
knowledge about the truth value of a given piece of information. One can distinguish
between objective and subjective uncertainty. Whereas objective uncertainty relates to
randomness referring to the propensity or disposition of something to be true, subjec-
tive uncertainty depends on an agent’s opinion about the truth value of information. In
particular, the agent can consider information as unreliable or irrelevant.

In ontology learning, (subjective) uncertainty is the most prominent form of imper-
fection. This is due to the fact that the results of the different algorithms have to be



considered as unreliable or irrelevant due to imprecision and errors introduced during
the ontology generation process. There exist different approaches for the representa-
tion of uncertainty: Uncertainty can for example be represented as part of the learned
ontologies, e.g. using probabilistic extensions to the target knowledge representation
formalism, or at a meta-level as application-specific information associated with the
learned structures.

In Text2Onto [7], a framework for ontology learning and data-driven ontology evo-
lution, we follow a slightly different approach: In a first step, we apply ontology learn-
ing algorithms to generate ontologies based on aLearned Ontology Model(LOM),
which is independent of a concrete ontology representation language. In the LOM, we
represent uncertainty as annotations capturing the confidence about the correctness of
the ontology elements. Most importantly, since the LOM does not have any logical se-
mantics, in this step we do not have to consider logical inconsistencies which are often
introduced during the ontology learning process. In a second step, we transform the
LOM model to a standard logic-based ontology language, in order to be able to apply
standard reasoning over the learned ontologies (e.g. for query answering). In our work
we build on the OWL ontology language, as it is now the standard for representing on-
tologies on the web, and – with its grounding in Description Logics – reasoning with
OWL ontologies is very well understood and tractable. Because of the uncertain and
thus potentially contradicting information in the LOM models, a naive translation of
the LOM model to OWL would result in highly inconsistent ontologies, which do not
allow meaningful reasoning. We therefore make use of the confidence annotations of
the LOM to guide the transformation process.

An obvious alternative approach to dealing with potential inconsistencies is to pro-
hibit primitives that introduce inconsistencies in the first place (e.g. negation, disjoint-
ness). However, as shown in [21], semantically rich primitives such as disjointness of
concepts can be used for effective semantic clarification in ontologies and thus enables
to draw more meaningful conclusions.

As a main contribution of this work we present a transformation that results in an
ontology that is (1) consistent and (2) “most likely correct”, relying on the certainty
information of the LOM model. The transformation is based on the notion of an evalu-
ation function that measures the quality of ontologies with respect to given criteria, i.e.
in our case consistency and certainty.

Application ScenarioIntelligent search over document corpora in Digital Libraries is
one application scenario that shows the immediate benefit of the ability to reason over
ontologies automatically learned from text. While search in Digital Libraries nowa-
days is restricted to structured queries against the bibliographic metadata (author, title,
etc.) and to unstructured keyword-based queries over the full text documents, complex
queries that involve reasoning over the knowledge present in the documents are not
possible. Ontology learning enables obtaining the required formal representations of
the knowledge available in the corpus to be able to support such advanced types of
search. This application scenario is the subject of a case study within the Digital Li-
brary of BT (British Telecom) as part of the SEKT1 project. One of the key elements

1 http://www.sekt-project.com/



of the case study is to automatically learn ontologies to enhance search and finally be
able support queries of the kind “Find knowledge management applications that sup-
port Peer-to-Peer knowledge sharing.” To validate the work the presented in this paper,
we performed experiments with data from the BT Digital Library.

Overview of the paperThe rest of the paper is organized as follows. In Section 2
we recapitulate the foundations of the OWL ontology language, query answering with
OWL ontologies and the role of logical inconsistencies. In Section 3 we introduce the
Learned Ontology Model (LOM). In Section 4 we discuss the transformation of LOM
models to OWL ontologies. We discuss experimental results in Section 5 and present
related work in Section 6 before we conclude in Section 7.

2 Reasoning with OWL

In this section we provide on overview of the OWL ontology language (specifically
OWL-DL), typical reasoning tasks and show why standard reasoning with inconsistent
ontologies does not yield meaningful results.

OWL-DL is a syntactic variant of theSHOIN (D) description logic [15]. Hence,
although several syntaxes for OWL-DL exist, in this paper we use the traditional de-
scription logic notation since it is more compact.

Definition 1 (Ontology). We use a datatype theoryD, a set of concept namesNC , sets
of abstract and concrete individualsNIa andNIc , respectively, and sets of abstract and
concrete role namesNRa andNRc , respectively.

The set ofSHOIN (D) conceptsis defined by the following syntactic rules, where
A is an atomic concept,R is an abstract role,S is an abstract simple role,T(i) are
concrete roles,d is a concrete domain predicate,ai and ci are abstract and concrete
individuals, respectively, andn is a non-negative integer:

C → A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ n T | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

A SHOIN (D) ontologyO is a finite set of axioms of the form concept inclusion ax-
iomsC v D, for C andD concepts, transitivity axiomsTrans(R), role inclusion ax-
iomsR v S andT v U , concept assertionsC(a), role assertionsR(a, b), individual
(in)equalitiesa ≈ b, anda 6≈ b, respectively.

The semantics of theSHOIN (D) description logic is defined via a model-theoretic
semantics, which explicates the relationship between the language syntax and the model
of a domain: An interpretationI = (4I , ·I) consists of a domain set4I , disjoint from
the datatype domain4I

D, and an interpretation function·I , which maps from individ-
uals, concepts and roles to elements of the domain, subsets of the domain and binary
relations on the domain, respectively2. An interpretationI satisfies an ontologyO, if it

2 For a complete definition of the interpretation, we refer the reader to [15].



satisfies each axiom inO. Axioms thus result in semantic conditions on the interpreta-
tions. Consequently, contradicting axioms will allow no possible interpretations. This
leads us to the definition of a consistent ontology:

Definition 2 (Consistent Ontology).An ontologyO is consistent iffO is satisfiable,
i.e. if O has a model.

To be able to define queries against ontologies, we rely on the notion of entailment:
We useO |= α to denote that the ontologyO entails the axiomα (alternatively, we say
thatα is a consequence of the ontologyO), iff α holds in any model in whichO holds.

Definition 3 (Query and Query Answer).A query with respect to an entailment rela-
tion |= is a pair of an ontologyO and an axiomα, written ’O |= α?’. An answer to a
query ’O |= α?’ is a value in the set{true, false} asO |= α andO 6|= α respectively.

Standard entailment as defined above is explosive, i.e. any axiom is a consequence
of an inconsistent ontology. Namely, if an ontologyO is not consistent, then for any
axiomα, O |= α. In other words, query answers for inconsistent ontologies are com-
pletely meaniningless, as for any query the query answer will betrue. For a detailed
discussion on inconsistencies in OWL ontologies, we refer the reader to [13].

3 LOM - A Learned Ontology Model

We believe, that linguistic evidence with respect to an ontology can be appropriately
measured by ontology learning techniques which try to capture the ontological com-
mitment in human language. Since ontology learning algorithms such as implemented
in TextToOnto [7] consider the relation of individual ontology elements with the data
the ontology has been engineered from, they allow to assess how well the ontology
reflects the underlying corpus of data. This is especially relevant for an application sce-
nario as introduced in Section 1, which involves question answering in the context of a
Digital Library. In the following we describe the ontology model of Text2Onto and the
ontology learning algorithms used in our approach.

A Learned Ontology Model(LOM) as used by Text2Onto is a collection of instan-
tiated modeling primitives which are independent of a concrete ontology representation
language. These primitives are defined in a declarative fashion which allows for trans-
lating the LOM into any knowledge representation language as long as the expressivity
of the primitives does not exceed the expressivity of the target language. In Text2Onto
we follow a translation-based approach to knowledge engineering. So calledontology
writers are then responsible for translating instantiated modeling primitives into a spe-
cific target knowledge representation language. While a translation to various ontology
languages is possible, in the scope of this paper, we focus on the translation to OWL
ontologies. The modeling primitives we use in Text2Onto and their correspondences in
the OWL ontology model are described by Table 1.

To capture contextual information about ontology elements, such as provenance and
certainty in the learning process, we introduce the notion ofrating annotations.



Modeling PrimitiveExplanation OWL

concept A conceptC. C
Example:man, person

instance An instancea. a
Example:John, Mary

subconcept-of Concept inheritance. C1 v C2

Example:subconcept-of (man,person)
instance-of Concept instantiation. C(a)

Example:instance-of (John,person).
relation A relationR betweenC1 andC2. C1 v ∀R.C2

Example:love (person,person)
part-of Mereological part-whole relation betweenC1 andC2. part-of(C1, C2)

Example:part-of (wheel,car)
equivalence Equivalence of conceptsC1 andC2. C1 ≡ C2

Example:equivalence (town,city)
equality Equality of instancesa1 anda2. a1 ≈ a2

Example:equality (UN,United Nations)
disjointness Disjointness of conceptsC1 andC2. C1 v ¬C2

Example:disjointness (man,woman)

Table 1.LOM Modeling Primitives

Definition 4. Let N denote the set of all possible ontology elements andX be a suit-
able representation of a context space, then anontology rating annotationis a partial
functionr : N → X .

In Text2Onto we use these rating annotations to model the certainty of the system
about the correctness of a particular ontology element. In particular, we define a special
ontology rating annotation

rconf : N → [0, 1]

to indicate how confident the system is about the correctness of an ontology element.
The confidences are calculated based on different kinds of evidences provided by the
ontology learning algorithms that indicate the correctness and the relevance of ontology
elements for the domain in question. They can be considered as a corpus-based support
for ontology elements.

AlgorithmsWe now describe for each modeling primitive the algorithms used to
learn corresponding instances thereof. In particular, we explain the way the confidence
and relevance ratings for an instantiated modeling primitive are calculated.

Concepts and InstancesDifferent term weighting measures are used to compute
the relevance of a certain concept or instance with respect to the corpus: Relative Term
Frequency (RTF), TFIDF, Entropy and the C-value/NC-value method in [17].

Subconcept-of RelationsIn order to learn subconcept-of relations, we have imple-
mented a variety of different algorithms exploiting the hypernym structure of WordNet
[11], matching Hearst patterns [14] in the corpus as well as in the WWW and applying
linguistic heuristics mentioned in [24]. The resulting confidence values of these algo-
rithms are then combined through combination strategies as described in [6].

Instance-of RelationsIn order to assign instances or named entities appearing in
the corpus to a concept in the ontology Text2Onto relies on a similarity-based approach
extracting context vectors for instances and concepts from the text collection and as-



signing instances to the concept corresponding to the vector with the highest similar-
ity with respect to their own vector [8]. Alternatively, we also implemented a pattern-
matching algorithm similar to the one used for discovering part-of relations.

General RelationsTo learn general relations, Text2Onto employs a shallow pars-
ing strategy to extract subcategorization frames (e.g.hit(subj,obj,pp(with)) ,
transitive + PP-complement) enriched with information about the frequency of the terms
appearing as arguments [19]. These subcategorization frames are mapped to relations
such ashit (person,thing) andhit with (person,object). The confidence is estimated
on the basis of the frequency of the subcategorization frame as well as of the frequency
with which a certain term appears at the argument position. For the purpose of dis-
coveringpart-of relations in the corpus, we developed regular expressions matching
lexico-syntactic patterns as described in [5] and implemented an algorithm counting the
occurrences of patterns indicating a part-of relation between two termst1 andt2, i.e.
part-of(t1,t2). The confidence is then calculated by dividing by the sum of occurrences
of patterns in whicht1 appears as a part. The results are combined with confidences
which can be acquired by consulting WordNet for mereological relations.

Equivalence and EqualityFollowing the assumption that terms are similar to the
extent to which they share similar syntactic contexts, we implemented algorithms cal-
culating the similarity between terms on the basis of contextual features extracted from
the corpus, whereby the context of a terms varies from simple word windows to linguis-
tic features extracted with a shallow parser. This corpus-based similarity is then taken
as the confidence for the equivalence of the corresponding concepts or instances.

DisjointnessFor the extraction of disjointness axioms we implemented a simple
heuristic based on lexico-syntactic patterns. In particular, given an enumeration of noun
phrasesNP1, NP2, ...(and|or)NPn we conclude that the conceptsC1, C2, ...Ck de-
noted by these noun phrases are pairwise disjoint, where the confidence for the dis-
jointness of two concepts is obtained from the number of evidences found for their
disjointness in relation to the total number of evidences for the disjointness of these
concepts with other concepts.

4 Transforming Learned Ontologies to OWL

In this section we discuss the transformation of learned ontologies as described in the
previous section to OWL ontologies (c.f. Section 2). As mentioned before, a naive trans-
lation that simply disregards the certainty information (rating annotations) would result
in a potentially highly inconsistent knowledge base that would not allow meaningful
reasoning. The goal of the transformation therefore is to obtain an ontology that is (1)
consistent (to allow meaningful reasoning), and (2) captures the most certain informa-
tion while disregarding the potentially erronous information. In general, there may be
many different consistent ontologies obtained from a LOM. The difficulty is to select
the “best” ontology, i.e. the one that will result in most meaningful reasoning.

Evaluation FunctionIn order to able to define what a “good” ontology for a particular
context is, we need to be able to measure the quality of the ontology with respect to
given set of criteria. We therefore define the notion of anontology evaluation function.



Definition 5. LetO be the set of possible ontologies, then anontology evaluation func-
tion e is a functione : O → [0, 1].

Effectively, the evaluation function provides a total order over the space of possible
ontologies and thus allows to compare given ontologies. Here it is important to note that
the evaluation function can take the rating annotations into account and thus provides
an evaluation measure for a given context. Using the evaluation function, we can define
the problem of translating a given learned ontologyLOM to a “discrete” and consistent
OWL ontology as:maxO⊆LOM e(O).
In other words, we try to find the best ontologyO based on the knowledge inLOM
that maximizes the evaluation function.

For our particular goal to obtain a consistent ontology capturing the most certain
information, we can define an evaluation function as follows:

ecertainty(O) =

{
max

(P
α∈O rconf (α)−t

‖O‖ , 0
)

if O is consistent

0 if O is inconsistent
(1)

Let us discuss the intuition behind this function. The basic idea is to maximize the
certainty of the ontology based on the confidence of its individual axioms, as given by
rconf (α). The thresholdt is introduced to “filter out” axioms with a confidence below a
minimal value: Adding an axiom with a confidence belowt will thus decrease the value
of ontology. An inconsistent ontology is defined to have “no value”.

In general, it will be hard to determine the optimal ontology that maximizes the
evaluation function, as one theoretically would need to search entire space of possible
consistent ontologies. However, in most cases it is not necessary to prove the optimality
of an obtained solution, especially when considering that the rating annotations them-
selves are already somewhat imprecise. Instead it is possible to exploit heuristics to
obtain a “fairly” optimal ontology.

We now outline an algorithm that exploits the behavior of the evaluation function
and local characteristics of inconsistencies to maximize the value. It is based on the
ideas of consistent ontology evolution as presented in [12]. Consistent ontology evolu-
tion ensures the consistency of ontologies when the ontology is changed by mapping
consistency conditions that need to be satisfied to resolution functions that resolve in-
troduced inconsistencies. The task of the resolution function consists of two main steps:
(1) localizing the inconsistency and (2) generating additional changes that lead to an-
other consistent state.

We treat the transformation of a LOM ontology to a consistent OWL ontology in
a similar way as shown in Algorithm 1: Starting with an empty ontologyO, we incre-
mentally add all axioms from the learned ontologyLOM whose confidence is equal to
or greater than the thresholdt. If adding the axioms leads to an inconsistent ontology,
we localize the inconsistency by identifying a minimal inconsistent subontology. (For
the details of this procedure, we refer the reader to [12]). An ontologyO′ is a mini-
mal inconsistent subontology ofO, if O′ and every subontology ofO′ is consistent.
Within this minimal inconsistent subontology we then identify the axiom that is most
uncertain, i.e. has the lowest confidence value. This axiom will be removed from the
ontology, thus resolving the inconsistency.



Algorithm 1 Algorithm for Transforming a LOM into a consistent OWL ontology
Require: A learned OntologyLOM
1: O := ∅
2: for all α ∈ LOM, rconf (α) ≥ t do
3: O := O ∪ {α}
4: while O is inconsistentdo
5: O′ := minimal inconsistentsubontology(O, α)
6: α− := α
7: for all α′ ∈ O′ do
8: if rconf (α′) ≤ rconf (α) then
9: α− := α′

10: end if
11: end for
12: O := O \ {α−}
13: end while
14: end for

5 Evaluation and Experimental Results

We have applied the approach presented in the previous chapter to ontologies learned
from a corpus of 1700 abstracts (from documents about knowledge management) of
the BT Digital Library. The learned ontology (LOM) consisted of 938 concepts and
125 instances. For the concepts, 406 subconcept-of relations and 2322 disjoint-concepts
relations were identified. For the instances, 143 instance-of relations were obtained (as
multiple instantiations is allowed).

For the transformation of the LOM ontology to a discrete OWL ontology, we ap-
plied the evaluation function and algorithms presented in the previous section. Here we
performed an analysis of the influence of the threshold of uncertainty on the transforma-
tion. The results in Table 2 clearly show the connection between the level of uncertainty
and inconsistency introduced:

Thresholdt # of Inconsistencies# of Axioms in Result

0.1 40 1706
0.2 8 705
0.4 3 389
0.8 0 197

Table 2. Influence of certainty thresholdt on transformation process

A low thresholdt results in more uncertain information being allowed in the tar-
get ontology. As a result, the chances for inconsistencies increase. How to choose the
“right” threshold t for the transformation process will very much depend on the ap-
plication scenario, as it essentially means finding a trade-off between the amount of
information learned and the confidence in the correctness of the learned information.

In the following we will discuss typical types of inconsistencies and present exam-
ples of such inconsistencies that were detected and resolved. The first type of inconsis-
tency involves unsatisfiable concepts (often called incoherent concepts) in theT -Box of



the ontology. This can for example happen if two concepts are identified to be disjoint,
but at the same time these concepts are in a subconcept-relation (either explicitly as-
serted or inferred). Interestingly, this type of inconsistency often occurred for concepts
for which even for a domain expert the correct relationship is hard to identify, as the
following example shows:

Example 1.The relationship between the conceptsData, Information, andKnowledge
is a very subtle (often philosophical) one, for which one will encounter different defi-
nitions depending on the context. The (inconsistent) definitions learned from our data
set stated thatData is a subconcept of bothInformation andKnowledge, while
Information andKnowledge are disjoint concepts:

Axiom t Confidence
Data v Information 1.0
Data v Knowledge 1.0
Information v ¬Knowledge 0.7

The inconsistency was resolved by removing the disjointness axiom, as its confidence
value was lowest.

The second type of inconsistencies involvesA-Box assertions. Here, typically instances
were asserted to be instances of two concepts that were identified to be disjoint. We
again present an example:

Example 2.HereKaV iDo was identified to be both an instance ofApplication and a
Tool (based on the abstract of [23]), however,Application andTool were learned to
be disjoint concepts:

Axiom t Confidence
Application(kavido) 0.46
Tool(kavido) 0.46
Tool v ¬Application 0.3

This inconsistency was again resolved by removing the disjointness axiom.

Other types of inconsistencies involving, for example, domain and range restrictions
were not considered in our current experiments, thus being left for future work. Nev-
ertheless, this evaluation showed that inconsistency is an important issue in ontology
learning.

6 Related Work

Since building an ontology for a huge amount of data is a difficult and time consuming
task a number of tools such as TextToOnto [20], the ASIUM system [10], the Mo’k
Workbench [3], OntoLearn [24] or OntoLT [4] have been developed in order to sup-
port the user in constructing ontologies from a given set of (textual) data. So far, none
of these tools explicitly addresses the problem of uncertainty. Text2Onto implements
the first approach towards integrating uncertainty into ontology learning. Obviously,
the LOM of Text2Onto is not probabilistic in a strict mathematical sense. Nevertheless,



several researchers have already addressed the issue of integrating and reasoning with
probabilities in knowledge representation formalisms. [9] for example present a proba-
bilistic extension of the Ontology Language OWL which relies on Bayesian Networks
for reasoning. Other researchers have integrated probabilities into first-order logic [2]
or description logics [18]. Fuzzy extensions of OWL have been proposed e.g. in [22].

The approach to dealing with inconsistencies presented in this work is based on the
idea of obtaining a consistent ontology from a LOM to be then able to derive consistent
query answers. A very related approach is that of reasoning with inconsistent ontolo-
gies. A typical technique is the selection of a consistent subontology for a given query,
which yields a consistent query answer (c.f. [16]). The important question here is how
to select theright subontology. While current techniques often rely on syntactic selec-
tion functions, it would also be possible to rely on the rating annotations available in the
LOM to guide the selection function. Another related approach is that of diagnosis and
repair of inconsistencies based on techniques such as pinpointing [21]. The pinpointing
technique tries to identify and remove aminimalset of axioms (in terms of number of
axioms) to obtain a consistent ontology, while we try to identify themost certaincon-
sistent ontology. As there are typically multiple possible pinpoints, a combination of
pinpointing with the notion of certainty of our work is an interesting path to explore.

7 Conclusion and Future Work

Ontology learning is a promising technique for automated knowledge acquisition from
text corpora. However, as we have shown, uncertainty and inconsistencies are issues
that need to be dealt with in order to allow meaningful reasoning over the learned on-
tologies. In this paper we have presented how uncertainty can be represented in the
Learned Ontology Model (LOM) and how such learned ontologies can be transformed
to consistent OWL ontologies using the notion of an ontology evaluation function. Our
experiments with ontologies learned from documents of a Digital Library show the fea-
sibility and usefulness of the approach. An extensive evaluation will be performed as
part of a case study within the SEKT project.

It is important to mention that confidence as generated by ontology learning algo-
rithms represent a data-driven approach to the evaluation of ontologies. There are many
other notions of ontology quality and consistency which could be used for the definition
of an ontology evolution function. In particular, we will in the future integrate an auto-
matic approach towards the formal evaluation of ontologies by means of the OntoClean
methodology as presented in [25].
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