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Abstract. Information Extraction and Transport, Inc. (IEF) developing the Knowledge Elicitation
Environment for Probabilistic Event and Entity Relas (KEEPER) system, a tool for eliciting,
storing, updating and implementing probabilistitatienal models (PRMs)[1,8,16]. The KEEPER
elicitation component implements a single ontoldgy the purposes of constraining and guiding
elicitation and providing the semantic bedrock tfoe reintegration of diverse knowledge sources for
reasoning and learning. We have used an exterdfiahe Web Ontology Language (OWL) to
implement the ontology and the tools for PRM reen¢stion, and we describe the main features of that
extension in this paper. This paper offers anrmfd characterization of OWL_QM, an extension of
OWL that supports the representation of PRMs.s lintended to motivate discussion as to whether
OWL is an appropriate foundation for addressingdi&lenge of handling uncertainty on the Semantic
Web.

1 Introduction

IET’s Knowledge Elicitation Environment for Problfiic Event and Entity Relations (KEEPER) system
is designed to facilitate probabilistic knowledgicigation from subject matter experts (SMES) in an
environment that maximizes the integration and tipdaof that knowledge. This process has involved
implementing an ontology based elicitation enviremirthat also facilitates learning over disparat@ad

An established technology for performing reasoninger uncertainty is the formalism of Bayesian
networks (BNs) [14]. Standards for representing Bisige been created and work has been done to extend
semantic web languages for purpose of represe@Mg, see [2] and [15]. However, BNs are not, in
themselves, completely adequate to enable reassgyBigms because BNs embody a “flat” representation
language in which all domain variables must be espnted as nodes in a graph without allowing any
abstraction. Within a BN, the fact that one nodareeents a relation between entities is lioat, it cannot
be directly recovered from the information contdirenly in the BN model. Since BN variables do not
fully capture semantics, it is difficult to mainmtagenerality and enforce shared semantics acro&sSM

A more expressive alternative to BNs is the impletaton of type-level probabilistic relational
models (PRMs) that we discuss below. Upon instiatia PRMs encode a Bayesian network and
probabilistic reasoning tools can be used to reabmut properties of the objects instantiated. ThBRM
can be viewed as an augmentation of an ontologiestription of a set of entities that not only dibss
the taxonomic hierarchies and the relationshipsvben entities, but also the probabilistic relatiips
among the values of various attributes of entitese [3] and [16]. We discuss the nature of IET's
implementation of PRMs in OWL_QM and the motivatimn implementing them in OWL. We note that
the OWL extensions required to achieve this reddyivminimal extension are quite extensive and byrief
discuss whether this argues against the use of @¥\dn appropriate foundation for uncertainty remspn

2 Probabilistic Relational M odels

IET’s modeling language, Quiddity*Modeler (QM), asrepresentation language for creating a version of
Probabilistic Relational Models (PRMs) that canilmplemented with IET’s reasoning tools. A PRM is



based on a relational schema consisting of X étn classes {X X,, ...X,}. For each X[ X, there is a
set of attributes, denoted by AfXand for each A1 A(X;), there is a set of possible values of A, denoted
by V(X;.A). For example, in PRMs for reasoning aboutislel, there may be ¥ehicle class and an
attribute associated with it may leelor. That attribute may be able to take on some Eetloies each
denoting different colors. Also associated witkleX; 0 X is a set of reference slots R(¥hat relates X

to another class ;{where j may equal i) indicating how instancesdiferent classes may be related to
each other. A range class is associated with elacheat R1 R(X;). For example, th¥ehicle class may
have a reference slatwner with a rangePerson, thereby linking instances d&fehicle to instances of
Person when the PRM is instantiated. A reference sladirttcan be created by composing a set of
reference slots into a list, e.qr%, ..., I,. Attributes of objects defined in terms of thedtation to another
object are referenced with a slot chain, SC, dsvi@: X.SC.A where Xis a class, SC is a slot chain in
which the first element has the domainaXd A is an attribute of the class that is inéuege of the final
element of SC. So, for example, suppose thatmodel about car sales it is useful to refereneesties
tax rate of the state in which car owners resid&his would be done with the slot chain
‘Car.owner.location.taxRate’, where bwner.location’ is a slot chain linking th&/ehicle class to the
Person class ¢wner) and thePerson class to th&eographicLocation class [ocation).

Given a PRM, we can specify a set of instanceb@ttasses and the relations between them in t@fms
the relational schema. Some attributes for theamt®s can be assigned values (for instance,
vehiclel.location = Virginia, where Virginia would be an instance dbeographicLocation). Other
attributes are uncertain, and part of the PRM deédimis a specification of the parents of a giatribute,
and a specification for how to construct a condgigprobability distribution for an attribute of arstance,
which depends on the values for its parent atteibuln this way, a set of instances of a PRM gise to a
Bayesian network that encodes the probabilisti@ddpncies among the attributes of the instances.

QM implements PRMs and is based loosely on frarh@ b popular knowledge representation approach,
and is augmented with various methods to consstuattural hypotheses. The fundamental modeling uni
is the frame. A frame defines general propertieg told for a class of objects, callé@me instances;
frames are comparable to OWL classes and are ageghtesent the classes in a relational schemend&ra
contain (or, one could also say, are associatdg) @iits that are used to specify attributes of an instarfice
the frame; they are the descriptive attributeshefrelational schema. Easliot can have a number &dcets
defined on it. Some of these facet names are redewords, and their values define the probabilibded
over instances of frame definitions. QM supporésrfe inheritance, where subframes inherit all Jlatsl
facets defined on them) defined in parent framesupports a version of multiple inheritance, whare
frame can inherit from multiple parents, but eagbhsparent must inherit from a different direct fsaine

of the top-level framerame (see [5]).

In addition to frame (class) abstractions organibgdan "is-a" hierarchy inherited from the frame
system, QM supports mechanisms to express undigtaabout the value of a variable, the referencant
instance, the existence of an instance, and the ¢fpan instance. QM allows for expressing domain
knowledge as fragments of Bayesian networks in dutas and compact way, facilitating reuse.

This represents a significant advance over tratili@pproaches to BN representation. There has
been a great deal of interest in extending the 8apenetwork formalism to provide greater exprassiv
power (see [8,9,12,17]). |IET's frame-language @spntation overcomes some of the challenges
mentioned above, i.e., its semantics allow usersdate type level probabilistic models that impasker
semantics and distinguish different objects thad kiidferent properties in the context of a sinBi.

3Why OWL?

While IET has tools in place that allow for the afien of PRMs, the KEEPER tool required an
implementation to elicit PRMs, expressed within sommiform language, from SMEs. Our central
assumption is that an ontology-based approachtigragly useful for addressing some of the elicitati
challenges. Using a fixed ontology allows us tadguand constrain the elicitation; its implemertati
allows SMEs to use variables that are clearly éefiin a language sufficiently expressive to capture
intended meaning and facilitate interoperabilityween the knowledge representations of differeetais
For more discussion of the importance of an ontplaga knowledge representation environment reqgiri



elicitation, learning from diverse sources and gnation of heterogeneous sources, see [6]. Gikien t
central importance of an ontology in our reasorsggtem, it appeared to make sense to utilize OWL fo
the following reasons:

a) On the face of it there appeared to be a relatigityple mapping from QM’s frame
language to OWL's class-slot description logic.

b) Many tools exist for editing and reasoning with Wwihedge developed in OWL. The Protégé
ontology editor has been a key resource in devetpiiie KEEPER tool. We have also used
the Jena reasoning and parsing tools quite extelgsiv

c) The semantic web is a key potential source of médion for the purposes of reasoning and
learning. If our models are to be able to use itifarmation they must be developed in an
amenable knowledge representation framework. Vegius ready access to the many
ontologies that have already been developed in OWL.

d) The semantic web users are potential consumeools and knowledge that allows them to
deal with the uncertainty inherent in the web.

4 Related Work

Several efforts have been made to extend OWL amgkoeral description logics for the purposes of
representing probabilistic information. We mentsome of the more closely related efforts hererstFi
Ding and Peng [15] have proposed an extension td.@W representing particular Bayesian networks.
This effort provides a means of translating an lagp implementing the set constructors of OWL iato
Bayesian network and concerns itself explicitlyhwitet or class memberships rather than relatiosship
between attributes. In this sense, it is a motarabhextension to OWL.e., insofar as the main point of
implementing a description logic is to reason siyradbout class membership. The work of Ko#eal [7]

in developing P-Classic is similar, i.e., it prozgda way to encode the classifiers in terms obaatvilistic
extension.

Paulo Costa has developed a very impressive ertetsiOWL to represent the full MEBN-logic [8] in
the OWL framework. The extensions that Costa’skwmovides will, presumably, subsume the extension
provided here but we have continued to maintain approach as it requires a smaller extension, less
parsing and reasoning support, and is more diré@hslatable into QM.

Our effort is analogous to the Semantic Web Ruleguage (SWRL), [4] a proposed extension to OWL,
i.e., we are attempting to go beyond a mere ddsmmifogic; we are not merely looking for classifieols
that will handle uncertainty. In that sense we addvoices to those who have not found the DL $oicu
semantic web reasoning to be appropriate or adequdbwever, we are also willing to settle for l&san
full blown first-order expressiveness in our lang@a So, in some sense our examination is meant to
determine whether or not OWL is useful for even adest probabilistic extension as the ability to
represent PRMs seems to be a fairly reasonabléreegent for any language that is to be implemeiibed
handling uncertainty on the web.

5 OWL Implementation of PRM Constructs

In this section we discuss our extension to OWL, IOWM, for eliciting and representing PRMs. While
QM is the target language in our example, the aggroand concomitant challenges are applicable to
representing PRMs in general.

5.1 Representing Quiddity Facets

PRMs implemented in QM focus on the representatibrtausal links between properties of objects.
Suppose that one wants to model the relation betwesar's monetary value and the mileage (odometer)
and show the probability distributions for theséuea as well as the causal links. Assume thatobrike
classes in our relational schemaCiar and thaimonetaryValue andmileage are elements of &Aar). To
indicate that there is a causal relation betweear's value and its gas mileage it is necessaspéeify the



causal links betweemonetaryValue and mileage, probability distributions over the values of each
attribute, and other metaproperties in terms o$¢hproperties. These properties of propertiesnane
correctly, properties of associations between ptagseand classes, are called ‘facets’ in QM.

Our focus in extending OWL to include QM PRMs whe treation of a means to introduce these
facets. Since these facets are associated vafiegies, the natural inclination is to attemptiéfine these
simply as properties of properties. One might assthat the creation of facets would simply involve
defining “metaproperties” that hadf:Property as the value for each of their respective domaiascauld
be used to relate probability distributions and ltke to these properties. However, this is naisfble in
OWL. A central difference between QM (and mosinie languages [10]), and OWL is the fact that
rdfs:domain, the property linking a slot to a class, is abglorestriction, i.e., it tightly binds the proper
to a particular class (see [11] and [13]). Thisansethat any property specified on a property Misffect,
necessarily tied to the class, C, such that (P do@a So, any metaproperty defined on P willin&dd to
C as well.

This impacts efforts to translate from OWL to QMveall as efforts to embed notions central to QM
in an OWL ontology. Such a restriction cannot erddden by associating a property with different
classes. In QM, and other frame-slot languagedptas effectively defined relative to a partiautdass.
So, when one declares facets, like ‘distributicon), a particular slot, those facets are interpratethe
associated relative to the frame at which the sodefined. Consider the following frame and slot
definition in QM:

frame Car isa Frame
slot mileage
facet domain = [good, poor]
facet distribution = [.5, .5]

It is interpreted to mean that the shoileage, when attached to an instanceGar, can take on the value of
either 'good' or 'poor' and the distribution overge two values is [.5,.5]. But note that the Framwhich
it is related is central to the definition. As angenience, QM allows for inheritance so that if Flcc
(subclass) of a frame does not reintroduce the sdohename, then the system infers that the dedmiof
the slot as stated for the parent frame is reapiplécto the child frame. However, it is also pbksito
redefine the distribution declaration in a subglassillustrated in the frame definition below.
frame SportUtilityVehicle isa Car
slot mileage
facet domain = [good, poor]
facet distribution = [.3, .7]

This facet redefinition is less straightforward @QWL. If we define a distribution as a property af
property, we cannot specify that the distributigoplées for instances of some classes on which #s= b
property is defined but not others, i.e., it isslefraightforward to override the defaults on goprty if the
are defined as properties of a property rigidiy tie a class.

However, the ability to associate a distributionhaa property (or slot) and class (frame) is esaknt
to an implementation of a probabilistic ontologyemsion. The distributions on value ranges for proes
of objects will typically change for classes afféiént levels of the class hierarchy. Since QMtseach
facet, (e.g.distribution), as a property of a slot defined relative to sdraene, our approach to capturing
this information in OWL is to reify the relationghbetween an OWL class and an OWL property and
define our distributions (and other QM facets) agpprties of this reified relationship rather thas a
property of the OWL property itself. (See [18] foore discussion of reified relationships.) Inesth
words, unlike the situation in QM, in the OWL impientation of QM we must represent the class and the
slot and the relationship between them, i.e., #gtationship between the slot and the propertyifeeteas
an instance of another class we have callgdrheSlotPairing’. It is this relationship between the slot
and the frame, thErameSilotPairing, rather than the slot on its own, that becomes‘pheperty holder”
for our QM facets in OWL_QM.

<owl:Class rdf:ID="FrameSlotPairing">
<rdfs:subClassOf rdf:resource="#DIRECTED-BINAFRELATION"/>
</owl:Class>

Thus, FrameSlotPairing is defined as a subclass dPIRECTED-BINARY-RELATION, a concept
defined in the Protégé metalanguage for OWL. E&chmeSlotPairing instance represents the
relationship between one OWL class and one OWL gntgpThe :FROM slot takes as its value the OWL



class involved in the relationship and the :TO dhites as its value the property involved in the
relationship.

The framework for reasoning about the mileage for car is implemented by creating
FrameSlotPairings as follows, whereCar and SportUtilityVehicle are classes in the ontology and
mileage is a property:

<FrameSilotPairing rdf:ID="Car_mileage">
<protege:FROM rdf:resource="#Car"/>
<protege:TO rdf:resource="#mileage"/>
</FrameSlotPairing>
<FrameSlotPairing rdf:ID="SUV_mileage">
<protege:from rdf:resource="#SportUtilityVehicle"/
<protege:to rdf:resource="#mileage"/>
</FrameSlotPairing>

Facets are then defined as properties having theauho‘FrameSlotPairing’ and it becomes possible to
define distinct value ranges and distributions asdescend the hierarchy. The distinct distribjand
even ranges, for an SUV’s mileage versus a genaris mileage would be defined as attributes oftibe
distinctFrameSlotPairings.

5.2 Representing Slot-Chains

A key advantage of PRMs is their ability to reprasthe way in which causal factors are relatednto t
entity being influenced by using slot chains asrdef above, i.e., lists of reference slots thatgpehe
relations between instances of some class anctagonships by which they are related to thelaitas of
another. Consider a model representing heredigatprs in baldness. A PRM withRerson class that
has, as propertiespother, father, andbald can be constructed. Theother andfather properties both
havePerson as their domain, anbald has a boolean range. The link between a pers@iméss state
and his/her maternal grandfather’s baldness isifspeédy utilizing the slot chainrhother.father.bald”,
i.e., thebald property of thePerson instance in théather slot of thePerson instance in thenother slot
of thePerson instance in question. In QM this relationship édided as follows:
frame Person
slot mother
facet domain = Person
slot father
facet domain = Person
slot baldness
facet domain = [false, true]
facet parents=[mother.father.baldness]

To implement this in OWL_QM, more representatiotoalls than those used in QM are required. Just as
the pairings of slots and frames were reified for@gent the association of a slot with a framelaasc
called'Probabilistic Relationship' is reified to represent causal relations. Thedeslare used to link the
relevant attributes, as well as to specify howatigbutes themselves are linked.

<owl:Class rdf:ID="ProbabilisticRelationship">
<rdfs:subClassOf rdf:resource="#DIRECTED-BINARELATION"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="parent_PR">
<rdfs:range rdf:resource="#FrameSlotPairing"/>
<rdfs:domain rdf:resource="#ProbabilisticRielaship"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="child_PR">
<rdfs:domain rdf:resource="#ProbabilisticReaship"/>
<rdfs:range rdf:resource="#FrameSlotPairing"/>
</owl:ObjectProperty>

In the above case, an instancd-cdmeSIotPairing is created, i.e.,Person_baldness’, in which theTO

value is Person’ and theFROM value is baldness’. However, the person whose baldness influenaes th
baldness of the person in thhild PR slot must also be specified. Accomplishing tlaquires a list of



slots showing the chain of relations linking theitgnabout which reasoning is being performed te th
entity or property having a causal influence on it.

<FrameSilotPairing rdf:ID="Person_baldness">
<protege:TO rdf:resource="#baldness"/>
<protege:FROM rdf:resource="#Person"/>
</FrameSlotPairing>
<owl:Class rdf:ID="SlotList">
<rdfs:subClassOf rdf:resource="http://www.wg/d999/02/22-rdf-syntax-ns#List"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="slotList_ PR">
<rdfs:range rdf:resource="SlotList"/>
<rdfs:comment rdf:datatype="http://mww.w3.&001/XMLSchema#string"
>slotList PR(PR, SL) means that SL is a list aftsl(or properties or predicates) by which the
child FrameSlotPairing (FSP) in PR is relateth®parent FSP in PR.</rdfs:comment>
<rdfs:domain rdf:resource="#ProbabilisticRielaship"/>
</owl:ObjectProperty>

Given these definitions and entity types, the follmy list is created to link a person’s baldnesghe
baldness attribute of their maternal grandfather.

<SlotList rdf:ID="mother_father">
<rdf:first rdf:resource="#mother"/>
<rdf:rest>
<rdf:List>
<rdf:first rdf:resource="#father"/>
<rdf:rest rdf:resource="http://www.w3.0r§da9/02/22-rdf-syntax-ns#nil"/>
</rdf:List>
</rdf:rest>
</SlotList>

The causal link is then defined as follows:

<ProbabilisticRelationship rdf:ID="baldnessLink">
<parent_PR rdf:resource="Person_baldness"/>
<child_PR rdf:resource="Person_baldness"/>
<slotList_PR rdf:resource="mother_father"/>

</ProbabilisticRelationship>

In general, consider the following generic instaotBrobabilisticRelationship:

<ProbabilisticRelationship rdf:ID="PR1">
<parent_PR rdf:resource="FrameA_slotA"/>
<child_PR rdf:resource="FrameB_slotB"/>
<slotList_PR rdf:resource="Slot_list"/>

</ProbabilisticRelationship>

Suppose further that the valueFFROM in FrameA_SlotA is FrameA, and the value of O is slotA, and
the value ofFROM and TO in FrameB_slotB are FrameB and slotB, respectively and the value of

Slot_list = <slot1, slot2, ..., slotN>. Assuming that we defia predicatecausallylnfluences’, we can
interpret the predicate thBtobabilisticRelationship represents as follows:

(implies

(and

(instantiates ?FA FrameA)
(slotA ?FA ?VALA)

(slotl ?FA ?S1VAL)

(slot2 ?S1VAL ?S2VAL)

(slotN ?Sn-1VAL ?FrameBInstance)
(slotB ?FrameBInstance ?VALB))
(causallylnfluences ?VALB ?VALA))
In this case, the interpretation is that the vabdieSIotA for an instance FA oframeA is causally
influenced by the value @lotB on the instance dframeB linked to FA by the given chain of relations.



5.3 Variable Discretizations

When specifying a continuous (i.e., numeric-valueatiable in a PRM, it is often advantageous tacgpe
a discretization of the space of values into biheaages. For instance, it may not be tractablpeidorm
probabilistic inference with a continuous expresdior the probabilistic relationship between theiatale
and its parents. Specifying a discretization andstrocting a discrete approximation to the conddio
probability distribution can allow the inferencetie performed at a desired level of accuracy. iitiuh,
different situations may demand discretizations different granularities for a given variable. To
accommodate this, OWL_QM provides a method for iépeg discretizations within the Protégé
framework. KEEPER allows the user to specify amdtzation for a datatype property with a continsiou
(e.g. double) range associated to a class. Faariost the user may wish to discretize a doubleedhlu
OWL property,reportedTemp, when associated to a particular OWL class, imhs,lone of which is the
bin HighCelsius from [250,500). In order to specify such a disesdton, a base class in the base ontology
called RangeOfValues has been defined. Properties on this class am taseepresent data about bins,
such as the lower and upper bounds, and whethér exadpoint is open or closedn order to define a
particular partition (e.g., for temperatures), bdass oRangeOfValues, (e.g.,RangeOfTemperatures)
is defined. Each instance dR®angeOfTemperatures then specifies a particular named bin (e.g.,
MidCelsius, [70, 250) ). Each endpoint should be specifiedopsn or closed. Thus, to specify the
discretization described above, we would have fastances oRangeOfTemperatures. The instance
that represents théeryHighCelsius bin is declared in OWL as follows:
<RangeOfTemperatures rdf:ID="HighCelsius">
<discretizationBinName rdf:datatype="http://www.@8)/2001/XMLSchema#string">
high
</d?scretizationBinName>
<lowerBound rdf:datatype="http://www.w3.0rg/2001/XMchema#float">
251.0
</lowerBound>
<closedLowerBound rdf:datatype="http://www.w3.0@0A/XMLSchema#boolean">
true
</closedLowerBound>
<upperBound rdf:datatype=http://www.w3.0rg/2001/XBithema#float>
500.0
</upperBound>
<closedUpperBound rdf:datatype="http://www.w3.0@f2/XMLSchema#bhoolean">
false
</closedUpperBound>
</RangeOfTemperatures

This declaration also specifies that, in the QM gmlofand, thus, the resulting BNs), any slot that is
discretized using this bin declaration will hawe,its domain of possible values, a value with thena
“high”. To map a discretization toframeSlotPairing, the OWL object property calletiscretization on
the FrameSlotPairing class is used. This is an example of another faedined on the class of
FrameSlotPairings.

<owl:ObjectProperty rdf:ID="discretization">

<rdfs:domain rdf:resource="#FrameSlotPairing"/>
</owl:ObjectProperty>

5.4 Representing Probability Distributions and Tables

We have discussed the representational apparafusred to define the probabilistic distributions an
probabilistic relationship. To specify the distrloms for a range of values, we must give a prdhigbi
value for every possible combination of possibltest of the parent variables in the relationship e
different values that the attribute or slot careta®o, for example, if an attribute has three jbssialues
and it has two parent attributes, each of whichte#e on two different values, then it is necessarstate
twelve different probability values correspondilgeiach possible combination of variable-value state
probability distribution is defined by creating arstance ofConditionalProbabilityTable in which the
probability values will be storedassociatedCPT relates aFrameSlotPairing to its associated



ConditionalProbabilityTable. If a FrameSlotPairing has no parents, then the associated table bea@mes
simple one row table. The values i€anditionalProbability are contained in instances@PTCell, each
of which is linked to &onditionalProbabilityTable via thecptCell property.

<owl:ObjectProperty rdf:ID="cptCell">
<rdfs:domain rdf:resource="#ConditionalProliapiable"/>
<rdfs:range rdf:resource="#CPTCell"/>
</owl:ObjectProperty>
<owl:Class rdf:ID="CPTCell">
<rdfs:subClassOf rdf:resource="#AbstractEitity
</owl:Clas®

A cell is defined by three attributes. These idellanAttributeValuePairList, linked to the cell by the
propertyattributeValueList, which is a list of ordered pairs representing dissociation of each parent
attribute with one of its possible valueslevantValue specifies the value of the attribute in the
FrameSlotPairing under consideration. If the slot in tReameSlotPairing under consideration can take
on the valuesttue’ or ‘false’, then the value afelevantValue for any cell ¢ptCell) associated with the
FrameSlotPairings’s ConditionalProbabilityTable will be either true’ or ‘false’. cellValue gives the
probability of that value given the state of theguas as specified in th&ttributeValuePairList for that
cell.

<owl:FunctionalProperty rdf:ID="attributeValueltls
<rdfs:range rdf:resource="#AttributeValueP &tL/>
<rdf:type rdf:resource="http://mww.w3.0rg/2002/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#CPTCell"/>
</owl:FunctionalProperty>
<owl:DatatypeProperty rdf:ID="cellValue">
<rdfs:domain rdf:resource="#CPTCell"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="http://www.w3.orgdl20XMLSchema#decimal"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="relevantValue">
<rdfs:range rdf:resource="http://www.w3.orgdd0XMLSchema#string"/>
<rdfs:domain rdf:resource="#CPTCell"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/owl#FunctionalProperty"/>
</owl:DatatypeProperty>

The AttributeValuePairList class is the set of lists éittributeValuePairings. An AttributeValuePairing

is an abstract object with two properties. Onehef propertiesparentSlot, specifies a particular attribute,
one that is a parent to the attribute in questiba;other one specifies one of the possible valoethat
slot. A slot is specified with ®robabilisticRelationship instance. The actual attribute having the causal
influence will be the slot in theFrameSlotPairing that is the value ofparent PR in the
ProbabilisticRelationship. We refer to theProbabilisticRelationship to clearly disambiguate, as the
sameFrameSlotPairing could play causal roles in different ways. If teddness of both my maternal and
paternal grandfather influence the probability of awn baldness, then the operatimameSlotPairing
would bePerson_baldness in both instances, but we must disambiguate whitson’s baldness plays
which causal role. Referring to the relev®nbbabilisticRelationship instance does that because the slot
list associated with therobabilisticRelationship can be used to perform the disambiguation.

<owl:Class rdf:ID="AttributeValuePairing">
<rdfs:subClassOf rdf:resource="#AbstractEitity
</owl:Class>
<owl:ObjectProperty rdf:ID="parentSlot">
<rdfs:domain rdf:resource="#AttributeValuemzir'/>
<rdfs:range rdf:resource="#ProbabilisticRelaship"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/owl#FunctionalProperty"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="value">
<rdf:type rdf:resource="http://www.w3.0rg/2002/owl#FunctionalProperty"/>
<rdfs:domain rdf:resource="#AttributeValuemzi'/>
<rdfs:range rdf:resource="http://www.w3.orgd20XMLSchema#string"/>



</owl:DatatypeProperty>

Consider how this would be implemented for the PiRist we just mentioned, i.e., let us suppose that i
our PRM, the user wants to assert that if one’semat grandfather is bald then the probability tiit
person will be bald is .7 and if the maternal gfatier isn’t bald, then the probability that thergma will

be bald is only .2. To create a cell for this taldéConditionalProbabilityTable is associated with the
relevantFrameSlotPairing, Person_baldness:

<FrameSlotPairing rdf:ID="Person_baldness">
<associatedCPT>
<ConditionalProbabilityTable rdf:ID="CPT_Pers baldness"/>
</associatedCPT>
<protege:TO rdf:resource="#baldness"/>
<protege:FROM rdf:resource="#Person"/>
</FrameSlotPairing>

The cells in the table are then defined. Considar to create the cell specifying that when the mmetie
grandfather is bald, the probability that a persaolh be bald is .7. First, attributeValuePairing is
created associating the baldness attribute of thieddather with the value “true”. The valuepHrentSlot
will be the ProbabilisticRelationship created above, i.ePersonBaldness, and we link that to the value
‘true’. The representation is as follows:

<AttributeValuePairing rdf:ID="GrandfatherBaldsegrue">
<Value rdf:datatype="http://www.w3.0rg/2001/X8chema#string"
>true</Value>
<parentSlot>
<ProbabilisticRelationship rdf:ID="baldnesski/>
</parentSlot>

A list is then made of all the parent variable ealdor that cell. Since there is only one parertdasider,
the list is made up of only one element, the dpsion of the state in which the grandfather is bald

<AttributeValuePairList rdf:ID="AttributeValuePwiist_grandfather_bald">
<rdf:first>
<AttributeValuePairing rdf:ID="GrandfatherBimess_true">
<Value rdf.datatype="http://www.w3.0rg/20BMLSchema#string"
>true</Value>
<parentSlot>
<ProbabilisticRelationship rdf:ID="balds®ink"/>
</parentSlot>
</AttributeValuePairing>
</rdf:first>
<rdf:rest rdf:resource="http://www.w3.0rg/1902/22-rdf-syntax-ns#nil"/>
</AttributeValuePairList>

This list then becomes one of the values in araimst ofCPTCell. It is also necessary to specify that the
probability that the person will be bald, i.e., tthHaaldness == true’ for that person will therefdre .7.
This cell is then associated with the original egltl the following representation results:

<FrameSlotPairing rdf:ID="Person_baldness">
<associatedCPT>
<ConditionalProbabilityTable rdf:ID="CPT_Pers baldness">
<cptCell>
<CPTCell rdf:ID="Person_bald_grandfathmeald">
<cellValue rdf:datatype="http://www.va8g/2001/XMLSchema#decimal"
>0.7</cellValue>
<attributeValueList>
<AttributeValuePairList rdf:ID="AttouteValuePairList_grandfather_bald">
<rdf:first>
<AttributeValuePairing rdf:ID="@ndfatherBaldness_true">
<Value rdf:datatype="http://wwwB.0rg/2001/XMLSchemat#string"
>true</Value>
<parentSlot>
<ProbabilisticRelationshig:0="baldnessLink"/>
</parentSlot>
</AttributeValuePairing>



</rdf:first>
<rdf:rest rdf:resource="http://wwvB.0rg/1999/02/22-rdf-syntax-ns#nil"/>
</AttributeValuePairList>

</attributeValueList>

<relevantValue rdf:datatype="http://www8.0rg/2001/XMLSchemat#string"

>true</relevantValue>

</CPTCell>
</cptCell>

</ConditionalProbabilityTable>
</associatedCPT>

Note that the above represents but one cell iIC#€ for a fairly simple distribution. The markuwguired
for a more elaborate table is much more involved.

6 Conclusion

We have presented the basic components requiregtémd the OWL language to represent PRMs. This
work is of a kind with recent proposals to extend/lOby merging it with RuleML, insofar as we are
seeking to find a relatively lightweight extensioh OWL that will extend expressiveness without an
overwhelming increase in representational compjexit However, the development of this extension
presented some surprises in terms of the repraser@hcomplexity needed to implement OWL for PRM
representation. A number of facts seem to argamagOWL as an appropriate foundation for somethin
sufficiently expressive to handle probabilistic ratsd

a) Despite therima facie analogous structure, the mapping from OWL classelsproperties to
PRM structures such as QM frames and slots is rezning preserving, particularly with
respect to the semantics of overriding. In paréicusince OWL does not directly support
attaching additional information at a “slot-at-dadevel, additional structure must be
constructed in OWL to support the mapping.

b) The implementation of PRMs in OWL requires the ¢amgion of numerous higher order
entities like FrameSlotPairings, SlotChains, ProbabilisticRelationships, as well as slots
that have classes and slots as domains and rafidesconstruction and implementation of
such higher order entities is not well supporte@®WL.

c) Representation of probabilistic structures andrithistions requires the extensive use of lists.
Like higher order entities, lists in OWL languagae second-class citizens in OWL enjoying
minimal support in terms of parsing, reasoning\@reediting and construction in the extant
OWL tools. They are implemented in highly comp#suctures that are difficult to manage
and use.

d) Related to (a), (b), and (c), representation of BRIM OWL is extremely complicated as
compared to the native syntax of most PRM languagAsPRM that is representable in
twenty lines in a well-suited format could quitenceivably require hundreds or thousands of
lines in OWL_QM. In this sense, OWL_QM is disargdas with a SWRL extension. Of
course, OWL is designed for machine readabilityheat than human readability.
Nevertheless, parsimony appears to argue again€Vih implementation of uncertainty
models.

Much of this complexity of structure and bulkinegsmodel specifications can be hidden from uses an
kept in the background. Extant tools for wizard elepment available in ontology development GUIs
allow us to implement these representational tedtls reasonable effort. Nevertheless, it is ndttoask
whether OWL would be the base for semantic webor@ag had it not been for the fact that it was the
language with which development began. An impdriguestion to ask here is whether OWL is the
correct foundation for probabilistic representatimnwhether a more reasonable approach would be to
dismiss the OWL paradigm and introduce or adaptrapeting representational paradigm for uncertainty
reasoning in the semantic web context.

If the representational complexity described abisvendered mostly irrelevant because of the abilit
to implement effective editing tools, the next stép this process is to develop the abstract syatak



formal semantics for this extension. For theseppses we would look to [1] as a possibly compatible
approach to formally expressing the semantics.
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