
Lifting XML Schemas to Ontologies - The
concept finder algorithm

Philipp Kunfermann, Christian Drumm

SAP Research Center CEC Karlsruhe
SAP AG

philipp.kunfermann@gmail.com

christian.drumm@sap.com

Abstract. In this paper we will present the Concept Finder algorithm.
This algorithm is capable of creating mappings between the elements of
a XML Schema and the concepts of an existing ontology. Furthermore
we present results of a preliminary evaluation where real world schemas
from the area of B2B communication were mapped to different ontologies
using this algorithm.

1 Introduction

The data mediation problem in the context of web services is concerned with
the transformation of a source message MS which adheres to a source message
schema SS into a target message MT that adheres to a target message schema
ST . To solve a given mediation problem a mapping needs to be created based
on the source and the target message schema. In general the creation of such a
mapping in very complex, making the task of developing such transformations
very strenuous and error prone [1].

Semantic Web Service (SWS) are seen as the next evolutionary step after
Web Service. SWS use ontologies to annotate the used data formats. Mappings
between different message formats are in this context created on the semantic
rather than on the syntactic level. In order to enable data mediation on the
semantic level for existing web service and to bootstrap the semantic annotation
of web services we will present an algorithm to relate XML schemas [2] to an
existing ontology.

The remaining of the paper is organized as follows. First we briefly introduce
the lifting problem. After that we present the algorithm we developed and explain
its functionality using a simple example. Finally we present the result achieved
by our approach when applied to real world schemas and ontologies.

2 Lifting

As mentioned in the introduction there are different problem areas in the context
of SWSs that require the linking between purely syntactical data representation
and ontologies. In the remaining of this paper we will call the process of relating
syntactical data representations to ontologies Lifting.

Page 113

axepol
Text Box
© 2005 for the individual papers by the papers' authors. Copying permitted for private and scientific purposes. Re-publication of material in this volume requires permission by the copyright owners.



Definition 1 (Lifting) Lifting is the process of semantically annotating a source
schema SS with an ontology O.

Note that this definition doesn’t restrict the nature of the input schemas used
for the lifting process. Furthermore based on the previous definition 3 different
approaches to the lifting problem are possible (see Fig. 1):

– The most basic approach is to create a new ontology based on the source
schema and use that ontology for the annotation

– If an existing ontology should be used for the annotation, a mapping between
the source schema and the target ontology needs to be created

– Finally a combination of the first two approaches could be used by creating
a new ontology from the source schema and by than mapping this ontology
to an already existing one. For this approach existing ontology mapping
techniques could be reused.

Lifting Lifting Lifting

Approach 1

Searched Known

Approach 2 Approach 3

Fig. 1. Different possible approaches to the lifting problem.

In this paper we will present a solution for the second approach describe
above. Our solution, the Concept Finder algorithm, is capable of identifying
mappings between elements of SS and concepts in OT . We have chosen that
approach for two reasons. Firstly we want to annotate existing WS in order to
enable their usage in a SWS environment. For this purpose we need the possibil-
ity to easily relate the XML Schemas describing their in and output messages to
the domain ontologies. Secondly our approach is capable of integrating different
schemas by relating them to a given ontology. This simplifies the integration of
existing services using the ontology as intermediate connector.

Page 114



3 The Concept Finder Algorithm

For the discussion of the Concept Finder algorithm presented in this paper we
have chosen to restrict the supported input data formats to XML for the source
schemas SS and to OWL [3] for the target ontology OT . However the Concept
Finder algorithm can easily be extended to use other input formats for both, SS

and OT .

3.1 Overview

Figure 2 shows a high level overview the Concept Finder algorithm. Creating a
mapping between a source schema and a target ontology consists of three steps:

1. In the first step the user needs to select the source schema SS and the target
ontology OT . The Concept Finder algorithm parses the two files and creates
an internal representation of them.

2. In the next step the user is presented with a graphical representation of
both, SS and OT . The user now needs to select a seed node in SS and a
matching seed concept in OT . This information is necessary in order to give
the Concept Finder algorithm a starting point for exploring the ontology.

3. In the last step the algorithm computes a list of mappings between SS and
OT . Details on how this is done will be given in the subsequent sections.

schema

ontology
Algorithm

.owl

<owl:Class ...
    <rdfs:subClass...
      <owl:Class ...
    </rdfs:subClass...
  </owl:Class>
  <owl:Class ...
...
...

.xsd

<xsd:element ...
  <xsd;complexType
    <xsd:
    <xsd:
  </xsd:
</xsd:element
...
...

mapping

/a/b/c -> A,..
/a/b/   -> B,..
...

Seed node/class

Fig. 2. High level overview of the Concept Finder algorithm

3.2 Details

Starting with the seed node and the seed concept, the algorithm compares the
elements of the schema with relationships in the ontology. In order to do so, it
navigates through the schema and the ontology in different ways. The structure

Page 115



of the schema is traversed depth first while the ontology is traversed based on
the matches that were found with the compared schema elements.

The seed node and seed concept are a schema respectively ontology element
that have to be semantically corresponding. They represent the first match of
our algorithm and define the context in which the algorithm operates in the
schema as well as in the ontology. In order to find the next match, the Concept
Finder algorithm compares every child of the seed node1 with the relationships
of the last matching concept (in the first step this is the seed concept). Firstly,
all subclasses of the seed class (find subclass match) are compared. If no match
is found, the algorithm compares all properties of the seed class (find property
match). If still no match is found for the current element, the child nodes of the
current element are explored in order test if a match can be derived (derived
match).

A similarity test is used to determine if an elements of the SS and an element
of the OT are matching based on their names. It is processed in three steps. In
the first step a normalized levenshtein distance is calculated between the two
names and if it is above a given threshold parameter, the elements are accepted
as matching. If this is not the case, the name of the schema element is in a second
step levenshtein compared with synonyms of the ontology element. In order to
find these synonyms WordNet [4] is used as an external knowledge source. If
still no match is found, the names of the compared elements are tokenized in
a third step. These tokens are compared as in the first step and a new metric
is calculated based on the number of existing and matching tokens. Again a
threshold is applied in order to determine if two elements are matching. If the
elements do not match the algorithm passes to the next schema element that
will be compared with the relationships in the ontology.

After investigating possible mismatches between schema and ontology mod-
els, we discovered that the most important mismatches originate from the de-
veloper’s freedom on how and what he is modeling using a concrete formalism.
Because of the importance of these human caused mismatches, similarity mea-
sures have to be concentrated on features that are intuitive for human beings.
While humans do hardly agree on the data-type, restrictions or even how many
relationships are relevant for a certain concept, names contain important seman-
tics, understandable to every person speaking the same language. Even though
the developer may use different terminology, he will use a name that specifies
the semantic of what he wants to represent. By using synonyms, we test the
elements against a wide range of semantically identical concepts and therefore
find correct match, if existing, with high probability. Nevertheless, from natural
language processing (NLP) it is known that single words may cause ambiguities.
This is prevented by looking at the context of the word. While NLP tries to
interpret the sentence in which a word is presented, the context of the names
in our case is found in the structure of the used models (e.g. branch of the

1 In the following we will call the element that is compared by the algorithm current
element.

Page 116



schema tree). Therefore, Concept Finder navigates through the two models and
compares only elements that are in the same context.

For every current schema element the algorithm does first try to find a sub-
class match. Therefore all subclasses - not only the direct ones - of the last
matched concept are used. This last matched concept semantically corresponds
to the parent element of the current schema element. If the current element is
matching one of the compared subclasses, the relationship with the parent ele-
ment is identified as an inheritance relationship. If no such match is found, the
relationships of the last matching concept will be compared.

ShipToAddressAddress

hasBillToAddress
hasShipToAddress

Address

hasHome

Address

Person
Company

PersonCompany

Fig. 3. The object property conflict.

Trying to find property matches, the Concept Finder algorithm compares all
relationships, data-type properties and object properties, of the last matching
concept with the current element. This comparison is more difficult for object
properties than for datatype properties, as with object properties both, the re-
lationship itself as well as the range concept, have a semantics carrying name
and therefore both of them have to be taken into consideration for the compar-
ison. Figure 3 illustrates that if only the range would be tested, the similarity
for (phasShipToAddress, cAddress)2 and (phasBillToAddress, cAddress) would be the
same with respect to the used similarity test while only the first match is se-
mantically correct. If in the opposite case only the property would be tested,
(phasHome, cAddress) would not be accepted as a match even though it corre-
spond perfectly. In order to prevent that, the similarity test compares both and
calculates the similarity as a mixed and weighted metric.

If no property match was detected, the algorithm tries to capitalize on the
knowledge of inheritance contained in the ontology and derive a match by con-
tinuing to explore the children of the current element. They are still compared
with the relationships of the last matching concept, knowing that subclasses in-
herit all relationships of its parents. If a certain number children of the current

2 When describing the algorithm using examples we will use the following notation:
cname and pname denote a concept or a property in the ontology with a given name;
ename denotes a element in the schema with a given name.

Page 117



element match with relationships of the last matching concept, the probability
for the current element to be corresponding to a subclass is high.

The algorithm navigates in this way through the whole schema tree while
it visits only the relevant concepts of the ontology matching with the schema
elements. This context based navigation makes sense because of the ontologies
nature. As ontologies are used to define concepts and not only to structure
information, we can suppose that if a relationship between two concepts exists
in the real world, they are also represented in the ontology and therefore its
context is explicitly defined. As in the ontology development no general rules
exist on how elaborated a ontology has to be, the algorithm requires to have a
meaningful and sufficiently elaborated ontology as input.

4 Example

In order to illustrate how the algorithm works in more detail, we will apply it
to the schema and ontology excerpt shown in figure 4 and describe the different
execution steps that match these two.

TradingParty

Vendor

AddressIdent. Addr. Identifier

BuyerParty

Trading
Partner

Seller Buyer
PartnerAddress

xsd:int

HouseNbStreet City

Street

hasIdentifier

hasAddress

hasStreet

City

hasCity

xsd:int

hasHouseNb

1.

2. 3.

4. 5. 6.

7.

8. 9.

BillTo
Partner

ShipTo
Partner

Fig. 4. Applying the algorithm.

– Starting with the first match chosen by the user (seed node and seed class)
eTradingParty → cTradingPartner , eT radingP arty’s children, eV endor and
eBuyerParty are explored in order to match them to the ontology3.

– In the first step a match the algorithm tries to find a match for eV endor.
Comparing the subclasses and properties of cTradingPartner with eV endor

would not result in any match4.

3 Figure 5 demonstrates the algorithm’s execution. The current seed elements are
shown in blue/dark-grey, the ones that were already successfully compared are shown
squared and the unsuccessfully compared ones are show yellow/light-grey.

4 This is the case if WordNet is not used or does not contain “Vendor” as a synonym
for “Seller”. We will assume this match is not found for illustrating the further
execution steps

Page 118



– Therefore,Concept Finder starts to explore the eV endor’s child eIdentifier.
No subclass match is found but a correspondence with the trading partner’s
identifier eIdentifier → phasIdentifier.

– Because of the match eAddress → (phasAddress, cAddress), the exploration
continues to compare the children of eAddress with the range class of the
match (cAddress).

– eStreet → (phasStreet, cStreet), eCity → (phasCity, cCity) and eHouseNb →
phasHouseNb are found but cannot be further explored since they are leaf
nodes.

– The algorithm selects eV endor and based on the matches found for its child
node he derives that eV endor could correspond to a subclass of cTradingPartner.
A match eV endor → cTradingPartner is stored with the special remark that
this is a derived subclass match5.

– Now the algorithm selects eBuyerP arty,the next child node of eTradingPartner

where the match eBuyerParty → cBuyerPartner is stored.

A

TP

V

AI A I
BP

TP

S BPA

HnbSt C St

hI

hA

hS
C

hChHnb

TP

V

AI A I
BP

TP

S BPA

HnbSt C St

hI

hA

hS
C

hChHnb

TP

V

I A I
BP

TP

S BPA

HnbSt C St

hI

hA

hS
C

hChHnb A

TP

V

I A I
BP

TP

S BPA

HnbSt C St

hI

hA

hS
C

hChHnb

S B S B

S BS B

1 2

3 4

Fig. 5. The beginning proceeding of the algorithm.

In continuation “Address” and “Identifier” are matched after the same pro-
cedure until all elements of the schema tree have been explored.

5 Evaluation

We evaluated the Concept Finder algorithm using four scenarios based on dif-
ferent real world schemas and different ontologies. However, as these evaluations
using large real world schemas and large ontologies are very time consuming and
5 Note that it would easily be possible to test for all subclasses contained in the on-

tology, if children of eV endor match to properties of them. Hereby the exact subclass
match could be found automatically. As this demands much more computational
effort it was not implemented in the prototype and therefore the user has to assign
the exact subclasses manually at the moment.

Page 119



strenuous, we were not able to perform a comprehensive evaluation. Instead we
created three evaluation scenarios based on the following real world schemas:

– sap-order.xsd
– catalog.xsd

The sap-order schema is a schema developed by SAP describing a purchase
order in the well known order to invoice process [5]. The second schema, the
catalog.xsd describes a product catalog and is part of the BMECat [6] stan-
dard. In addition to the schemas two different ontologies where used in the
evaluation scenarios. The first one, which will in the following be called Lifting
Ontology (LO) was manually developed after studying the SAP order to invoice
process. The second one, the Business Data Ontology (BDO) [7] is an ontology
developed as part of the DIP project [8]. It is based on the UBL [9] standard
and describes the domain of business-to-business communication.

Based on these schemas and ontologies the following scenarios where devel-
oped for the evaluation:

– Scenario 1: sap-order.xsd → LO. Our first scenario uses similar inputs as
the LO is based on the set of schemas which sap-order.xsd is part of.

– Scenario 2: sap-order.xsd → BDO. The BDO covers a bigger domain and
is much more complete in sense of number of concepts than the LO ontology.
In this scenario the only dependency between the schema and the ontology
is the domain of interest. They have been created independently and for
different purposes.

– Scenario 3: catalog.xsd → LO. For the third scenario the schema originates
from a different domain than the used ontology, namely the exchange of
product catalogues.

– Scenario 4: catalog.xsd → BDO. This scenario is similar to the third sce-
nario. Only the used target ontology differs.

Using the metrics used in [1] we achieved the results presented in table 1.
The table shows for each of the four scenarios described above two results. This
is due to the fact that we evaluated the Concept Finder algorithm using two
operation modes. The first row of values show the results achieved when running
the algorithm in fully automatic mode whereas the second row shows the results
when running the algorithm semi-automatically.

5.1 Discussion

The results of the scenarios 1,3 and 4 show, that the Concept Finder algorithm
generally achieves very good results. Even for schemas that only partly overlap
with the domain of the ontology, algorithm achieves and overall result between
0.75 and 0.8 in automatic mode and between 0.85 and 0.92 in semi-automatic
mode.

In the second scenario, the algorithm achieves only poor results running
automatically. The results in this scenario significantly improve if the algorithm

Page 120



Table 1. The results of the evaluation of the Concept Finder algorithm

Precision Recall Overall

Scenario 1a 0.746 0.842 0.898
Scenario 1b 0.831 0.858 0.970

Scenario 2a -0.248 0.050 0.143
Scenario 2b 0.375 0.594 0.731

Scenario 3a 0.643 0.857 0.800
Scenario 3b 0.786 0.857 0.923

Scenario 4a 0.400 0.600 0.750
Scenario 4b 0.500 0.600 0.857

is run semi-automatically. The reason for the poor results in automatic mode is,
that if the ontology is not complete enough, it is possible that by not finding a
matching concept for the current element, the algorithm is mislead. Thus, if the
comparison point (current class) in the ontology does not anymore correspond
to what the element in the schema represents, the algorithm may not recover
and will only produce false matches, leading to poor results.

Therefore the overall results of our experiments show are twofold. On the
one hand, even in the full automatic mode, the algorithm performs very well for
most inputs. On the other hand it is possible that the Concept Finder algorithm
is mislead and may perform bad if the structures of the source schema and the
target ontology are too different.

An important observation of the evaluation is that a semi-automatic lifting
in general seems to perform very good in terms of precision, recall and manual
effort and seems to be a very promising approach.

6 Summary and Outlook

In this paper we have presented a new algorithm for lifting existing XML Schema
to ontologies. The first evaluation of this algorithm using real world schemas
originating from the area of B2B communication show very promising results.

The current implementation of the algorithm is based on a very simple lin-
guistic algorithm to identify possible correspondences between the source schema
and the target ontology. If a set of matchers, similar to the ideas presented in
[1] would be used, accuracy of the created mappings could be further improved.
Furthermore 1−n and m−1 correspondences between schema elements and on-
tology concepts need to be taken into account. Finally a improvement of the user
interface for the semi-automatic creation of liftings could improve the quality of
the results and minimize the necessary user effort.

References

1. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: Proc. 28th VLDB Conference. (2002)

Page 121



2. W3C: XML schema. Online (2001) http://www.w3.org/XML/Schema.
3. McGuinness, D., van Harmelen, F.: Owl web ontology language overview.

http://www.w3.org/TR/owl-features/#s3.4 (2004) [Online; accessed 6-Sept-2005].
4. Princeton University: Wordnet - a lexical database for the english language.

http://wordnet.princeton.edu/index.shtml (2005) [Online; accessed 3-Jul-2005].
5. SAP AG: Order schema. http://sap.com/xi/EBP (2002)
6. eBusiness Standardization Commitee: Bmecat. http://www.bmecat.org (2005) [On-

line; accessed 25-Aug-2005].
7. Nagypal, G., Lemcke, J.: D3.3 a business data ontology, wp3: Service ontologies

and service description. - D3.3 (2005) 141
8. DIP: Data, information, and process integration with semantic web services. online

(2004) http://dip.semanticweb.org/.
9. OASIS: UBL. Online (2003) http://www.oasis-open.org/committees/ubl/.

Page 122




