
On the semantics of EPCs:
Faster calculation for EPCs with small state spaces

Nicolas Cuntz
Computer Graphics and Multimedia Systems Group, University of Siegen, Germany

nicolas.cuntz@uni-siegen.de

Jörn Freiheit
Max-Planck-Institute Saarbrücken, Germany

freiheit@mpi-sb.mpg.de

Ekkart Kindler
Computer Science Department, University of Paderborn, Germany

kindler@upb.de

Abstract: One of the main features ofEvent driven Process Chains(EPCs) is the
non-local semantics of the OR-join and the XOR-join connectors. Simulating this
non-local semantics faithfully and efficiently is still a challenging problem. A year
ago, we have shown that the semantics of moderately sized EPCs can be calculated in
reasonable time by using techniques from symbolic model checking. For larger EPCs,
however, this method still takes too long for practical use.

In this paper, we introduce and discuss a new technique for calculating the seman-
tics of EPCs: We combine an explicitly forward construction of the transition system
with a backward marking algorithm for checking the non-local constraints. Though
this method does not always provide a result, it works for most practical examples
and, in most cases, it is much faster than the symbolic algorithm. Basically, the com-
putation time is linear in the size of the resulting transition system. The algorithm
works for large EPCs as long as the resulting transition systems are small (where tran-
sition systems with millions of states and transitions are still considered to be small),
which is true for many practical EPCs.

1 Introduction

Event driven Process Chains(EPCs) have been introduced in the early 90ties for mod-
elling business processes [KNS92]. For easing the modelling of business processes with
EPCs, the informal semantics proposed for the OR-join and the XOR-join connectors are
non-local. This non-locality results in severe problems when it comes to a formalisation of
the semantics of EPCs [LSW98, Rit00, vdADK02]. These problems, however, have been
resolved by defining a semantics for an EPC that consists of a pair of two correlated transi-
tion relations by using fixed-point theory [Kin04]. Moreover, these transition systems can
be calculated by using techniques from symbolic model checking [CK04b, CK05], which
is implemented in an open source tool called EPC Tools [CK04a].



For moderately sized EPCs, this tool calculates the semantics in a reasonable time and,
therefore, allows us to simulate moderately sized EPCs. For larger EPCs, however, this
technique does not work anymore, even if the set of reachable states of the EPC is small.
Therefore, we come up with another algorithm for calculating the semantics of EPCs that
is tuned to large EPCs with small state spaces. Unfortunately, this algorithm does not
provide a result for all EPCs. For some EPCs, the algorithm might fail. But, it works well
for most practical examples. And the computation speed is limited only by the available
main memory. Our prototype implementation in Java can calculate transition systems with
one million states and eight million transitions in 45 seconds on a Linux machine with 1GB
main memory and a 2.4 GHz processor. In combination with another optimisation called
chain-elimination, which we introduced for improving the symbolic algorithm already, we
can simulate EPCs with more than a billion reachable states.

In this paper, we briefly rephrase the syntax and semantics of EPCs (Sect. 2) before pre-
senting the new algorithm for constructing the transition system of an EPC (Sect. 3). More-
over, we will discuss the efficiency of the algorithm and some improvements (Sect. 4).
Finally, we will discuss some practical experiences with the new algorithm (Sect. 5).

2 Syntax and Semantics of EPCs

In this section, we informally introduce the syntax and the semantics of EPCs as formalised
in [Kin04], which is a formalisation of the informal ideas as presented in [KNS92, NR02].

2.1 Syntax

Figure 1 shows an example of an EPC. It consists of three kinds ofnodes: events, which are
graphically represented as hexagons,functions, which are represented as rounded boxes,
andconnectors, which are represented as circles. The dashed arcs between the different
nodes represent thecontrol flow. The two black circles do not belong to the EPC itself;
they represent the currentstateof the EPC: A state, basically, assigns a number ofprocess
folders to each arc of the EPC. Each black circle represents such a process folder at the
corresponding arc.

Mathematically, the nodes are represented by three pairwise disjoint setsE, F , andC,
which represent the events, functions, and connectors, respectively. We denote the set
of all nodes byN = E ∪ F ∪ C. The type of each connector is defined by a mapping
l : C → {and, or, xor}. The control flow arcs are a subsetA ⊆ N ×N . In addition, there
are some syntactical restrictions on EPCs, which are not discussed here since they are not
relevant for our semantical considerations.

A stateof an EPC assigns zero or oneprocess foldersto each arc of the EPC. So a stateσ

can be formalised as a mappingσ : A → {0, 1}, which is the characteristic function of the
set of all arcs that have a process folder in this state. The set of all states of an EPC will be
denoted byΣ.



f1

Start1

Inner1

f’1

Stop1

f2

Start2

Inner2

f’2

Stop2

c2c1

Figure 1: An EPC

f fe ea. b.

c. d.

e. f.

g. h.

Figure 2: The transition relations for the different nodes

2.2 Semantics

The semantics of an EPC defines how process folders are propagated through the EPC.
This can be formalised by atransition relationR ⊆ Σ × N × Σ, where the first compo-
nent denotes thesource state, the last component denotes thetarget state, and the middle
component denotes the EPC node that propagates the folders.

For events and functions, the transition relation is very simple: a process folder is propa-
gated from the ingoing arc to the outgoing arc as shown in Fig. 2 a. and b. The semantics
of the other nodes is shown in Fig. 2, too. For lack of space, we discuss the details only
for the XOR-join connector (case h.): An XOR-join connector waits for a folder on one
ingoing arc, which is then propagated to the outgoing arc. But, there is one additional
condition: The XOR-join must not propagate the folder if thereis or therecould arrive
a folder on the other ingoing arc. This additional condition is graphically indicated by
the label at the other arc. Note that this condition cannot be checked locally in the
current state: whether a folder can arrive on the other arc depends on the overall behaviour
of the EPC. Therefore, we call the semantics of the XOR-join connectornon-local. The



other node with a non-local semantics is the OR-join connector. Its semantics is shown
in Fig. 2 f. Again, the label at an arc indicates the condition that no folder can arrive
at that particular arc anymore. The only difference to the XOR-join connector is that an
OR-join may fire also when there are folders on both input-arcs.

Note that, in this informal definition of thetransition relation, we refer to the transition
relation itself when we require that no folders can arrive at some arc according to the
transition relation. Therefore, we cannot immediately translate this informal definition into
a mathematically sound definition. In order to resolve this problem, we assume that some
transition relationP is given already, and whenever we refer to the non-local condition,
we refer to this transition relationP . Thus, Fig. 2 defines a mappingR(P ): for some given
transition relationP , it defines the transition relationR(P ). Then, the actual semantics
of an EPC could be a fixed-point ofR, i. e. a transition relationP with R(P ) = P .
Unfortunately, there are EPCs with many different such fixed-points (Fig. 1 shows an
example) and there are EPCs that do not have such a fixed-point at all (Fig. 3 shows an
example).

Stop3Stop2Stop1

Inner1

Start1

Inner2 Inner3

Start3Start2

c1 c2 c3

Figure 3: The vicious circle

So, we had to come up with another idea (see [Kin04] for details): The most important
property ofR(P ) is that it is monotonously decreasing inP . This property guarantees
that there exists a least transition relationP and a greatest transition relationQ such that
R(Q) = P andR(P ) = Q, whereP is called thepessimistic transition relationandQ is
called theoptimistic transition relationof the EPC. This pair of transition relations(P,Q)
is defined as the semantics of the EPC. In most cases, we haveP = Q, which means
thatP is a fixed-point ofR. If P andQ are different, there are some ambiguities in the
interpretation of the EPC. Therefore, we call an EPCuncleanif P andQ are different, and
we call itcleanif P andQ are equal.



3 Explicit calculation of the transition system

We have shown that the pair(P,Q) can be calculated by fixed-point-iteration using tech-
niques from symbolic model checking [CK04b, CK05]. Here, we will introduce another
algorithm that calculates a transition systemP with R(P ) = P in an explicit way. In
some cases, however, the algorithm might fail.

3.1 Basic idea

The basic idea of the algorithm is very simple: The transition system will be constructed
starting from the initial state of the EPC. From this state, we construct new transitions
and new states according to the semantics of the different kinds of nodes of the EPC
as illustrated in Fig. 2. In the first phase, however, we completely ignore all non-local
connectors, i. e. we ignore the OR-join and the XOR-join connectors. In thislocal forward
construction phase, we construct all states and transitions reachable by transitions for local
nodes only. This algorithm can be implemented in a fairly standard way as known from
other modelling notations such as Petri nets.

When no new transitions and states can be constructed in the local forward phase anymore,
we start the second phase. In this second phase, we identify those states in which additional
folders can be propagated to the input-arcs of the non-local join connectors. To this end,
we start a backward marking algorithm for each non-local join connector. Therefore, we
call this phase thebackward marking phase. For each non-local join connector, this phase
works as follows: First, we identify those transitions in the already constructed transition
system that propagate an additional folder to one of the input-arcs of the non-local join
connectors. If a transition adds a folder, we mark the source state of that transition. Then,
we systematically mark all the predecessors of these states by going backward through the
transition system. When no new states can be marked in this backward marking phase, the
second phase stops. Again, the algorithm for the backward marking can be implemented
in a fairly standard way.

In the third phase, we investigate all the states of the transition system again and check
whether a non-local connector can be fired in one of its states. Since we have marked all
states at which additional folders can arrive at the input-arcs of a join connector, it is now
easy to decide ‘locally’ in a state whether a non-local connector can fire or not: If the state
is marked by a non-local connector, the non-local connector cannot fire. After adding all
transitions (and possibly new states) for the non-local connectors, we begin a newround
of the algorithm starting with thelocal forward construction phase.

When a round ends without adding new transitions during the third phase, the algorithm
terminates. Since the algorithm only adds states and transitions and since there are only
finitely many states, we know that this algorithm will eventually terminate.

The question, however, is whether the constructed transition system meets the requirement
R(P ) = P . The answer to this question is quite simple: During the backward marking
phase for each non-local connectorn, we check for each newly marked state whether



there is a transition for connectorn leaving this state already. If this happens during the
construction, we know that this transition is wrong, because its non-local condition is
violated. As soon as this happens, we know that the constructed transition system violates
R(P ) = P (we will see an example for such a situation below). If this does never happen,
we know that the resulting transition systemP meets the conditionR(P ) = P .

3.2 Example

We illustrate the algorithm by constructing the transition system for the simple technical
example EPC shown in Fig. 4. We omitted functions from this EPC in order to make the
resulting transition system smaller and better understandable. In order to refer to the arcs
of the EPC during the construction process, we have named them, and we have also named
all nodes including the XOR-join connectors.

A

a

B E

C

c

F

H

I

L
h

i

K

k

D

b d

f

g

G

e

Figure 4: An technical example

We will start the first phase from the initial state of the EPC, which is denoted by{a, c, f, i},
which is the set of arcs with a folder. Initially, the only local node that can be fired is event
B which results in state{b, c, f, i}. Adding this transition results in the transition system
shown in Fig. 5. Note that we cannot add a further transition for a local node to this transi-
tion system. So the result of the local forward construction phase is the transition system
shown in Fig. 5.

Now, we start the backward marking phase. Clearly, firing eventB adds an additional
folder to the input-arcs of the XOR-join connectorD (viz. the folder at arcb). Therefore,
we mark the source state of this transition withD. In order to emphasise its meaning (i. e.
connectorD should not fire in that state), we represent this mark by a crossedD at the
initial node as shown in Fig. 6. Since this node does not have predecessors, the backward
marking phase terminates right away – with the result shown in Fig. 6.

{ a, c, f, i }

{ b, c, f, i }

B

Figure 5: Local forward construction

{ a, c, f, i }

{ b, c, f, i }

D

B

Figure 6: Backward marking



Now, we enter the third phase where we add all possible transitions for the non-local con-
nectors (viz. the XOR-join connectorsD, G, andK). The transitions for both connectors
G andK can be added to both states as shown in Fig. 7. For the XOR-join connectorD,
however, we cannot add a transition: The initial state is marked by aD, so we do not add a
transition forD in that state; in the second state{b, c, f, i}, we do not add a transition for
connectorD because there are folders on both input-arcs, which implies that the XOR-join
connector is not enabled in this state. This finishes the third phase of the first round of the
algorithm.

{ a, c, f, i }
D

{ b, c, f, i }{ a, c, g, i } { a, c, f, k }

{ b, c, g, i } { b, c, f, k }

BG

G

K

K

Figure 7: Adding non-local connectors

{ a, c, f, i }
D

{ b, c, f, i }{ a, c, g, i } { a, c, f, k }

{ b, c, g, i } { b, c, f, k }{ a, c, h, i }

{ b, c, h, i }

BG

G

K

KH B

B H

B

Figure 8: Local forward construction again

Since new transitions have been added during the third phase of the first round, we start
another round of the algorithm. We start with the forward construction phase for all local
nodes. This gives us the transition system shown in Fig. 8.

Next, we check which transitions propagate an additional folder to the input-arcs of one
of the XOR-join connectors. FiringB adds another folder to the input-arcs of XOR-join
connectorD. So, we mark the source states of the corresponding transitions with a crossed
D. Likewise, firingH adds another folder to the input-arcs of XOR-join connectorK. So,
we mark all the source states ofH with a crossedK. The result is shown in Fig. 9. But, the
second phase is not finished yet. For all marked states, we must also mark all predecessor
states accordingly. The result of this backward marking phase is shown in Fig. 10.

{ a, c, f, i }

{ b, c, f, i }{ a, c, g, i } { a, c, f, k }

{ b, c, g, i } { b, c, f, k }{ a, c, h, i }

{ b, c, h, i }

D

D

K

K

D

D
BG

G

K

KH B

B H

B

Figure 9: Initialise backward marking

{ a, c, f, i }

{ b, c, f, i }{ a, c, g, i } { a, c, f, k }

{ b, c, g, i } { b, c, f, k }{ a, c, h, i }

{ b, c, h, i }

D

D

K

K

D

DK

K

BG

G

K

KH B

B H

B

Figure 10: Backward marking

We can see that we have now marked the initial state with a crossedK and we have



constructed a transitionK from that state earlier. This shows us that the resulting transition
system will not meet the conditionR(P ) = P and we better had not added transitionK

to the initial state. This, however, does not bother us right now, we just continue the
construction.

We continue our algorithm with the third phase of round two. We add transitions for all en-
abled non-local connectors. Note that we cannot add transitions for XOR-join connectors
D andK since the states are either marked with a crossedD or K, or there are folders on
both input-arcs, or there are no folders on the input-arcs at all. We can add a transition only
for XOR-join connectorG at state{b, c, f, k}. The result of the second round is shown in
Fig. 11.

{ a, c, f, i }

{ b, c, f, i }{ a, c, g, i } { a, c, f, k }

{ b, c, g, i } { b, c, f, k }{ a, c, h, i }

{ b, c, h, i }

D

D

K

K

D

DK

K

{ b, c, g, k }

BG

G

K

KH B

B H

B

G

Figure 11: Adding non-local connector

{ a, c, f, i }

{ b, c, f, i }{ a, c, g, i } { a, c, f, k }

{ b, c, g, i } { b, c, f, k }{ a, c, h, i }

{ b, c, h, i }

D

D

K

K

D

DK

K

{ b, c, g, k }

{ b, c, h, k }

BG

G

K

KH B

B H

B

G

H

Figure 12: Local forward construction

Since we have added a new transition during the third phase of the second round, we must
start another round of our algorithm. In the first phase, we can add only one transition and
one state as shown in Fig. 12. Note, that according to the semantics of EPCs, an end event
can never fire. Therefore, no transition can be added to the state{b, c, h, k}.

So, we can proceed with the second phase: We check which transitions add another folder
to some XOR-join connector. But, there is none. Note that the new transition adds a folder
to the input-arc of XOR-join connectorK, but this is the first folder, not an additional
folder. So, we do not mark this state.

Next, we check whether we can add another transition for a non-local connector to this
transition system. But, this is no longer possible. Note that, in state{b, c, h, k}, connector
K cannot fire due to the folder on its output-arc, which is called acontact situation. So,
this was the third and last round of our algorithm and the result is shown in Fig. 12. As
discussed above, we know that this result is not correct since the transition system has a
transition for the XOR-join connectorK starting in state{a, c, f, i}, but this state is also
marked with a crossedK now. We will see later that we can improve the algorithm so that
this problem is avoided for this EPC.



3.3 Some details

Before discussing this improvement of the algorithm, let us consider some details of the
algorithm.

First, let us go into the details of the backward marking algorithm in the second phase. This
backward marking algorithm can be implemented in a very standard way. We must make
sure only that the data structure for representing the transition system under construction
allows us to follow arcs backward. There is only one question left: when or where can we
stop the backward algorithm? In our example, we stopped at the initial state. In examples
with loops, we would stop as soon as no new states can be marked anymore, which can
be implemented in a fairly standard way. However, there is one additional condition when
the backward marking algorithm should stop: When the backward marking algorithm for a
non-local connectorn reaches a transition for connectorn, the marking algorithm does not
proceed beyond this transition. The reason is that this transition removes all folders from
the input-arcs of the XOR-join connectorn and, therefore, the preceding state needs not
to be marked. This condition can be easily included to the standard marking algorithms
since the transitions have labels that refer to the corresponding node of the EPC.

Second, we have seen in our example already, that it is not necessary to start the backward
marking in the second phase completely from scratch. We can just keep the markings from
the earlier rounds and start from that point. This way, the backward marking algorithm will
visit each state of the final transition system at most once. Moreover, it is not necessary
to run through the complete set of transitions in order to find those transitions that add
another folder to the input-arcs of a non-local connector. We can check this during the
creation of a new transition (for each non-local connector) and then add the source state
of this transition to a list which will start the backward marking algorithm. Since such a
list is needed in the backward marking algorithm anyway, this is no extra effort. This way,
the first phase and the second phase of the algorithm are entangled in the implementation.
Actually, these phases could be run completely in parallel; but we did not implement it in
parallel in order to avoid necessary synchronisations.

Only when the first two phases, local forward construction and backward marking, are
finished, the third phase will be started adding currently enabled non-local connectors.
Again, it is not necessary to run through all states of the constructed transition system
again. During the forward construction, we add all newly created states to a list. Then,
we need to check only the states from this list. This way, we need to investigate each state
of the final transition system only once for the enabledness of a transition of each non-
local connector (the standard forward algorithm guarantees that this is true for all local
connectors too).

The last important issue is to avoid the construction of duplicate states. This can be easily
achieved by standard hashing techniques, and will, therefore, not be discussed here.



3.4 Complexity

All the above issues are important for increasing the efficiency of the algorithm. It is easy
to see that, basically, we have to deal with each state and each transition exactly once dur-
ing the forward construction. Moreover, the backward marking algorithm visits each state
and each transition at most once. Since we have backward marking algorithms for each
non-local connector, the time complexity of the construction algorithm is about1O(k · n),
wheren is the size of the constructed transition system (number of states and transitions)
andk is the number of non-local connectors of the EPC. Sincek is quite small in typical
EPCs, the complexity of the algorithm (in time and space) is, basically, linear in the size
of the transition system. Practical experience shows, that the algorithm is limited only by
the available main memory. For our prototype implementation in Java, we could compute
transition systems with one million states and eight million transitions in 45 seconds on
a Linux PC with 1 GB main memory and a 2.4 GHz processor. The computation signif-
icantly slows down as soon as the main memory is exhausted and parts of the transition
system need to be swapped to disk.

The nice feature of this algorithm is that its complexity is independent of the actual size
of the EPC. As long as the resulting transition system remains small, the algorithm works
fine. Recall that small means in the order of millions of states and transitions. This is in
contrast to our symbolic algorithm that computes the complete semantics of the EPC by
model checking techniques [CK04b, CK05]. This algorithm might not be able to calculate
the transition system – even if the EPC has only a few reachable states. Actually, it was
this observation that inspired us to think of another way to calculate the transition system
of EPCs with small state spaces (see Sect. 5).

Unfortunately, the algorithm does not always give us a result as we have seen in our exam-
ple. The algorithm will always terminate, but, sometimes, the resulting transition system
P does not meet the conditionR(P ) = P , which is detected during the calculation.

4 Improvements

The algorithm as presented in the previous section provides correct results for many prac-
tical EPCs. However, there are some EPCs for which the result is not correct. In this
section, we will make some improvements so that the algorithm returns correct results at
least for well-designed EPCs – and we believe that the improved version works for all
EPCs that are constructed from the four workflow constructs.

In order to explain the idea of the improvement, we have another look at our example from
Fig. 4. What went wrong during the construction of the transition system for this EPC was
that we added the transition for XOR-join connectorK too early to the initial state (see
Fig. 7 and 10). Without firing any XOR-join connector at all (first two phases of the first
round of the algorithm), no folder can ever reach arce and arch. Therefore, the transitions

1Actually, there is an additional logarithmic factor for the hashing algorithms and in some worst-case scenar-
iosk might be the number of all connectors.



for both XOR-join connectorsG andK were added to the initial state at the same time (see
Fig. 7). In this example, however, we can easily see that a folder can be propagated to arc
h only after XOR-join connectorG has had a chance to fire. So, we had better constructed
the transition for XOR-join connectorG first, then investigated the states reachable from
these states, and then checked for connectorK.

4.1 Levels

The basic idea of the improvement is to have different levels of non-local connectors. In
the third phase of the algorithm, we check the non-local connectors level by level. If we
added a transition for a connector on one level, we do not consider the non-local connectors
on all subsequent levels in this round.

For our example from Fig. 4, we chose three levels:D is on the first level,G is on the
second level, andK is on the third level. With these levels, the algorithm works as follows:
First, we start the forward construction and the backward marking algorithm as in Sect. 3.2.
The result is the same as shown in Fig. 6. Then, we check whether a transition for XOR-
join connectorD (first level) can be added. This is not possible, so we check for XOR-join
connectorG (second level). The result is shown in Fig. 13. Since, we added a transition for
a non-local connector on the second level, we do not check for transitions for connectors
on the third level (connectorK) in this round. Rather, we start the next round with the
transition system from Fig. 13. The forward construction phase will result in the transition
system shown in Fig. 14.

{ a, c, f, i }
D

{ b, c, f, i }{ a, c, g, i }

{ b, c, g, i }

BG

G

Figure 13: Adding transitions for connectorG

{ a, c, f, i }
D

{ b, c, f, i }{ a, c, g, i }

{ b, c, g, i }{ a, c, h, i }

{ b, c, h, i }

BG

GH B

B H

Figure 14: Local forward construction

Next, we start the backward marking phase, which marks the very same states as in our
original computation (except for those states that do not occur anymore). The result is
shown in Fig. 15.

In the third phase, we check whether transitions for the different levels of non-local con-
nectors can be added. But, it turns out that no non-local transition can be added anymore.
So, Fig. 15 shows the final result. This time, there is no transition for a non-local con-
nector starting in a state that is marked. So, the constructed transition systemP meets the
conditionR(P ) = P , which was called anidealsemantics in [Kin04].



{ a, c, f, i }

{ b, c, f, i }{ a, c, g, i }

{ b, c, g, i }{ a, c, h, i }

{ b, c, h, i }

D

D

K

K

D

K

K

BG

GH B

B H

Figure 15: Backward marking algorithm

4.2 Calculating the levels

In our example, we could easily see which non-local connectors should go to which level.
In general, however, we need to calculate these levels from the structure of the EPC. In-
spired by the above example, we use a simple marking algorithm for the nodes and arcs
of the EPC: We start with marking all initial events and set a counteri to 1. Then we
proceed with marking the other events and nodes of the EPC as follows (where each node
is marked only once):

Events/Functions If an ingoing arc of an event or function is marked, we mark the event
or function.

Split connectors If the ingoing arc of split connector is marked, we mark the split con-
nector.

AND-join connectors If all ingoing arcs of an AND-join connector are marked, we mark
the AND-join connector.

Arcs If the source node of an arc is marked, we mark the arc.

If no node or arcs can be marked anymore according to the above rules, we proceed as
follows:

Fully marked non-local joins First, we check, whether there are unmarked non-local
join connectors for which all input-arcs are marked. If this is true, we mark all
these connectors and select these connectors for leveli. Moreover, we increment
the counteri by 1 and start with the first marking phase again

Partially marked non-local joins Otherwise, we check, whether there are unmarked non-
local join connectors with at least one marked input-arc. If there is at least one, we
mark all these connectors and select these connectors for leveli. Moreover, we
increment the counteri by 1 and start with the first marking phase again.



Partially marked AND-joins Otherwise, we check, whether there are unmarked AND-
join connectors with at least one marked input-arc. If there is one, we mark all these
AND-join connectors and start with the first marking phase again.

If no new nodes can be marked anymore, we add all remaining unmarked non-local con-
nectors to the last level and terminate the marking algorithm.

Figure 16 sketches the different phases of the marking algorithm, where the numbers at the
different nodes and arcs indicate the level in which the corresponding nodes and arcs were
marked. Therefore, the label at each XOR-join connector indicates its level: ConnectorD

is on level1, connectorG is on level2, and connectorK is on level3.

B E

F

H

A I

L

D

b d

f

g

G

e

a

C

c

h

i

K

k

1 1 1 1

1 1

1

1 1

1 2

1

2
2 3

2

3
3

3

4
4

Figure 16: The marking algorithms

4.3 Discussion

The above marking algorithm of an EPC for determining the levels of the different non-
local connectors, basically, tries to identify the causal dependencies of the non-local con-
nectors. This order will be considered during the construction of the transition system.
The marking algorithm is very efficient; basically, it is linear in the size of the EPC.

Of course, there are EPCs for which the levels calculated by this algorithm do not result
in a correct transition system. One example is the vicious circle from Fig. 3; but this is
not surprising, because this EPCs does not have a clean semantics at all. We checked our
algorithm for several practical examples (e. g. from the SAP/R3 reference models), and
it turned out that for almost all examples, our algorithm came up with a correct transition
system in virtually no time. There was only one exception, which will be discussed in
Sect. 5. Moreover, we believe that for EPCs constructed from properly nested workflow
constructs, our algorithm will always result in a correct transition system (a proof of that
result, however, is still missing).

5 Practical experience

The quest for another algorithm for simulating EPCs and for calculating their semantics
was triggered by some example EPCs from the eJustice project (www.ejustice.eu.
com), which is funded by the European Union. This project aims at a better understanding



of judicial processes. The discussion started with the EPC shown in Fig. 17 as a screen-
shot of EPCTools. This EPC models a German payment order procedure. Here, we do
not explain the details of this procedure. Figure 17 should give a rough impression of
the structure and size of the EPC model only. The EPC consists of about 90 events, 70
functions, and 40 connectors, where exactly 10 connectors are non-local XOR-joins. One
important issue of the eJustice project has been to prove the correctness of the legal proce-
dures originally modelled with ARIS. However, proving correctness requires an adequate
simulation tool deriving all reachable states based on a well-defined semantics for EPCs.
Although the symbolic algorithm of EPCTools complied with this requirement, it could
not cope with the size of the models to be simulated. Therefore, we started thinking of
another way of simulating this and similar EPCs.

It was quite obvious that this EPC has only very few reachable states. So, we knew that it
should be possible to calculate its semantics somehow explicitly. With our new algorithm,
we could calculate the semantics in 70 milliseconds, and it turned out that the transition
system had 1215 states and 2551 transitions only.

During tests with practical examples from the SAP/R3 reference models of the ARIS
Toolset2, which were given to us as a benchmark by Jan Mendling, we found only one
example for which we could not calculate the semantics. This was the process ‘Auf-
tragsabwicklung in der Instandhaltung’; 1GB main memory was not enough to calculate
the transition system of this EPC. Therefore, we used a technique proposed in [CK04b]
called chain elimination, which allows us to reduce the EPC. For this reduced system,
we could calculate the semantics. However, the semantics was not clean and there were
contact situations, which implied that chain-elimination does not provide correct results.
Closer investigation of the model showed that there was an OR-split operation that resulted
in quite awkward behaviour of the process. Apparently, this behaviour was not really the
intended one. So, we replaced the OR-split by an XOR-split, which appeared to be more
adequate. Surprisingly, the resulting EPC could be easily simulated – even without using
chain elimination, the transition system could be calculated in 20 milliseconds. This ex-
perience shows that long simulation times can give rise to the revision of models, which
results not only in better models, but also in faster simulation.

Altogether this shows that, for many practical examples, the new algorithm is a big step
forward in the faithful and efficient simulation of EPCs.

6 Conclusion

In this paper, we have presented an new algorithm for efficiently calculating the semantics
of an EPC. The idea of this algorithm is explicit forward construction of the transition
system combined with a backward marking algorithm, which deals with the non-local
conditions.

This idea of a backward marking phase is similar to an algorithm proposed for calculating

2ARIS Toolset is a registered trademark of IDS Scheer. For more information seehttp://www.
ids-scheer.com/



Figure 17: The eJustice example



the enabledness of the OR-join connector in YAWL [WEvdAtH05]; in YAWL, however,
only the OR-join connector has a non-local semantics. Moreover, the backward marking
algorithm considers only local nodes and the YAWL algorithm does not work in several
rounds. Therefore, or algorithm is more adequate for faithfully calculating the semantics
of EPCs.

The performance of our algorithm presented in this paper is much better than our sym-
bolic algorithm presented in [CK04b, CK05] – as long as the set of reachable states and
transitions are ‘small’ (i. e. in the magnitude of millions of states and transitions, and, in
combination with chain elimination, even billions of states and transitions). The disad-
vantage of our new algorithm, however, is that in some cases there might be no result at
all. Moreover, the new algorithm calculates some ideal transition system. The new al-
gorithm cannot answer the question whether the calculated transition system is the only
such transition system or whether there could be more. Anyway, the new algorithm nicely
complements the existing algorithm and allows us to simulate (and to analyse) many more
EPCs. Experience shows that we could simulate most practical examples based on this
algorithm.

The results and measurements come from experiments with a prototype implementation of
the new algorithm based on EPCTools. A polished version of this prototype was released
in November 2005 as a beta version of EPCTools 2.0. This version supports the explicit
and the symbolic simulation algorithm as well as the chain elimination optimisation. It
is open source (under the GNU Public License Agreement) and can be downloaded from
[CK04a]. What is still missing in this version of EPCTools is functions for analysing
the EPC models and for checking some properties. Currently we are investigating and
implementing some analysis functions based on the calculated transition system, which
will be used for evaluating practical EPCs from the SAP/R3 reference models and from
the eJustice project.

References

[CK04a] Nicolas Cuntz and Ekkart Kindler. The EPC Tools Project: Home Page.
http://www.upb.de/cs/kindler/research/EPCTools, 2004.

[CK04b] Nicolas Cuntz and Ekkart Kindler. On the semantics of EPCs: Efficient calculation
and simulation. In M. Nüttgens and F. J. Rump, editors,EPK 2004, Geschäft-
sprozessmanagement mit Ereignisgesteuerten Prozessketten, pages 7–26, October
2004.

[CK05] Nicolas Cuntz and Ekkart Kindler. On the semantics of EPCs: Efficient calcula-
tion and simulation (Extended Abstract). In W.M.P. van der Aalst, B. Benatallah,
F. Casati, and F. Curbera, editors,Business Process Management, Second Interna-
tional Conference, 3rd International Conference, BPM 2005, LNCS3649, pages
398–403. Springer, September 2005.

[Kin04] Ekkart Kindler. On the semantics of EPCs: Resolving the vicious circle. In J. Desel,
B. Pernici, and M. Weske, editors,Business Process Management, Second Interna-
tional Conference, BPM 2004, LNCS3080, pages 82–97. Springer, June 2004.

[KNS92] G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Prozessmodellierung auf
der Grundlage Ereignisgesteuerter Prozessketten (EPK). Technical Report Veröf-



fentlichungen des Instituts für Wirtschaftsinformatik (IWi), Heft 89, Universität des
Saarlandes, January 1992.

[LSW98] P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event
driven Process Chains. In J. Desel and M. Silva, editors,Application and Theory of
Petri Nets 1998, LNCS1420, pages 286–305. Springer, 1998.

[NR02] Markus Nüttgens and Frank J. Rump. Syntax und Semantik Ereignisgesteuerter
Prozessketten (EPK). InPROMISE 2002, Prozessorientierte Methoden und
Werkzeuge für die Entwicklung von Informationssystemen, GI Lecture Notes in In-
formaticsP-21 , pages 64–77. Gesellschaft für Informatik, 2002.

[Rit00] Peter Rittgen. Quo vadis EPK in ARIS?Wirtschaftsinformatik, 42:27–35, 2000.

[vdADK02] Wil van der Aalst, Jörg Desel, and Ekkart Kindler. On the semantics of EPCs: A
vicious circle. In M. Nüttgens and F. J. Rump, editors,EPK 2002, Geschäftsprozess-
management mit Ereignisgesteuerten Prozessketten, pages 71–79, November 2002.

[WEvdAtH05] Moe Thandar Wynn, David Edmond, W.M.P. van der Aalst, and A.H.M. ter Hof-
stede. Achieving a General, Formal and Decidable Approach to the OR-Join in
Workflow Using Reset Nets. In G. Ciardo and P. Darondeau, editors,Applications
and Theory of Petri Nets 2005,26

th International Conference, LNCS3536, pages
423–443. Springer, June 2005.


