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Abstract. Extracting generic bases of association rules seems to be a
promising issue in order to present informative and compact user added-
value knowledge. However, extracting generic bases requires partially
ordering costly computed itemset closures. To avoid the nightmarish
itemset closure computation cost, specially for sparse contexts, we in-
troduce an algorithm, called Prince, allowing an astute extraction of
generic bases of association rules. The Prince algorithm main origi-
nality is that the partial order is maintained between frequent minimal
generators and no more between frequent closed itemsets. A structure
called minimal generator lattice is then built, from which the derivation
of itemset closures and generic association rules becomes straightforward.
An intensive experimental evaluation, carried out on benchmarking and
”worst case” datasets, showed that Prince largely outperforms the pio-
neer algorithms, i.e., Close, A-Close and Titanic.
Keywords: Data mining, Formal Concept Analysis, generic association
rule bases, minimal generator lattice.

1 Introduction

It is widely known that frequent itemset based algorithms suffer from the gen-
eration of a very large number of frequent itemsets and hence association rules.
Thus, this prohibitive generation reduces not only efficiency but also effectiveness
of the mined knowledge. In fact, users have to perform tedious rummage within
an overwhelming large number of mined association rules [1]. In this context,
the approach based on the extraction of frequent closed itemsets [2] presented
a clear promise to reduce the frequent itemset extraction cost and mainly to
offer, to users, irreducible nuclei of association rules that are commonly known
as ”generic bases” of association rules. This approach, relying on the Formal
Concept Analysis mathematical background [3], proposes to reduce the search
space by detecting intrinsic structural properties. Therefore, the problem of min-
ing association rules might be reformulated, under the (frequent) closed itemsets
discovery point of view, as follows [4]:

1. Discover both distinct ”closure systems”, i.e., sets of sets which are closed
under the intersection operator, namely the set of closed itemsets and the set
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of minimal generators. Also, the upper cover (Covu) of each closed itemset
should be available.

2. From all discovered information during the first step, i.e., both closure sys-
tems and the upper cover sets, derive generic bases of association rules (from
which all remaining association rules can be derived).

The essential report after an overview of the state of the art of frequent closed
itemset based algorithms (e.g., [1, 2, 5–9]) can be summarized in what follows:

1. These algorithms mainly concentrate on the first task, i.e., reducing the com-
putation time of the frequent itemset extraction step. Their performances are
interesting on dense contexts. However, they present modest performances
on sparse contexts. Indeed, computing itemset closures in this type of con-
texts is heavily handicapping on these algorithm performances, since frequent
closed itemset search space tends to overlap that of frequent itemsets.

2. The frequent closed itemset based algorithms neglect the second task, i.e.,
extracting generic association rule bases. Indeed, none of them accepted to
maintain the order covering the relationship between frequent closed item-
sets.

In this paper, we propose a new algorithm, called Prince, aiming to extract
generic bases of association rules. Prince performs a level-wise browsing of the
search space. Its main originality is that it is the only one who accepted to
bear the cost of building the partial order. Interestingly enough, to amortize
this prohibitive cost, the partial order is maintained between frequent minimal
generators and no more between frequent closed itemsets. The obtained partially
ordered structure is called minimal generator lattice [10], in which each equiva-
lence class is reduced to the corresponding set of frequent minimal generators.
Hence, itemset closures are not computed but derived when Prince performs
a simple sweeping of the minimal generator lattice to derive generic bases of
association rules. Practical performances of the Prince algorithm have been
compared to those of well known level-wise browsing algorithms, i.e., Close [2],
A-Close [5], and Titanic [6]. Our experiments were carried out on benchmark
datasets (dense and sparse) and on ”worst case” datasets. Obtained results are
very encouraging: although our algorithm performs the partial order construc-
tion task, it largely outperforms Close, A-Close, and Titanic algorithms. In
addition to the ”worst case” datasets and due to space limit, we report our re-
sults only on two benchmark datasets, frequently used for evaluating data mining
algorithms.

It is important to note that omitting to compare Prince performances to
those of more recent algorithms, e.g., LCM [8], DCI-Closed [9], is argued by
two reasons:

1. Close, A-Close and Titanic algorithms determine at least the ”key” in-
formation provided by the frequent minimal generator set.

2. Following our claim that stressing on fast enumeration of frequent closed
itemsets will not be of any interest nor presents any added-value knowledge
for end-users, since not all required information is extracted.
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The remainder of the paper is organized as follows. Section 2 sketches the generic
association rule basis extraction problem. Section 3 is dedicated to the presen-
tation of Prince algorithm. Experimental results showing the utility of the
proposed approach are reported in section 4. The conclusion and future work
are presented in section 5.

2 Generic association rule basis extraction

Since the apparition of the approach based on the extraction of frequent closed
itemsets [2], several generic association rule bases were introduced among which
those of Bastide et al. [11] and which are defined as follows:

1. The generic basis for exact association rules is defined as follows:

Definition 1. Let FCIK be the set of frequent closed itemsets extracted from
the extraction context K. For each entry f in FCIK, let MGf be the set of
its minimal generators. The generic basis for exact association rules GB is
given by: GB = {R: g ⇒ (f - g) | f ∈ FCIK and g ∈ MGf and g �= f (1)}.

2. The transitive reduction of the informative basis [11], which is a basis for all
approximate association rules, is defined as follows(2):

Definition 2. Let FMGK be the set of frequent minimal generators ex-
tracted from the extraction context K. The transitive reduction RI is given
by: RI = {R | R: g ⇒ (f - g) | f ∈ FCIK and g ∈ FMGK and g′′ ≺ f (3)

and Conf(R) ≥ minconf }.
In the remainder of the paper, we will refer to the generic association rules
formed by the couple (GB, RI). This couple is informative, sound and lossless
[11, 12] and the association rules forming it are referred as informative asso-
ciation rules. Thus, given an Iceberg Galois lattice – in which each frequent
closed itemset is decorated by its list of minimal generators – the derivation of
these association rules can be performed straightforwardly. Indeed, approximate
generic association rules represent ”inter-node” implications, assorted with the
confidence measure, between two adjacent comparable equivalence classes, i.e.,
from a frequent closed itemset to another frequent closed itemset immediately
covering it. For example, referring to the Iceberg Galois lattice depicted by Fig-
ure 1 (Right), the approximate generic association rule C0.75⇒ADEF is generated
from both equivalence classes topped respectively by the frequent closed itemsets
”CE” and ”ACDEF”. Inversely, exact generic association rules are ”intra-node”
implications, with a confidence equal to 1, extracted from each node in the
partially ordered structure. For example, from the closed itemset ”ACDEFG”,
three exact generic association rules are obtained: AG⇒CDEF, DG⇒ACEF and
FG⇒ACDE.
1 The condition g �= f ensures discarding non-informative association rules of the form

g ⇒ ∅.
2 The closure operator is noted ′′.
3 The notation ≺ indicates that f covers g′′ in the Iceberg Galois lattice.
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A B C D E F G

1 × × × × × ×
2 × × × × × ×
3 × × ×
4 × × × ×
5 × × × × × ×
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{∅} 

Fig. 1. Left: Extraction context K. Center: The associated minimal generator lattice
for minsup=2. Right: The associated Iceberg Galois lattice for minsup=2.

3 Prince algorithm

In order to palliate the frequent closed itemset based algorithm insufficiencies,
i.e., the cost of the closure computation as well as neglecting the partial or-
der construction, we will introduce a new algorithm called Prince. Prince

highly reduces the cost of closure computation and generates the partially or-
dered structure, which makes it able to extract straightforwardly generic asso-
ciation rule bases without coupling it with another algorithm. Prince takes as
input an extraction context K where the items are sorted by lexicographic order,
the minimum threshold of support minsup and the minimum threshold of confi-
dence minconf. It outputs the list of frequent closed itemsets and their associated
minimal generators as well as the informative association rules formed by the
couple (GB, RI). Thus, Prince operates in three successive steps: (i) Minimal
generator determination (ii) Partial order construction (iii) Generic association
rule basis extraction.

3.1 Minimal generator determination

Following the ”Test-and-generate” technique, Prince traverses the search space
by level to determine the set of frequent minimal generators FMGK sorted by
decreasing support values. FMGK is then considered as divided into several
subsets. Each subset represents a given support. Thus, each time that a fre-
quent minimal generator is determined, it is added to the subset representing its
support. Prince also keeps track of the negative border of minimal generators
GBd− (4) [13]. In the second step, the set of frequent minimal generators will
serve as a backbone to construct the minimal generator lattice. As shown by the
following property, the union of FMGK and GBd− will be used, in the second
step, as a concise lossless representation of frequent itemsets:

Property 1. [13] Let X be an itemset. If ∃ Z ∈ GBd− and Z ⊆ X then X is
infrequent. Otherwise, X is frequent and Supp(X) = min {Supp(g) | g ∈ FMGK
and g ⊆ X}.
4 An itemset belong to GBd− if it is an infrequent minimal generator and all its subsets

are frequent minimal generators.
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Prince uses, in this step, the same pruning strategies introduced in Titanic

namely minsup, the ideal order of the frequent minimal generator set and the
estimated support. A trie is used to store the minimal generator set in order to
speed-up the extraction of information that will be later of use. The path from
the root to each node represents a minimal generator.

3.2 Partial order construction

In this step, the frequent minimal generator set FMGK will form a minimal gen-
erator lattice, and this without any access to the extraction context. The main
idea is how to construct the partial order without computing itemset closures,
i.e., how guessing the subsumption relation by only comparing minimal genera-
tors? To achieve this goal, the list of immediate successors(5) of each equivalence
class will be updated in an iterative way. The processing of the frequent minimal
generator set is done according to the order imposed in the first step (i.e., by de-
creasing support values). Each frequent minimal generator g of size k (k ≥ 1) is
introduced into the minimal generator lattice by comparing it to the immediate
successors of its (k-1)-subsets(6). This is based on the isotony property of the
closure operator [14]. Indeed, let g1 , a (k-1)-itemset, be one of the subsets of g,
g1 ⊂ g ⇒ g′′

1
⊂ g′′. Thus, the equivalence class to which belongs g is a successor

(not necessarily an immediate one) of the equivalence class to which belongs g1 .
While comparing g to the immediate successor list of g1 , noted L, two cases

are to be distinguished. If L is empty then g is added to L. Otherwise, g is com-
pared to the elements already belonging to L (cf. Proposition 1). The imposed
order in the first step allows to distinguish only two cases sketched by Proposi-
tion 1 by replacing the frequent minimal generators X and Y by respectively g
and one of the elements of L.

Proposition 1. [15] Let X, Y ∈ FMGK, CX and CY their respective equiva-
lence classes:
a. If Supp(X) = Supp(Y ) = Supp(X ∪ Y ) then X and Y belong to the same
equivalence class.
b. If Supp(X) < Supp(Y ) and Supp(X) = Supp(X ∪ Y ) then CX (resp. CY ) is
a successor (resp. predecessor) of CY (resp. CX).

The computation of the support of (X ∪ Y ) is performed in a direct manner
if (X ∪ Y ) belongs to FMGK ∪ GBd−. CX and CY are then incomparable.
Otherwise, Property 1 is applied. The support computation stops then as soon
as we find a minimal generator that is included in (X ∪ Y ) and has a support
strictly lower than that of X and that of Y . CX and CY are then incomparable.

During these comparisons and to avoid redundant closure computations,
Prince introduces two complementary functions. These functions make it pos-
sible to maintain the concept of equivalence class throughout processing. To this
5 By the term ”immediate successor”, we indicate a frequent minimal generator, unless

otherwise specified.
6 In the first step and for each k-candidate, links towards its (k-1)-subsets are stored

during the check of the ideal order property.
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end, each equivalence class C will be characterized by a representative item-
set, which is the first frequent minimal generator introduced into the minimal
generator lattice. Both functions are described below:

1. Manage-Equiv-Class: This function is used if a frequent minimal gen-
erator, say g, is compared to the representative itemset of its equivalence class,
say R. The Manage-Equiv-Class function replaces all occurrences of g by R
in the immediate successor lists in which g was added. Then, comparisons to
carry out with g will be made with R. Thus, for each equivalence class, only its
representative itemset appears in the lists of immediate successors.

2. Representative: This function makes it possible to find, for each frequent
minimal generator g, the representative R of its equivalence class in order to
complete the immediate successor list of Cg. This allows to manage only one
immediate successor list for all frequent minimal generators belonging to the
same equivalence class.

The pseudo-code of the second step is given by the Gen-Order procedure
(Algorithm 1). Each entry, say g, in FMGK is composed by the following fields:
(i) support: the support of g (ii) direct-subsets: the list of (k-1)-subsets of g
(iii) immediate-succs: the list of immediate successors of g. At the end of the
execution of the Gen-Order procedure, g.immediate-succs is empty if g is not
the representative itemset of its equivalence class or if g belongs to a maximal
equivalence class, i.e., not subsumed by any equivalence class. Otherwise, this
list will contain only representative frequent minimal generators.

Algorithm 1 Gen-Order

Require: - FMGK.
Ensure: - The elements of FMGK partially ordered in the form of a minimal generator

lattice.
1: for all (g ∈ FMGK) do
2: for all (g1 ∈ g.direct-subsets) do
3: R = Representative(g1);
4: for all (g2 ∈ R.immediate-succs) do
5: if (g.support = g2 .support = Supp(g ∪ g2)) then
6: Manage-Equiv-Class(g,g2); /*g, g2 ∈ Cg and g2 is the representative of

Cg*/
7: else if (g.support < g2 .support and g.support = Supp(g ∪ g2)) then
8: g is compared with g2 .immediate-succs;
9: /*For the remainder of the element of R.immediate-succs, g is compared

only with each g3 | g3 .support > g.support;*/
10: end if
11: end for
12: if (∀ g2 ∈ R.immediate-succs, Cg and Cg2

are incomparable) then
13: R.immediate-succs = R.immediate-succs ∪ {g};
14: end if
15: end for
16: end for
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3.3 Generic association rule basis extraction

In this step, Prince extracts the valid informative association rules. For this
purpose and using Proposition 2, Prince finds the frequent closed itemset cor-
responding to each equivalence class.

Proposition 2. [15] Let f and f1 be two closed itemsets such that f covers f1

in the Galois lattice LCK . Let MGf be the set of minimal generators of f . The
closed itemset f can be composed as follows: f = ∪{g|g ∈ MGf} ∪ f1 .

The traversal of the minimal generator lattice is carried out in an ascend-
ing manner from the equivalence class whose frequent minimal generator is the
empty set(7) (denoted C∅) to the non subsumed equivalence class(es). If the clo-
sure of the empty set is not null, the exact generic association rule between the
empty set and its closure is then extracted. Having the partial ordered structure
built, Prince extracts the valid approximate generic association rules between
the empty set and the frequent closed itemsets of the upper cover of C∅. These
closures are found, by applying Proposition 2, using the minimal generators
of each equivalence class and the closure of the empty set. Equivalence classes
forming the upper cover of C∅ are stored which makes it possible to apply the
same process to them. By the same manner, Prince treats higher levels of the
minimal generator lattice until reaching the maximal equivalence class(es).

The pseudo-code of this step is given by the procedure Gen-GRB (Algorithm
2). We use the same notations of the procedure Gen-Order to which we add the
field FCI to each element of FMGK. Thus, for each frequent minimal generator g,
this field allows to store the frequent closed itemset corresponding to Cg if g is its
representative. In the Gen-GRB procedure, L1 indicates the list of equivalence
classes from which are extracted the valid informative association rules. By L2 ,
we note the list of equivalence classes which cover those forming L1

(8).

Example 1. Let us consider the extraction context K given by Figure 1 (Left)
for minsup=2 and minconf =0.5. The first step allows the determination of the
empty set closure, the sorted set FMGK and the negative border of minimal gen-
erators GBd−. Thus, ∅′′=E, FMGK = {(∅,5), (C,4), (D,4), (A,3), (B,3), (F,3),
(G,3), (CD,3), (AG,2), (BC,2), (BD,2), (DG,2), (FG,2)} and GBd−={(AB,1),
(BF,1), (BG,1), (BCD,1)}. During the second step, Prince processes the ele-
ment of FMGK by comparing each frequent minimal generator g, of size k (k ≥
1), with the immediate successor lists of its (k-1)-subsets. Since the list of imme-
diate successors of the empty set is empty, C is added to ∅.immediate-succs.
Then, D is compared to C. Since CD is a minimal generator, CC and CD are then
incomparable and D is added to ∅.immediate-succs. A is then compared to this

7 This class is called the Bottom element of the lattice [16]. The corresponding closure
is calculated in the first step by collecting items appearing in all transactions of the
extraction context.

8 A test is carried out to check that an equivalence class does not belong to L2 . This
test consists in checking if the corresponding frequent closed itemset were already
calculated (Line 11 in Algorithm 2).
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Algorithm 2 Gen-GRB

Require: The minimal generator lattice and the minimum threshold of confidence
minconf.

Ensure: The corresponding frequent closed itemset of each equivalence class, the
generic basis for exact association rules GB and the transitive reduction of the
informative basis RI.

1: GB=∅;
2: RI=∅;
3: L1={∅};
4: L2=∅;
5: while (L1 �= ∅) do
6: for all (g ∈ L1) do
7: if (g.FCI �= g) then
8: GB = GB ∪ {(t ⇒ (g.FCI - t), g.support) | t ∈ FMGK and t ∈ Cg};
9: end if

10: for all g1 ∈ g.immediate-succs do
11: if (g1 .FCI=∅) then
12: g1 .FCI=∪ {t ∈ FMGK | t ∈ Cg1

} ∪ g.FCI;
13: L2=L2 ∪ {g1};
14: end if
15: if ((g1 .support/g.support) ≥ minconf ) then
16: RI = RI ∪ {(t ⇒ (g1 .FCI - t), g1 .support, g1 .support/g.support) | t ∈

FMGK and t ∈ Cg};
17: end if
18: end for
19: end for
20: L1= L2 ;
21: L2= ∅;
22: end while

list. By comparing A to C, A.support < C.support and A.support = Supp(AC)
and CA is then a successor of CC . A is added to C.immediate-succs without any
comparison since this list is still empty. A is also added to D.immediate-succs
since A.support < D.support and A.support = Supp(AD). At this moment
of processing, we have ∅.immediate-succs = {C,D} and B is added to this list
since CB is incomparable with CC (BC is a minimal generator) and CD (BD
is also a minimal generator). F is then introduced into the minimal genera-
tor lattice by comparing it with the immediate successor list of its unique 0-
subset, i.e., the empty set. By comparing F to C, F.support < C.support and
F.support = Supp(CF) and then CF is a successor of CC . F is then compared
to C.immediate-succs which contains A. F.support = A.support = Supp(AF)
and thus F ∈ CA whose A is the representative one. The Manage-Equiv-Class

function is then applied by replacing occurrences of F, in the immediate successor
lists, by A (in this case, there is no occurrence) and by continuing comparisons
with A instead of F (in this case, there are no more comparisons to do with
F). G is then compared to ∅.immediate-succs equal to {C,B,D}. CG is a suc-
cessor of CC since G.support < C.support and G.support = Supp(CG). After
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comparing G with C.immediate-succs which only contains A, G is added to
C.immediate-succs since CG is incomparable with CA (AG is a minimal genera-
tor). By comparing G to D (resp. B), CG is incomparable with CD (resp. CB) since
DG (resp. BG) is a minimal generator. Then, CD is compared to the immediate
successor lists of its 1-subsets, i.e., C and D. CC has CA and CG as immediate
successors. By comparing CD and A, CD is affected to CA since CD.support
= A.support = Supp(ACD). The Manage-Equiv-Class function is then ap-
plied. In particular, comparisons to carry out with CD will be made with A. A is
then compared to the immediate successor list of the second 1-subset of CD, i.e.,
D. However, D.immediate-succs contains only A and the comparison process
stops. It is the same for the remainder of FMGK. Having the minimal gener-
ator lattice built (cf. Figure 1 (Center)), an ascending sweeping is carried out
from C∅. As ∅′′=E, the exact generic association rule ∅ ⇒ E is then extracted.
∅.immediate-succs={C,D,B}. The frequent closed itemset associated to CC is
then found and is equal to CE. The approximate generic association rule ∅ ⇒
CE, of a support equal to 4 and a confidence equal to 0.8, will be extracted.
It is the same for CD and CB . Using the same process and from CC , CD and
CB , the traversal of the minimal generator lattice is performed in an ascending
way until extracting all valid informative association rules. The resulting generic
association rule bases are sketched by Figure 2.

Exact generic association rules

R1 : ∅ ⇒ E R8 : G ⇒ CE

R2 : C ⇒ E R9 : BC ⇒ E

R3 : D ⇒ E R10 : BD ⇒ E

R4 : B ⇒ E R11 : AG ⇒ CDEF

R5 : A ⇒ CDEF R12 : DG ⇒ ACEF

R6 : F ⇒ ACDE R13 : FG ⇒ ACDE

R7 : CD ⇒ AEF

Approximate generic association rules

R14 : ∅0.8⇒CE R21 : D
0.5⇒BE

R15 : ∅0.8⇒DE R22 : B
0.66⇒ CE

R16 : ∅0.6⇒BE R23 : B
0.66⇒DE

R17 : C
0.75⇒ADEF R24 : A

0.66⇒ CDEFG

R18 : C
0.75⇒GE R25 : F

0.66⇒ACDEG

R19 : C
0.5⇒BE R26 : CD

0.66⇒AEFG

R20 : D
0.75⇒ACEF R27 : G

0.66⇒ACDEF

Fig. 2. Left: GB basis. Right: RI basis.

3.4 Correctness and Computational cost

In this section, we prove the correctness of Prince algorithm and we evaluate
its computational cost in the worst case.

Theorem 1. (correctness) The Prince algorithm extracts all frequent mini-
mal generators and derives all frequent closed itemsets and all valid informative
association rules.

Proof. During the first step, a minimal generator candidate c is pruned only
if its estimate support is equal to its actual support or if it does not verify
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the ideal order of minimal generators. Otherwise, c is a minimal generator and
by comparing its actual support to minsup, Prince algorithm adds it to the
frequent minimal generator set FMGK or to the negative border of minimal
generators GBd−. Thus, at the end of the first step of Prince, all frequent
minimal generators are extracted in addition to the negative border of minimal
generators.

During the second step, Prince takes care to introduce all frequent mini-
mal generators into the minimal generator lattice. Indeed, a frequent minimal
generator g is compared to the immediate successor list of all its (k-1)-subsets.
The Representative function allows to find the representative itemset of the
equivalence class of a (k-1)-subset of g. Once the representative found, the used
Proposition 1 treats both possible cases. The Manage-Equiv-Class function
is used only if g is compared to the representative of Cg. At the end of this step,
the minimal generator lattice is completely built.

During the third step, all equivalence classes are taken in consideration when
deriving frequent closed itemsets and valid informative association rules. In-
deed, each equivalence class C, except C∅, has at least one immediate predecessor.
Hence, the representative of C belongs at least to one immediate successor list of
another equivalence class, say C1 . When treating C1 , the frequent closed itemset
of C is derived and C is added to the equivalence class list from which valid
informative association rules will be derived in the next iteration. Thus, at the
end of this step, all frequent closed itemsets and all valid informative association
rules are derived.

Proposition 3. (computational cost) In the worst case, the time complexity
of Prince is O((n3 + m) × 2n), where n (resp. m) is the number of distinct
items (resp. transactions) in the extraction context.

Proof. The worst case is obtained when each extracted frequent itemset is a
frequent closed minimal generator. Thus, the frequent itemset lattice strictly
overlaps both the Iceberg Galois lattice and the minimal generator lattice. The
number of frequent closed minimal generators is then equal to 2n. We consider
that each transaction contains the n distinct items.

During the first step, Prince performs two main tasks. The first task consists
in candidate support computations and is of order O(m× 2n). The second task
consists in trying to prune non-minimal generator candidates and it is done in
the order of O(n2×2n). The cost of the first step is then of order O((n2+m)×2n).

During the second step, and for each frequent minimal generator g of size k,
Prince performs, in the worst case, O(k × (n− k)) comparisons ((k × (n− k))
will be over-estimated by n2). Indeed, the number of its (k-1)-subset is equal
to k. Each (k-1)-subset g1 has, in the worst case, (n − k) immediate successors
when comparing g with g1 .immediate-succs. Each comparison is performed
by making the union of g with an element of g1 .immediate-succs. The union
cost is O(n). The search of the support of the itemset, result of this union,
costs O(n) since it is a minimal generator. The cost of the second step is then
O((n + n)× n2 × 2n), i.e., O(n3 × 2n).
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During the third step, and for each equivalence class C, Prince performs two
main tasks. The first task consists in deriving the corresponding frequent closed
itemset f . This is carried out by performing the union of the set of frequent min-
imal generators of f , containing only one element, and a frequent closed itemset
f1, which is an immediate predecessor of f . The first task then costs O(n). The
second task consists in deriving valid informative association rules. As each fre-
quent minimal generator is also closed, there is no exact generic association rules.
However, by fixing minconf to 0, there are k approximate generic association
rules, for an equivalence class whose frequent closed minimal generator is of size
k. To derive each approximate generic association rule, Prince performs the dif-
ference between the frequent closed itemset f and the corresponding premise and
this costs O(n). The second task then costs O(k × n) (k will be over-estimated
by n). Hence, the cost of the third step is O((n + n2)× 2n), i.e., O(n2 × 2n).

Thus, in the worst case, the time complexity of Prince is the sum of costs
of its three steps and is of order O((n3 + m)× 2n).

It is important to mention that although Prince constructs the partial order,
its running time remains of the same order of magnitude as that of algorithms
dedicated to the extraction of frequent closed itemsets [17].

4 Experimental results

In this section, we shed light on Prince performances vs those of Close, A-

Close and Titanic algorithms. Prince was implemented in the C language
using gcc version 3.3.1. All experiments were carried out on a PC with a 2.4 GHz
Pentium IV and 512 MB of main memory (with 2 GB of Swap) and running
S.u.s.e Linux 9.0.

In all our experiments, all times reported are real times, including system
and user times, into benchmark datasets (dense and sparse(9)) and ”worst case”
datasets. Figure 3 (Left) summarizes the characteristics of benchmark datasets.
The definition of a ”worst case” context is given as follows:

Definition 3. A ”worst case” context is a context K = (O,A,R) where O
represents a finite set of objects (or transactions) of size (n+1), A is a finite set
of attributes (or items) of size n and R is a binary (incidence) relation (i.e.,
R ⊆ O × A). Each object, among the first n ones, is verified by (n-1) distinct
attributes. The last object is verified by all attributes. Each attribute is checked
by n distinct objects.

Thus, in a ”worst case” dataset, each closed itemset is equal to its (minimal)
generator. Hence, from a ”worst case” dataset of dimension equal to (n+1)×n, 2n

frequent closed itemsets can be extracted when minsup is fixed to 1 transaction.
Figure 3 (Right) presents an example of a ”worst case” dataset for n=4.

9 All these datasets are downloadable on the following address:
http://fimi.cs.helsinki.fi/data.
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Dataset Type # items Avg. tr. size # transactions

Mushroom dense 119 23 8124

T40I10D100K sparse 1000 40 100000

i1 i2 i3 i4
1 × × ×
2 × × ×
3 × × ×
4 × × ×
5 × × × ×

Fig. 3. (Left) Benchmark dataset characteristics. (Right) A ”worst case” dataset for
n=4.

Figure 4 shows execution times of Prince
(10) algorithm compared to those

of Close, A-Close and Titanic algorithms.
- Mushroom: In the case of Mushroom dataset, Prince performances are

better than those of Close, A-Close and Titanic for all minsup values, given
the important role played by equivalence class management functions. Indeed,
for a value of minsup equal to 0.1%, the number of frequent minimal generators
(equal to 360,166) is almost to 2.2 times the number of frequent closed itemsets
(equal to 164,117). Titanic performances decrease in a significant way due to
the extension attempts carried out for each frequent minimal generator. Indeed,
for minsup = 0.1%, 116 items, among 119, are frequent and the maximum size
of a frequent minimal generator is only equal to 10 items.

- T40I10D100K: Prince performances for this dataset are largely better
than those of Close, A-Close and Titanic for all minsup values. Thus, Close

and A-Close are handicapped by a large average transaction size (40 items). In
the same way, Titanic performances regress considerably for the same reasons
previously evoked. The comparison cost for a frequent minimal generator, in
the case of Prince, being definitely more reduced than the intersection opera-
tions performed in Close and A-Close and the extension attempts elaborated
in Titanic, explains the big gap between Prince performances and those of
remaining algorithms.

- ”Worst case” datasets: For these experiments, minsup was fixed to 1
transaction. We tested 26 datasets showing the variation of n from 1 to 26. The
execution times of the four algorithms began to be distinguishable only starting
from the value of n equal to 15. The Prince algorithm performances remain
better than those of Close, A-Close and Titanic algorithms. Close and
Titanic executions stop for n=24 for lack of memory space. It is the same for
A-Close for n=25 and Prince for n=26. It is important to mention that the
partial order construction requires to store much more information than needed
when aiming only to extract frequent closed itemsets. Thus, the use of only one
trie to store information about all minimal generators instead of several tries,
as in Close, A-Close and Titanic algorithms(11), is an attempt aiming to
reduce the memory need of Prince algorithm.

10 The minconf value is set to 0.
11 Indeed, in the case of these three algorithms, a trie is used to save information about

each set of (frequent) minimal generators of size k.
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Fig. 4. Prince performances vs those of Close, A-Close and Titanic.

5 Conclusion

In this paper, we proposed a new algorithm, called Prince, for an efficient ex-
traction of frequent closed itemsets and their respective minimal generators as
well as the generic association rule bases. To this end, Prince builds the partial
order contrary to the existing algorithms. A main characteristic of Prince algo-
rithm is that it relies only on minimal generators to build the underlying partial
order. Carried out experiments outlined that Prince largely outperforms ex-
isting ”Test-and-generate” algorithms of the literature for both benchmark and
”worst case” contexts. In the near future, we plan to tackle two issues. Firstly,
we plan to study the possibility of integrating the work of Calders et al. [18] in
the first step of Prince. Indeed, this work can be applied to any set verifying
the property of ideal order such as the set of frequent minimal generators in our
case. Secondly, we propose to add constraints [19], so that the number of generic
association rules will be reduced while keeping the most interesting for the user.
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ciatives non redondantes : application aux corpus textuels. Revue d’Intelligence
Artificielle (special issue of Intl. Conference of Journées francophones d’Extraction
et Gestion des Connaissances (EGC’2003)), Lyon, France 17 (2003) 131–143

11. Bastide, Y., Pasquier, N., Taouil, R., Lakhal, L., Stumme, G.: Mining minimal
non-redundant association rules using frequent closed itemsets. In: Proceedings of
the International Conference DOOD’2000, LNAI, volume 1861, Springer-Verlag,
London, UK. (2000) 972–986

12. Kryszkiewicz, M.: Concise representations of association rules. In Hand, D.J.,
Adams, N., Bolton, R., eds.: Proceedings of Exploratory Workshop on Pattern De-
tection and Discovery in Data Mining (ESF), 2002, LNAI, volume 2447, Springer-
Verlag, London, UK. (2002) 92–109

13. Kryszkiewicz, M.: Concise representation of frequent patterns based on disjunction-
free generators. In: Proceedings of the 2001 IEEE International Conference on Data
Mining (ICDM), San Jose, California, USA. (2001) 305–312

14. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press (2002)

15. Hamrouni, T., BenYahia, S., Slimani, Y.: Prince : Extraction optimisée des bases
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