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Abstract. Large data processing is an essential problem in many data mining 
application. Our work explores the algorithms calculating a Generalized Galois 
Lattice (G2L) over a large collection of data.  A G2L contains all the so-called 
closed sets of a collection of tuples (individuals characterized by a set of 
properties), G2Ls generalize to multivalued data the GL already popular in the 
concept analysis using the binary values. They appear an attractive tool for data 
mining. The G2L or GL calculus is CPU intensive. In practice, the current 
techniques limit the approach only to small sets of data only, e.g., a hundred 
tuples with a few dozens of properties each. Our research consists in building 
scalable distributed G2L calculus algorithms. We think this research direction 
promising and probably the only way towards our goal.  We first have 
implemented and analyzed some centralized algorithms. One termed ELL 
seems to be the most efficient. We have defined therefore a scalable distributed 
version of ELL termed SD-ELL. It recursively partitions the set of tuples for the 
G2L computation over sufficiently many sites to let ELL execute fast enough at 
each site. The closed sets produced by each site enter a common scalable 
distributed data structure (SDDS). We then plan to test the resulting behavior 
and analyze the performance of the algorithm and of some promising variants.   

1 Introduction 

A Galois Lattice (GL) allows extracting concepts and rules from other concepts. 
Several algorithms determine the GL over a given context C, provided the size of C is 
small, [4] [7] [8]. These algorithms apply to binary data. Their generalization, G2L 
was proposed in [5]. An algorithm for G2L calculus termed ELL, and some alternative 
ones, were subsequently defined in [6].  These algorithms, as any previous for a GL 
computation, were designed for the single-site computations. It was known that they 
could run in reasonable time only for small sets, e.g., at most of a few hundreds of 
tuples.  
Further analysis has shown that the most promising way towards larger sets of data, 
the only of interest to the data mining, was to find some scalable distributed variant of 
G2L calculus. This goal becomes the subject of our work.   
We have defined therefore a scalable distributed version of ELL termed SD-ELL. It 
recursively partitions the set of tuples for the G2L computation over sufficiently many 
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sites to let ELL execute fast enough at each site. The closed sets produced by each site 
enter a common scalable distributed data structure (SDDS). We then plan to test the 
resulting behavior and analyze the performance of the algorithm. 
The rest of the paper is organized as follows. In Section 2, we recall the definition of a 
G2L. Section 2 recalls the main idea in ELL. Section 3 overviews the principles of our 
scalable distributed extension, exploring the recursive G2L calculation in [6].  Section 
4 concludes this paper by listing the future research direction. 

2 General Galois Lattices 

Concept lattice [9] and Closed itemset lattice are based on order theory and lattice 
theory [3]. They are used to represent the order relation on concepts or closed 
itemsets. Concept lattice describes the character of the set pair: intent and extent of 
concept. And the general of Galois Lattice formalism was addressed by [16], [17]. 
In this section, we define some notions generalizing usual ones: Data context, Closure 
operator, Closed itemset, etc. 
Definition 1. A lattice is a mathematical structure F = < F, , , , 0F, 1F >, where F 
is a partially ordered set by the relation , with the largest element 1F, a smallest 
element 0F, and , 

 

are internal composition laws of sup (or supremum), and inf (or 
infimum).  
In many situations F is the Cartesian product of several lattices Fj = <Fj, j, j, j, 
0Fj,1Fj>, for j J = {1,..., n}. We write this F=F1 x...x F x...x Fn.  
The relation 

 

on F is defined by z = (z1, ...,zj, ...,zn) 

 

t = (t1, ...,tj, ...,tn)  iff zj j tj  for 
each j of  J . We note z 

 

t = (..., zj j tj,....),  z 

 

t = (..., zj j tj, .... ), OF  = (....,OFj, ... 
), 1F = (..., 1Fj, ). (For standard Galois lattices, we have for each j:  Fj = {0, 1}, 0 < 1, 
0 j 0 = 0, 0 j 1 = 1 j 0 = 1 j =1, 0 j 0 = 0 j 1 = 1 j 0 = 0, 1 j 1 = 1. So OF = (...., 
0, ...), and 1F = (..., 1,...)). 
Definition 2. General contexts and descriptions: 
Let m be a finite positive integer, I = {1,..., m} = [1, ,m], and  F any lattice. Let 
d:I F be any mapping from I to F. A context C is defined as an array with rows d (i), 
i = 1, ..., m.  
Formalism:  The context provides, for each individual or object i of I, its description 
d(i)=(d1(i), d2(i), , dj(i),..., dn(i)) 

 

F = F1 x  x Fn,  according to the attributes or 
properties  j   J.  (In the standard case, dj(i)=1 means that i has property j, and dj(i) = 
0 means that i has not the property j). So, in the general case, C is an m x n array of 
elements dj (i) of F, and for each individual i and each property j, dj (i) is the value of 
this property for i. 
Definition 3. Galois connection:  
Let C = <I, F, d> be a context. We define E = P(I), |E|=2l and f: E  F as follows: for 
each subset X of I, f(X) = 

 

d(i):  i  X} if X

 

, and f( ) = 1F.  
So, f(X) is the infimum of the descriptions d(i) of elements i of X. And in the standard 
case f(X) is an element z = (z1,..., zj, ...) of F, and  zj = j {dj(i) : i  

 

X} = 1, iff   
dj(i)=1, for each  i of  X. This means that zj = 1 iff j is a property which belongs to all 
i in X. For this reason, we call f (X) the intent of X. 
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Remark: 
For each i of I, we have f({i}) = d(i), and f is decreasing (if X 

 
X 

 
I then f(X )

f(X)). 
We define g: F  E by g(z) = {i  I: z  d(i)}, for each z of F. 
We say that g(z) is the extent of z. (In standard case, g(z) is the set of all individuals 
who have all properties of z, zj = 1). 
We can see that g is also a decreasing mapping. 
The ordered pair (f, g) is called a Galois connection. From it we derive two other 
mappings: 
h : P(I)  P(I),  by  h = g  f, and   k = F  F  by   k = f  g. 
So, for each subset X of I, we have   h(X) = g(f(X)) = {i 

 

I:  f(X) 

 

d(i)}, and for 
each z of F, we have   k(z) = f(g(z)) = {d(i):  i  g (z)}. 
We can see that h and k are closure operators. This means that each of them is an 
increasing, extensive, and idempotent operator. More explicitly, for each X, X of E, 
and z, z of F: 

 

X 

 

X implies that h(X) 

 

h(X ), z 

 

z implies that   k(z) 

 

k(z ); 

 

X  h(X), z  k(z); 

 

h(h( X)) = h(X), k(k( z)) = k(z) . 
Any subset X of I such that X = h(X) is called a I-closed set, and each z of F such that 
z = k(z) is called F-closed element. 
Let us define   H = {X  I: h(X) = X} the set of all closed subsets of I, and K = {z F: 
z = k(z)}, the set of all closed elements of F. 
One can proof that there is a bijective mapping between H and K. The ordered pairs 
(X, z) 

 

H x K such that f(X) = z, and therefore such that g(z) = X, are called the 
concepts associated with the context C. 
The set of all such concepts constitutes the Galois lattice GL(C) associated with this 
context C. (the order relation on GL(C) is defined by (X, z) 

  

(X, z ) iff X 

 

X and 
z  z.) 

3 ELL algorithm 

This algorithm was proposed in [6]. We have subsequently improved it and compared 
to some other algorithms [2]. This comparison has shown better performance of ELL. 
This motivated our choice for this algorithm as a single-set G2L computation.    
    Main idea:  
For two disjoint subsets X0 and K of the set of objects I, let ELL (X0, K) denote a 
procedure which lists all the closed sets of I obtained by extending X0 with some 
elements of K. 
In other words, ELL (X0, K) lists all the closed sets, which strictly contain X0 and are 
contained in X0 U K. Obviously, ELL (Ø, I) lists all the non-empty closed sets of I. 
ELL (X, K) proceeds by dichotomy as follows:    
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        If  (K  Ø) 

              Choose an element i0  K 
              Find the closed sets which contain i0 

             Find the closed sets which do not contain i0 

       Endif

  

The key point of the proposed algorithm is that the search time of such closed sets is 
considerably reduced by using the following proposition.  
Proposition:

 

Let X0 and K 

 

Ø be two disjoint subsets of I. Let i0  K. 
We have: h(X0 U {i0}) = X0 U A where A = {i  I\X0: f(X0)  f(i0)  f(i)} 
If a closed set contains X0 and i0, then it also contains A. Hence, if A  K then X0UA 
is the smallest closed set containing X0 and i0 and contained in X0 U K. 
If a closed set contains X0 and does not contain i0, then it also does not contain any 
element of the set: R = {i  K: f(X0)  f(i)  f(i0)}. 
A (vs. R) is used for Attraction (vs. Rejection). The proof of this proposition is in [6]. 
The following pseudo-code is a recursive version of the algorithm.  

Procedure ELL (X0, K) 
          GL = Ø // GL is a list of concepts 

       Var i0: element of I, z, z0: elements of F; X, A, R: subsets of I;  
        begin 

 

             z0 = f(X0); 
            if K  Ø then 
             begin

 

               Choose an element i0 of K; 
                z = z0  f(i0); A = {i  I\X0: z  f(i)}; 
                if

 

A  K then 
                begin

 

                  X = X0 U A; insert node (X, z) in GL; 
                 ELL (X, K\A); 
               end; 
              R = {i 

 

K: z0 

 

f(i)  f(i0)}; ELL (X0, K\R); 
            end

 

end 

 

The procedure ELL (Ø, I) starts with any i0 

 

I (I is non empty). Then it determines 
the set A. Observing that i0 

 

A, we have the strict inclusions Ø 

 

X and I\A 

 

I. 
Hence if A  K, ELL (X, I\A) will run with a strictly smaller second parameter. Since 
i0 

 

R, we see that the same holds for ELL (X, I\R). 
More generally ELL (X, K\A) and ELL (X0, I\R) run with a strictly smaller second 
parameter than that of ELL (X, K). Since I is finite, this parameter which is a subset 
of I, will reach the void set and the procedure will terminate. 
This algorithm lists all closed sets without duplicates. Let us show that each closed set 
F occurs exactly once. 
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Starting with GL = Ø, X0 = Ø and K = I, let i0 

 
I be fixed and consider two cases: 

i0 F and i0 F. If i0 F then  

 

Either F is the smallest closed set which contains i0. Then according to the 
previous proposition (a), F=X=X0 U A and F will be listed by ELL (X0, K), 

 

Or F is not the smallest closed set which contains i0. In this case X  F and F 
will be listed by ELL (X, K\A). 

If i0 

 

F, then according to the previous proposition (c), F will be listed by 
ELL(X0,K\R). Since each insert only concerns the unique smallest closed set 
containing X0 and i0, we see that F occurs exactly once. 
The only case not treated by the algorithm is whether the empty set is closed or not. 
The algorithm yields all the nodes (X, z) of the GL such that X  Ø. Since f(Ø) = 1F 

and h(Ø) ={i 

 

I: 1F  

 

f(i)} = {i 

 

I : f (i) = 1F}, Ø is closed iff there is no i 

 

I such 
that f(i) = 1F. 

4 Scalable Distributed G2L calculus 

We proposed a first solution in [1] which describes a way to parallelize the large 
contexts, by sharing a context C into sub-contexts depending on its rows or columns. 
Galois lattices associated with these sub-contexts are built, with the ELL, in different 
computers and then the global lattice is determined from these lattices. The algorithms 
used for the build of this global lattice are detailed in [1]. This solution was 
successfully tested.  The study has shown that the time complexity appeared excessive 
for larger sets we have wished.  
We have designed therefore a new solution to parallelize the work. It is based on a 
new algorithm, termed SD-ELL. The key idea is a recursive application of ELL. 

4.1 SD-ELL algorithm 

SD-ELL is composed of two algorithms. The first one computes the sets of objects Ki 

( i={1, , n}, n is the number of the computed sets Ki) and the second one is 
duplicated on different machines to compute all the closed sets corresponding to each 
Ki. 
The algorithm presented in the following table permits computing the sets Ki. It 
proceeds as follows: 

 

Choose an element i0  K 

 

Compute the sets A and R            

 

Verify if A  K then (X, Z) is a closed itemset and Ki = K\A  

 

Ki+1 = K\R 
The previous steps are reused with the parameters Xi and Ki. The process of 
decomposing Ki is stopped if |Ki| is smaller than a fixed threshold or the total number 
of machine, in which the closed itemsets corresponding to each Ki are computed, is 
used.  
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Procedure KCompute(X0,K0,z0) 

          LF = Ø; List of (K, X, z) 
          t = 1, q = 1, Xt = Ø, Kt = I, zt = 1F. 
         

 

while ((t  q) and ((q - t + 1) site number)) 
               begin 
                X0 = Xt; K0 = Kt; z0=zt 

               Choose an element i0 of K 
                z = z0 

 

f (i0); 
               A = {i  I\X0: z  f(i)}; 
               R = {i 

 

K: z0 

 

f(i)  f(i0)}; 
                if A  K0 then 
                  begin

 

                         X = X0 

 

A; z = z0 

 

f(i0); K = K0\A;  
                        LF = LF  (X, z) 
                       q=q+1; Xq = X; Kq = K; zq = z; 
                 end 
                q = q + 1; Xq = X0; Kq = K0\R; zq = z0;   t = t + 1; 

end       

  

The second algorithm constituting SD-ELL is the iterative version of ELL (I-ELL) 
duplicated on different machines. This version is detailed in [6] and [2]. 
Let us use the context C from the example described below to illustrate how these two 
algorithms work.            

For this example the threshold is 4 and the number of machine is 4. 
The dispatcher executes the first algorithm (KCompute). KCompute starts with the 
parameters X0=Ø and K= I ={1,2,3,4,5,6}. An element i0 is chosen such as i0=1 and 
then the sets A, K1, R, and K2 are computed.  

 

z = z0  f (i0) = {12,16,6,10,12,13,12,6}, A = {i  I \ X0: z  f (i)}={1}. Then A K: 

 

X1=X0UA={1} and C2({1};{12,16,6,10,12,13,12,6}) is a concept. 

 

K1 = K\A = {2,3,4,5,6}; |K1|  4, K1 must then be decomposed. 

 

R = {i 

 

K: z0 

 

f (i) 

 

f (i0)} = {1}

 

K2 = K\R = {2,3,4,5,6}; |K2| 

 

4, K2 must 
also be decomposed. 
The previous steps are reused with the parameters (X1 = {1}, K1) and (X0=Ø, K2). 

O\A a b c d e f g h 
1 12 16 6 10 12 13 12 6 
2 12 12 8 12 11 13 11 8 
3 10 13 16 14 11 8 12 10 
4 13 14 11 10 13 13 12 14 
5 17 10 10 14 13 10 14 12 
6 0 14 3 8 4 13 11 10 
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Decomposition of K1: Choosing i0  K1 such as i0 = 2. 

 
z =  z0 

 
f (i0) =  {12,12,6,10,11,13,11,6}, A = {i 

 
I \ X: z  f (i)} = {2,4}. Then 

A K1:  

 

X3 = X1 U A = {1,2,4} and C3 ({1,2,4};{12,12,6,10,11,13,11,6}) is a concept. 

 

K3  = K1 \ A = {3,5,6} (|K3|  4) 
 R = {i  K1: z0  f (i)  f (i0)} = {2}

 

K4 = K1\R = {6,3,4,5} (|K4|  4)  with 
X4={1}.  
Decomposition of K2: Choosing i0  K2 such as i0=2.  

 

z = z0  f (i0) = {12,12,8,12,11,13,11,8}, A={i  I \ X: z  f (i)} = {2}. Then A K2: 

 

X5 = X0 U A = {2} and C4({2};{12,12,8,12,11,13,11,8}) is a concept. 

 

K5  = K2\A = {3,4,5,6} (|K5|  4) 
 R = {i  K2: z0  f (i) 

 

f (i0)} = {2}

 

K6  = K2\R = {6,3,4,5} (|K6|  4) with  
X6=Ø. 
Then, the dispatcher sends to the applications the parameters (K3,X3) (K4,X4) (K5,X5) 
(K6,X6). In parallel, the applications, described in the subsection 4.2, execute the I-
ELL. 
The following sets Ei are the sets of concepts generated by I-ELL(Ki+2, Xi+2) in the 
applications Ai.  

The set of concepts E1 generated by 
I-ELL (K3,X3).  
C5({1,2,4,3};{10,12,6,10,11,8,11,6}) 
C6({1,2,4,3,5};{10,10,6,10,11,8,11,6}) 
C7 ({1,2,4,3,5,6};{0,10,3,8,4,8,11,6}) 

        

 

C8({1,2,4,3,6};{0,12,3,8,4,8,11,6})  
C9 ({1,2,4,5};{12,10,6,10,11,10,11,6}) 
C10 ({1,2,4,5,6};{0,10,3,8,4,10,11,6}) 

           C11 ({1,2,4,6} ;{0,12,3,8,4,13,11,6}) 

The set of concepts E2 generated by  
I-ELL(K4, X4). 
C12({1,6,4};{0,14,3,8,4,13,11,6}) 
C13({1,6,4,3};{0,13,3,8,4,8,11,6}) 
C14({1,3,4};{10,13,6,10,11,8,12,6}) 

           C15 ({1,3,4,5};{10,10,6,10,11,8,12,6})  
C16 ({1,5,4};{12,10,6,10,12,10,12,6}) 

           C17({1,4};{12,14,6,10,12,13,12,6})  

The set of concepts E3 generated by 
I-ELL(K5, X5).  
C18({2,3};{10,12,8,12,11,8,11,8}) 
C19({2,3,4};{10,12,8,10,11,8,11,8}) 
C20({2,3,4,5};{10,10,8,10,11,8,11,8}) 

       C21({2,4,3,5,6};{0,10,3,8,4,8,11,8})  
C22({2,4,3,6}; {0,12,3,8,4,8,11,8}) 
C23({2,3,5};{10,10,8,12,11,8,11,8}) 
C24({2,6,4};{0,12,3,8,4,13,11,8}) 
C25({2,6,4,5};{0,10,3,8,4,10,11,8}) 
C26({2,5};{12,10,8,12,11,10,11,8}) 
C27({2,5,4};{12,10,8,10,11,10,11,8}) 

        C28({2,4};{12,12,8,10,11,13,11,8}) 

The set of concepts E4 generated by  
I-ELL(K6, X6).  
C29({6,4);{0,14,3,8,4,13,11,10}) 
C30{6,4,3}; {0,13,3,8,4,8,11,10}) 
C31({6,4,3,5};{0,10,3,8,4,8,11,10}) 
C32({6,4,5};{0,10,3,8,4,10,11,10}) 
C33({3};{10,13,16,14,11,8,12,10}) 

           C34({3,4};{10,13,11,10,11,8,12,10}) 
C35({3,4,5};{10,10,10,10,11,8,12,10}) 
C36({3,5};{10,10,10,14,11,8,12,10}) 
C37({4};{13,14,11,10,13,13,12,14}) 

          C38({4,5};{13,10,10,10,13,10,12,12})  
          C39 ({5};{17,10,10,14,13,10,14,12}) 

 

The union of E1, E2, E3, E4, and the concepts calculated in the dispatcher is the set of 
all concepts corresponding to the context C.  
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4.2 The Architecture 

A major problem for the final efficiency of SD-ELL is the storage of the collection of 
the closed produced, presumably very large and of unknown size. Our tool is a 
Scalable Distributed Data Structure (SDDS).  An SDDS dynamically distributes over 
the (server) nodes whose number dynamically scales with the file growth. The 
application accesses the file through the client nodes making the data distribution 
transparent. For scalability, the data address calculations do not involve any 
centralized directory. The data are also basically stored in the distributed RAM, for 
faster access than to the traditional disk-based structures [10]. All these properties are 
prime importance for our goal. 
Our first architecture for SD-ELL, illustrated below, calculus is to add to the SDDS 
structure of clients and servers, a dispatcher and our applications at each available 
client site. The dispatcher executes the first algorithm of SD-ELL. It then sends to the 
applications the parameters Ki and Xi. In parallel, on each client the iterative version 
is executed with its parameters. We obtain the closed itemsets that after the calculus 
partition the Galois lattice. The closed sets are sent by the clients to the servers, where 
they are saved.    

Dispatcher

(KCompute)

K1, X1
Ki, Xi Kn, Xn

Application 

I-ELL(Ki,Xi) Ei

Application 

I-ELL(Kn,Xn) En

Application 

I-ELL(K1,X1) E1

Client
E1

Client
Ei

Client
En

Server NameServer

Buckets in RAM

Server

Buckets in RAM

Server

Buckets in RAM

Dispatcher

(KCompute)

K1, X1
Ki, Xi Kn, Xn

Application 

I-ELL(Ki,Xi) Ei

Application 

I-ELL(Kn,Xn) En

Application 

I-ELL(K1,X1) E1

Client
E1

Client
Ei

Client
En

Server NameServer NameServer

Buckets in RAM

Server

Buckets in RAM

Server

Buckets in RAM

Server

Buckets in RAMBuckets in RAM

Server

Buckets in RAM

Server

Buckets in RAM

   

The dispatcher is a centralized component. To offset the potential drawbacks of this 
approach, we have designed also a more distributive solution. The dispatcher 
calculates only the set K1 and K2 (K1=K0\A and K2 =K0\R) and sends them to two 
applications. These applications become dispatchers on there turn. They send to other 
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applications the parameters Ki and Xi if Ki is greater than a fixed threshold and there 
are available machines.  
We will first implement and measure the 1st solution. Later we will also design the 
end one and compare the related trade-offs.   
Our preliminary experimentations has shown that the processing time of the 
distributed SD-ELL algorithm out performs the processing time of the ELL algorithm. 
Besides, increasing the number of processors improves the processing time. 

5 Related work  

In [12], Ndoundam and al. proposed a methodology which permits implementing a 
parallel version of Bordat [14] through the parallelization of nested loops. 
Nevertheless, this parallelization is incompleted as proved by [13] how propose a 
better fine-grain parallelization. 
By another way, [15] present a parallel version of Ganter algorithm [7] for large 
context which relies on a partitioning of the search space. Let us note that all these 
previous works do not provide effective implementation of the parallel algorithms. 
Only [11] propose a validation of their theoretical model through an effective 
implementation. 

6 Conclusion 

 In this paper, we propose a new algorithm (SD-ELL) which is a distributed version of 
ELL, in order to deal with large databases. The architecture used for this distribution 
allows to share the computation of closed sets of large databases on the different 
applications and to store them in the server nodes. The storage of the great number of 
closed sets is successful since the number of server nodes dynamically scales with the 
growth of the closed itemsets file. Our ongoing research consists in continuing the 
evaluating of the prototype performance measurements. A possible future research 
direction consists in determining the links between the concepts and then comparing 
our results with the results of [11].  
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