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Abstract. In this paper we present how to model data and processes in
Colombo, a conceptual framework for Service Oriented Computing where
web services are characterized in terms of (7) message exchanges, (i) data
flow, and (744) effects on the real world. While all these aspects have been
separately considered in the literature, dealing with all of them together
is particularly challenging: Colombo, by proposing a semantically rich
service model for services, enables a single coherent framework, on top
of which automatic service interoperability and composition are feasible.

1 Introduction

Service Oriented Computing (SOC [1]) is the computing paradigm that utilizes
web services (also called e-Services or, simply, services) as fundamental elements
for realizing distributed applications/solutions. Web services are self-describing,
platform-agnostic computational elements that support rapid, low-cost and easy
composition of loosely coupled distributed applications.

Through web services, enterprises can set up new business opportunities,
by integrating their applications, making them interoperable and building new
complex value added services. But in order to achieve such an integration, many
challenging research issues should be solved, the most hyped one being service
composition; this in turn requires semantically rich service models.

Service composition addresses the situation when a client request cannot be
satisfied by any available web service, but by suitably combining “parts of”
the available web services. Composition involves two different issues [1]. The
first, typically called composition synthesis, is concerned with synthesizing a



specification of how to coordinate the component services to fulfill the client
request. Such a specification can be produced either automatically, i.e., using a
tool that implements a composition algorithm, or manually by a human. The
second issue, often referred to as orchestration, is concerned with how to actually
achieve the coordination among services, by executing the specification produced
by the composition synthesis and by suitably supervising and monitoring both
the control flow and the data flow among the involved services. Most of the work
on service orchestration is based on research in workflows [5].

In order to discuss automatic service composition, a conceptual framework
can be introduced, as shown in Figure 1. It is constituted by the following ele-
ments:

— (Available) Services. They denote the set of services to be considered (for
integration) in a composition.

— Community Ontology. Cooperating services need to share a common un-
derstanding on an agreed upon reference alphabet/semantics. Note that
many scenarios of cooperative information systems, e.g., e-Government or
e-Business, consider preliminary agreements on underlying ontologies, yet
yielding a high degree of dynamism and flexibility. The community ontology
realizes this semantic sharing. It is therefore a basic element in a service
composition architecture, since, in general, it addresses and solves issues
concerning the meaning of the offered operations, the semantics of the data
flowing through the service operations, etc.

— Mapping. Available services that are considered in a cooperation, need to
expose their behavior in terms of the community ontology. Therefore, a map-
ping should be defined between symbols of the alphabet of the community
ontology and operations of the service (e.g., how operations offered by a
service are defined in terms of the alphabet of operations in the community
ontology).

— Client Service Request. A client willing to exploit a (possibly composite)
service specifies a service request using the alphabet of the community on-
tology. The community realizes the client service request making use of the
available services, via the mapping.

The community ontology acts as a composite service provider wrt its clients:
the composite service is obtained by “suitably” coordinating the existing ones,
thus satisfying the client request. Note also that the terms (i.e., operations)
in the community ontology are virtual, since defined in terms of existing ones
(i.e., operations offered by real services) via the mapping. Consequently, the
composite services provided by the community ontology are wvirtual. The client
thinks he is invoking an operation on a real service, but actually, that operation
may correspond (via the mapping) to a bunch of operations (since the mapping
can have any complexity) offered by different real services.

Therefore techniques for automatic service composition tightly depend on
how services, the community ontology and the mappings are modeled in seman-
tically rich ways. In fact, semantically richer are the service descriptions, more
properties can be inferred and used during synthesis and orchestration.
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Fig. 1. Conceptual framework for automatic service composition

In this paper we present a model for services, called Colombo, that combines
four fundamental aspects of web services, namely: (i) A world state, represent-
ing the “real world”, viewed as a database instance over a relational database
schema. This is similar to the family of “fluents” found in OWL-S [9]. (%) Atomic
processes, which can access and modify the world state, and may include condi-
tional effects and non-determinism. These are inspired by the atomic processes
of OWL-S. (i) Message passing, including a simple notion of ports and links,
as found in web services standards (e.g., WSDL, BPEL4WS) and some formal
investigations (e.g., [4,11]). (v) The behavior of web services (which may involve
multiple atomic processes and message-passing activities) is specified using finite
state transition system, following and extending [2,4]. Thus, Colombo provides a
bridge between BPEL4WS and OWL-S, at the same time being compliant with
the emerging SWSL for semantic web services [6]. We also assume that each web
service instance has a local store, used to capture parameter values of incoming
messages and the output values of atomic processes, and used to populate the
parameters of outgoing messages and the input parameters of atomic processes.
Conditional branching in a web service will be based on the values of the local
store variables at a given time.

With respect to the conceptual framework, the community ontology is there-
fore basically constituted by the “world schema” (i.e., the intensional description
of the world state) and the atomic processes; services are described (i.e., their
mappings with respect to the community ontology) in terms of transition sys-
tems over such elements; the client request is expressed as a transition system
over the community ontology and the result of the synthesis is again a transition
system.

A client of a web service interacts with it by repeatedly sending and re-
ceiving messages, until a certain situation is reached. In other words, also the
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Fig. 2. World Schema Instance

client behavior can be abstractly represented as a transition system having ex-
actly two states, between which the client toggles, called ReadyToTransmit and
ReadyToRead, where the first is the start state and also the final state.

The rest of the paper is organized as follows. Section 2 illustrates the main
modeling features of Colombo with an example, whereas all the formal details are
omitted for brevity; the interested reader can refer to [3]. Section 3 outlines how
automatic service composition can be achieved based on the proposed model,
and Section 4 concludes the paper.

2 The Colombo Framework

In this section, we intuitively illustrate Colombo by means of an example involv-
ing web services that manage inventories, payment by credit or prepaid card,
request shipments, and check shipment status.

The real world is captured by the world (database) schema, which is a fi-
nite set W of relations having the form: Ry(Ai,..., Am,; B1,...,Bn,), where
Aq,..., Ay, is a key for Ry, and where each attribute A;, B, is defined over (3)
the boolean domain Bool, (ii) an infinite set of uninterpreted elements Dom_
(denoted in the example by alphanumeric strings), on which only the equality
relation is defined, or (7i) an infinite densely ordered set Dom< (denoted in the
example by numbers). We set Dom = Bool U Dom= U Dom<. Figure 2 shows a
world instance, i.e., a database instance over W. For each relation, the key at-
tributes are separated from the others by the thick separation between columns.
The intuition behind these relations is as follows: Accounts stores credit card
numbers and the information on whether they can be charged; PREPaid stores
prepaid card numbers and the information on whether they can be still be used;
Inventory contains item codes, the warehouse they are available in, if any, and
the price; Shipment stores order id’s, the source warehouse, the target location,
status and date of shipping.

The available web services and the goal service specification are defined over
a common alphabet A of atomic processes, as the one shown in Figure 3. For-
mally, an atomic process is an object p which has a signature of form (I,0,CE)
with the following properties. The input signature I and output signature O are



CCCheck
TI: c:Dom—; % CC card number
0: app: Bool; % CC approval
effects:
it f{iecounts (o) then
either modify Accounts(c;T) or
modify Accounts(c;F) and approved:= T
1t —fACCOUNtS (¢) then
approved:= F

checkItem:

charge:
I: c:Dom=—; % Prepaid card number;

0: paymentOK: Bool; % Prepaid card approval
effects:

it pPrePaid(c) then
either modify PrePaid(c;T) or modify PrePaid(c;F)
and paymentOK:= T
it ~ffmePaid () then paymentOk:= F

requestShip:

I: wh:Dom—; addr: Dom=—; % resp. source warehouse
% and target address

0: oid:Dom—; d:Dom ; s:Dom—; % resp. order id,

I: c:Dom=—; % item code " % shipping date and status
0: avail: Bool; whiDom=; p:Dom % resp. item availa- offects:

% bility, selling warehouse and price 3d, 0 oid:=new(o) and
effects: insert Shipment(new(oid); wh, addr, ‘‘requested’’, d)
if f{"vmlwry(c) then and d:=ffhipm6"t(md) and s := ‘‘requested’’

avail:= T and and uh::lem"“"t"ry(c) and
Inventor checkShipStatus:
p:=f: Y(e)

and either no-op on Inventory or It oid: Dom—: % order id

modify Inventory(c;F, -, -) 0: s:Dom=; d:Dom; % resp. shipping date & status
) Inventory Inventory, \ _ <
it = fy (e) or fy () =w effects:

then avail:= F if fISh'me’m“’(oid) = w then no-op and s,d uninit

gthm,cnt,(oid> Shipment .

else s:=f, and d:=f)

Fig. 3. Alphabet A of Atomic Processes

sets of typed variables, i.e., of variables belonging to Dom. The conditional ef-
fect, CE, is a set of pairs of form (¢, ), where c is a (atomic process) condition
and E is a finite non-empty set of (atomic process) effect (specifications). In-
tuitively, A represents the common understanding on an agreed upon reference
alphabet/semantics that cooperating web services should share [5]. For succinct-
ness we use a pidgin syntax for specifying the atomic processes in that figure.
We denote the null value using w. The special symbol “—” denotes elements of
tuples that remain unchanged after the execution of the atomic process. When
defining (conditional) effects of atomic processes, we specify the potential effects
on the world state using syntax of the form ‘insert’, 'delete’, and ‘modify’. These
are suggestive of procedural database manipulations, but are intended as short-
hand for declarative statements about the states of the world before and after
an effect has occurred. Finally, we use the function fJR((al, ..., ayn)) to fetch the
(n + j)-th element of the tuple in R identified by the key (a1,...,a,) (i.e., the
j-th element of the tuple after the key).

Figure 4 shows (the transition systems of) the available web services: Bank
checks that a credit card can be used to make a payment; Storefront, given the
code of an item, returns its price and the warehouse in which the item is available,
if any; Next Generation Warehouse (NGW) allows for (i) dealing with an order
either by credit card or by prepaid card, according to the client’s preferences
and to the item’s price, and for (7i) shipping the ordered item, if the payment
card is valid; Standard Warehouse (SW) deals only with orders by credit cards,
and allows for shipping the ordered item, if the card is valid. Throughout the
example we are assuming that other web services are able to change the sta-
tus and, possibly, to postpone the date of item delivery using suitable atomic
processes, which are not shown in Figure 3. Finally, in Figure 4, transitions con-
cerning message exchanges are labeled with an operation to transmit or to read
a message, by prefixing the message with ! or 7, respectively.
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Fig. 4. Transition systems of the available services
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? requestShipStatus (oid)
! shipStatus

(oid,date,status) O
_—

checkShipStatus(oid;
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Fig. 5. Transition system of the goal service

All the available web services are also characterized by the following elements
(for simplicity, not shown in the figure): (i) An internal local store, i.e., a rela-
tional database defined over the same domains as the world state (namely, Bool,
Dom~—, and Dom<). (ii) One port for each message (type) a service can transmit
or receive. As an example, the web service Bank has two ports, one for receiving
messages (of type) requestCCCheck (CCnum) and another for sending messages
(of type) replyCCCheck (approved). Each port for an incoming message has as-
sociated a queue (see below) and a web service can always transmit messages,
but can receive them only if the queue is not full. A received message is then
read (and erased from the queue) when the process of the web service allows
it. (i) One queue (of length one) for each message type the web service can
receive. The queues are used to store messages that have been received but not
read yet. For example, the web service Bank has one queue, for storing messages
(of type) requestCCCheck (CCnum). (iw) A set of links between pairs of services
that allow communication among them. Specifically, let F = {S1,...,S,} be a
family of services. A link for F is a tuple of form (S;,m,S;,n) where m is a
message that can be transmitted by S;, n is a message that can be read by S,
having the same type as m. A linkage for F is a set L of links such that the
first two fields of L are a key for L, and likewise for the second two fields. In
this paper we assume that a linkage L is established at the time of designing a
system of interoperating services, and that L does not change at runtime.
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Figure 5 shows (the transition system of) a goal service: it allows (i) to
buy an item characterized by a given code; (ii) to pay for it either by credit
card or prepaid, depending on the client’s preferences, the item’s price and the
warehouse in which the item is stored; and (i) to check the shipment status.
Note that the goal service specifies both message-based interactions with the
client (e.g., PrequestPurchase(code,payBy) for receiving from the client the
item code and the preferred payment method) and atomic processes that the
available web service contained in the composition should execute.

With automatic composition techniques, we would like to automatically con-
struct a mediator such as Sy shown in Figure 6; a mediator is the specification
to be orchestrated in order to realize the service requested by the client. As an
aid to the reader, we explicitly indicate in the figure the sender or the receiver
of each message, in order to provide an intuition of the linkage. Note that, dif-
ferently from the goal service, the mediator specifies message-based interaction
only, involving either the client or a web service. The mediator is also charac-
terized by a local store, a set of ports and a queue for each incoming message
(type), not shown in the figure.

An example of interactions between Sy, the client and the available web ser-
vices is as follows. Sy reads a requestPurchase(code,payBy) message that has
been transmitted by a client (into the suitable queue) and stores it into its local
store: such a message specifies the code of an item and the client’s preferred
payment method. Then, Sy transmits the message requestCheckItem(code)
to Storefront (i.e., into its queue) and waits for the answer (for simplicity we
assume that the queue is not full). Thus, Storefront reads from its queue that
message (carrying the item’s code), executes the atomic process checkItem(. . .)
by accessing the tuple of relation Accounts having as key the given code: at this
point, the information on the warehouse the item is available in (if any) and
its price can be fetched and transmitted to the mediator. Hence, Sy reads the
message replyCheckItem(avail ,warehouse,price) and stores the values of its
parameters into its local store. If no warehouse contains the item (i.e., avail ==
F), Sy transmits a responsePurchase (¢ ‘fail’’) message to the client, inform-
ing her that the request has failed, otherwise (i.e., avail == T) Sy transmits
a responsePurchase (¢ ‘provide cart num’’) to the client, asking her for the
card number, and the interactions go on.

For brevity, we omit formal details, that are conversely presented in [3]. In
the next section we outline how we are able to achieve automatic composition
on the basis of the proposed model.

3 Composition Synthesis with Colombo

In this section we outline how to solve the composition synthesis problem on the
basis of the proposed model.

Let W be a world schema and A be an alphabet of atomic processes. Assume
that a family of (pre-defined) services operating over A is available (e.g., in an
extended UDDI directory). We also assume that the desired composite service



is specified in terms of a goal system, i.e., a triple G = (C,{G}, L) where C is
a client (modeled as a transition system, see Section 1); G is the goal service,
defined over A; and L is a linkage involving only C' and G.

In the general case, given goal system G = (C,{G}, L), the composition
synthesis problem is to (a) select a family Si,..., S, of services from the pre-
existing set, (b) construct a web service Sy (the “mediator”) which can only send,
receive and read messages, and (c¢) construct a linkage L’ over C, Sy, S1,..., S,
such that G and S = (C, {So, S1,...,Sn}, L’) are equivalent, i.e., the behaviors
of G and S are indistinguishable relative to what is observable in terms of client
messaging and atomic process invocations (and their effects).

Decidability of the composition synthesis problem remains open for most
cases of the general Colombo framework. We can achieve decidability and com-
plexity results under the assumptions? that: (i) concurrency is prevented in our
systems; (7) in any enactment of G, only a finite number of domain values are
read (thus providing a uniform bound on the size of the “active domain” of any
enactment); (i) all messages in a composition are either sent by the mediator
So or received by the mediator (note that this assumption affects the form of
the linkages). Finally, we say that a mediator service is (p, ¢)-bounded if it has at
most p states in its transition system and at most g variables in its global store.

Theorem 1. Let G = (C,{G},L) be a goal system and U a finite family
of available web services. For each p,q it is decidable whether there is a set
{S1,...,5.} C U and a (p,q)-bounded mediator Sy, and linkage L', such that
S = (C,{S0,51,...,5.}, L") is equivalent to G. An upper bound on the com-
plexity of deciding this, and constructing a mediator if there is one, is doubly
exponential time over the size of p,q,G and U. O

We expect that the complexity bound can be refined, but this remains open
at the time of writing. More generally, we conjecture that a decidability result
and a complexity upper bound can be obtained for a generalization of the above
theorem, in which the bounds p, ¢ do not need to be mentioned. In particular,
we believe that based on G and U there exist pg, ¢o having the property that if
there is a (p, ¢)-bounded mediator for any p, ¢, then there is a (pg, go)-bounded
mediator.

From Infinite to Finite: the Case Tree. The proof of Theorem 1 is based on
a technique that instead of reasoning over (the infinitely many) concrete values
in Dom, allows us to reason over a finite, bounded set of symbolic values. The
technique for achieving this reduction is inspired by an approach taken in [8].
Intuitively, part of the construction consists in creating “symbolic images” of
most of the constructs that we currently have for concrete values. For example,
corresponding to a concrete world state Z we will have a symbolic world state Z.

4 We feel that the results obtained here are themselves quite informative and non-
trivial to demonstrate, and can also help show the way towards the development of
less restrictive analogs.



In particular, given a (concrete) execution tree 7 for some system S of services,
which has infinite branching, it will turn out that the corresponding symbolic
execution tree 7 will have a strong (homomorphic) relationship to 7, but have
finitely bounded branching. In general, results that hold in the concrete realm
will have analogs in the symbolic realm. The details of the reduction can be
found in [3].

Characterization of Composition Synthesis in PDL. To complete the
proof of Theorem 1 we outline how the composition synthesis problem can be
characterized by means of a Proportional Dynamic Logic formula (PDL). For
the necessary details about PDL, we refer to [7]. Intuitively, the PDL formula
we construct consists of (i) a general part imposing structural constraints on
the model, (i) a description of the initial state of each of the service, the goal,
and the mediator, and (iii) a characterization of what happens every time an
action is performed. The only part of the execution that is left unspecified by
the PDL formula is the execution of the mediator to be synthesized. Since the
execution of the mediator is characterized by which messages are sent to which
component services (and consequently, also by which messages are received in
response), the PDL formula contains suitable parts that “guess” such messages,
including their receiver. In each model of the formula, such a guess will be fixed,
and thus a model will correspond to the specification of a mediator realizing the
composition (see [3] for more details). Hence, starting from a model of the PDL
formula, we are able to construct a mediator.

4 Conclusions

In this paper we have presented Colombo, a framework in which web services are
characterized in terms of (i) message exchanges, (4) data flow, and (7ii) effects
on the real world.

The model is very rich with respect to current approaches, and how outlined
in previous sections, it allowed us to develop a novel techniques, based on case
tree building and on an encoding in PDL, for computing the composition of web
services under certain assumptions.
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