
Modeling Software Applications and User Interfaces
Using Metaphorical Entities

Christian Nill and Vishal Sikka
SAP Advanced Technology Center, SAP Labs LLC

3421 Hillview Avenue
Palo Alto, CA 94304, USA

{christian.nill, vishal.sikka} @sap.com

ABSTRACT

The power of metaphor has long been recognized in user interface

design and more broadly in human interaction circles. More

recently metaphor also found its way into the software

development process. This paper aims to combine occurrences of

metaphor in the two fields with ideas from the field of model

driven architecture. We suggest that it is possible to create

conceptual patterns based on metaphor that allow a high level

description of interaction models and user interfaces, and can at

the same time serve as structural units for modeling software

applications.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications –

Methodologies

D.2.2 [Software Engineering]: Design Tools and Techniques –

User interfaces. D.2.11 [Software Engineering]: Software

Architectures – Domain-specific architectures, description

languages H.1.2 [Models and Principles]: User/Machine

Systems – Human factors H.5.2 [Information Interfaces and

Presentation]: User Interfaces – Graphical User Interfaces, User-

Centered Design

General Terms

Design, Human Factors

Keywords

Metaphor, MDA, Design Patterns, Software Application

Development, User-Interface Design, Interaction Design, Tools

and Materials Approach

1. INTRODUCTION
Enterprise-centric computing has come a long way already. At

least as far as intra-enterprise solutions are concerned, complex

integrated systems are being successfully implemented and

deployed. That means the encapsulated business logic is largely in

place and major enterprise software companies such as SAP are in

principle able to deliver suites that can be applied to almost every

aspect of a company’s operations.

What has however been neglected over a long period of time in

enterprise software is what Frankel in [5] calls the user

interaction logic and consequently also the user presentation. Far

too often end-users of enterprise software are forced to think in

terms of database operations and transactions rather than in terms

that their actual tasks would suggest. Additionally, ever more

sophisticated user interfaces of packaged consumer software as

well as of web applications such as amazon.com add to the rising

expectations on usability also in enterprise software applications.

In this paper we seek to offer building blocks for the model-driven

construction of inherently user-friendly enterprise software

applications.

Section 2 starts by introducing important principles of metaphor

in user interfaces, followed by section 3 where current uses of

metaphor in software development and the Tools and Materials

approach are briefly introduced. we go on with presenting our

ideas on modeling using metaphorically motivated entities in

section 4 and comment on the challenges in section 5. Section 6

briefly touches upon current work and section 7 concludes this

paper.

2. METAPHORS IN USER INTERFACES
Metaphors appear all over user interfaces. Although the concrete

embodiment of some of the most widely known user interface

metaphors such as the DESKTOP metaphor are being challenged at

times, only rarely does someone call for their total abolition [13].

Taking Lakoff and Johnson’s influential findings into account,

such a turning-away from metaphors would have to fail altogether

anyway, as “metaphor is pervasive in everyday life, not just in

language but in thought and action. Our ordinary conceptual

system, in terms of which we both think and act, is fundamentally

metaphorical in nature” [8, p.3]. Metaphor must not be

understood only as a linguistic construct but rather as a

fundamental cognitive mechanism that allows us “to use one

highly structured and clearly delineated concept to structure

another” [8, p. 61].

Take for instance the well-known and widely adopted metaphor

DELETING IS THROWING AWAY found in virtually all modern

operating systems. The highly technical operation of deallocating

a file name is presented to the user as dragging an unwanted item

into a trash can. Even more so, for providing a better match

between this metaphor’s source and the target a file does not get

irreversibly deleted but is recoverable until the trash can, or

recycle bin, is emptied. Note that one reason why this metaphor is

working so well lies in the fact that the metaphor can be

visualized quite nicely.

Barr in [3] has examined the semiotic foundations of user

interface metaphors following the triadic notion of signs by

Charles Sanders Peirce (1839 – 1914). Figure 1 attempts their

visualization along the example just introduced. A sign in

semiotics is generally “something that stands for something else,

to someone in some capacity" [11], which means that among

many other things, metaphors as well as icons can be treated as

signs.

Figure 1: Unlimited Semiosis applied to a "Recycle Bin" icon

and the DELETING IS THROWING AWAY metaphor in the semiotic

triangle.

In a generative view on the Peircean triad the object constitutes

the concept to be conveyed by the sign. In the present example

that concept is deleting a file. The representamen is the directly

perceivable portion of the sign, here in form of an indexical icon

linking to a recycle bin. What an individual user makes of the

representamen is called the interpretant. Ideally, object and

interpretant show a strong resemblance for the majority of users

thus denoting a sign that “works”. Important for user interface

metaphors is the concept of unlimited semiosis meaning that one

sign’s interpretant can form another signs representamen. In this

way a multiply interwoven net of signs can really bring a user

interface metaphor to life. Here the fact that one can actually drag

a “file” into the “recycle bin” strongly supports the underlying

DELETING IS THROWING AWAY metaphor.

Presenting user interface metaphors in this way might make

Marcus’ definition more clear who defines them “as the essential

concepts in computer-mediated communication that substitute for

the underlying code and terminology of operating systems,

applications, and data” [10]. However, note in particular from the

comments above that for a user interface metaphor to work it

needs to be educible. Otherwise it would need to be explained to

the user beforehand which is clearly suboptimal.

3. APPLICATION DEVELOPMENT
Quite a lot of work has been published on the use of metaphor in

user interfaces and computing in general during the 1980s, but not

before a decade later did interest spark in addressing the role of

metaphor in the software design process. Rather than only being

utilized for explaining functionality that is already in place or

being planned for, metaphors are seen as an aid to the

construction of software systems. Madsen in [9] reports on the

great influence of the selection of originating metaphors on the

shape of the resulting system. She then proposes specific

guidelines regarding the generation, evaluation and development

of metaphors underlying software systems.

The awareness of metaphor as a constructive tool in software

development was certainly raised considerably when Kent Beck in

[4] listed the system metaphor as one of the original 12 principles

of extreme programming, although in his work he did not

elaborate greatly on its correct use within the XP methodology.

An even more high-level use for a special kind of metaphors in

enterprise architecture modeling was proposed by Khoury in [7].

He sees an ideal vehicle for structuring enterprise applications in

organizational metaphors. As opposed to concrete metaphors like

the RECYCLE BIN mentioned in section 2, organizational metaphors

are motivated by societal structures. Examples for sources of these

metaphors comprise e.g. auctions, games, or committees.

3.1 The Tools and Materials approach
Largely unique in this area is the Tools and Materials approach.

Coming from software engineering, Züllighoven and his team

proclaimed an application-oriented evolutionary software

development process. They define application-orientation as the

orientation towards the tasks in a given application domain. They

also demand that processes defined within a software system be

easily adaptable to any given working context and finally expect

such a system to be thoroughly user-friendly [14, p. 102].

3.1.1 Overview
Simply speaking, the T&M approach utilizes a guiding metaphor

and three concrete core metaphors or conceptual entities along

with some others to structure any specific application domain. It

sees users being placed at a well equipped EXPERT WORKPLACE

working with TOOLS on MATERIALS and having AUTOMATONS

which relieve them of repetitive tasks that do not require user

interaction.

Züllighoven and his team argue that these metaphors which are

partly grounded in anthropology and partly on ergonomics are not

only universally understood, but also perfectly apt to describe

self-determined human work. The metaphors are deemed

sufficiently concrete to let users and developers alike associate

useful ideas and at the same time are easily transferable to

different application domains [12].

The true beauty of the T&M approach however lies in the fact that

metaphors are not only means of observation and communication

between all stakeholders in the software development process, but

also the cornerstones of the software application's architecture.

The approach comprises a complete set of design patterns that

allow mapping the conceptual patterns onto an object-oriented

software model and constitute a major constructive step toward

actual software implementation [14, pp. 185-280]. Along these

patterns also the open-source framework JWAM1 had been

created that constitutes a readily implemented infrastructure

around the metaphorical concepts mentioned above.

1 See http://sourceforge.net/projects/jwamenvironment/ for details.

3.1.2 Criticism
Yet the approach can be improved. From an HCI perspective the

application-oriented T&M approach still falls a little short when it

comes to empathy for the end-user. The reason for this is that it is

only concerned about structuring an application domain but not

about how elements of the resulting software application are being

presented to end-users. Only a rather vaguely defined usage

model is offered, based on the T&M metaphors. We however

believe that merely structuring the software application the same

way as the application model, i.e. using a small set of

anthropologically and/or ergonomically motivated metaphors, will

not automatically lead to a good user interface for several reasons.

First, in order to work in a graphical user interface any implicit

metaphor of the form THAT PIECE OF FUNCTIONALITY IS A TOOL or

THIS DATA STRUCTURE IS A MATERIAL has to have a usable

metonymy, i.e. one or more parts that stand for the whole of the

metaphor. Those parts need to be visually representable, such as

the RECYCLE BIN from section 2, to allow users understand

possible actions in the user interface. While for TOOLS that seems

quite possible (see e.g. the TOOLBOX metaphor in Adobe

Photoshop), this will often be difficult when trying to represent

rather abstract MATERIALS like a bank account or a workflow

template as in [6].

Second, as Johnson and Lakoff have observed, "comprehending

one aspect of a concept in terms of another will necessarily hide

other aspects of the concept" [8, p. 10]. This means that we

usually use vehicles of a number of metaphors greater than one to

explain more abstract concepts. Not every aspect of functionality

of an application is really best explained using only the TOOL or

the MATERIAL metaphor.

3.1.3 Concluding Remark
What remains is the fact that Züllighoven and his team very

successfully modeled application domains and software

applications alike using the same set of structural metaphors in

various major software projects (cf. [14, pp. 9-14]). The T&M

approach therefore seems to be a good starting point for further

work.

4. MODELING
Software application models, e.g. using the UML notation, are a

useful means of communication amongst developers to arrive at a

common understanding of a software application's structure and

functioning. The perception of models as "needless slideware"

shared primarily amongst some followers of agile development

practices is likely to be overcome by advances in the fields of

Model Driven Architecture and Model Driven Software

Development. New disciplines such as Agile Modeling and

developments such as the Executable UML are already pointing

into that direction.

The kind of models that denote the inner workings of software

applications is however in general not a good means of

communication when it comes to non-technical stakeholders.

Arlow and Neustadt in [1] report on the poor levels of

comprehension that domain experts, users, and non-technical

managers demonstrate when interpreting UML models of almost

any kind. That is why virtually all practical implementations of

user-centered design methodologies put an emphasis on often

iterating a user feedback cycle based on prototypes [2]. "Low-

fidelity" prototypes at an early stage are in the course being

substituted by more sophisticated and functionally accurate ones

later on. These prototypes form the backbone for end-user

involvement once the initial requirements gathering has been

concluded. End-users, as well as other non-technical stakeholders,

will express their thoughts related to visual elements of these

prototypes. In a sense these prototypes act as high-level

interaction models that non-technical people utilize for

understanding and talking about the software application being

developed.

These observations lead to the search for conceptually easy-to-

handle entities for modeling interactive software applications on a

considerably higher level than objects and classes. Metaphorical

concepts such as described in section 3.1 would constitute a

natural basis for such modeling entities. These elements could be

used in “classical” software application models and at the same

time be incorporated into prototypes of all kinds. In this way

developers can communicate with end-users using a common

vocabulary, greatly reducing impending frictions. However to be

adaptable and still remain apt for an automated transformation

into Platform Independent Models (PIM) or other forms of less

abstract representation, any such interaction element needs to be

reasonably well defined. Section 6 touches on a concrete example.

Arlow and Neustadt [1] succeeded in a very similar approach

concentrating on the enterprise tier or encapsulated business logic

(again using Frankel's nomenclature [5]). They developed so-

called enterprise archetype patterns for the UML that could be

applied to the greatest number of businesses. Their patterns

include generic concepts such as product, inventory, order, and so

on which can be used as modeling entities in UML diagrams.

Every such archetype pattern usually spans a considerable number

of classes. The huge advantage of these elements lies in their

semantic richness and the hiding of technical details, so that even

non-technically inclined stakeholders such as managers and

domain experts can more fruitfully participate in the shaping of

application models. Yet these patterns can be easily transformed

into standard UML diagrams and thus do not deviate from the

fundamental ideas behind MDA.

In the same manner we hope to establish a set of archetype

interaction patterns that encapsulate the sort of metaphorical

concepts touched upon in sections 2 and 3. Benefits in terms of

communication with stakeholders are only one side. Structuring of

interactive software applications along metaphorically motivated

entities should also yield the usage model and subsequently a

blueprint for the user-interface.

5. CHALLENGES
Without doubt the ideas presented so far are highly ambitious and

challenges may seem daunting. However they can be broken up

and tackled one by one.

First, an adequate set of interactional archetypes would have to be

found. It is likely to turn out that such a set can only be defined

for a certain kind of application at a time. The kind of

contemplable applications might be expressed quite generally by

an underlying guiding metaphor such as the EXPERT WORKPLACE

proposed by Züllighoven or by any other form of a usage model.

In a second step one would have to think about how the

metaphors or differently rooted concepts underlying those

interactional archetypes could be visualized and presented to the

user. A set of interrelated UI elements, user interface patterns,

resulting from this step could e.g. be used as building blocks in a

graphical development environment. They would be used to not

only produce the user interface but also map out a meaningful

skeleton for the software application's implementation.

At the same time also technical implementations for the desired

target platforms have to be developed. In an MDA scenario that

target platform would be a PIM, while in traditional software

development mapping to design patterns as mentioned in section

3.1 presents itself as a natural choice.

Last but not least this approach would only live up to its full

potential if adequately supported by a development environment

that revolves around the conceptual elements chosen as a basis for

modeling. Ideally such a development environment also offers

extensive support for visual prototyping and modeling, allowing

for generating artifacts helpful in communication with non-

technical stakeholders.

6. CURRENT WORK
We are currently utilizing the Tools and Materials metaphors from

section 3.1 for modeling a cost planning application that is to be

used for gathering budget planning data from a company’s cost

center managers.

The application is composed from a number of distinct tools that

can each be used to work on their specific materials. An important

material within the application is e.g. the Planned Cost

Spreadsheet which holds planning figures and formulae. The

appropriate tool to work on it is a Spreadsheet tool which in turn

contains a number of sub-tools that are also being reused

elsewhere in the application. One such example of a multiply

reused sub-tool would be an Annotation tool that allows adding

comments and other unstructured data to materials, in this case to

spreadsheets. The advantage of using the metaphorical notion of

tools and materials in this modeling process lies in the fact that

non-technical stakeholders will find the resulting components

easy to understand and their interrelationship easy to comprehend.

At the same time as modeling and describing the application by

the means of tools and materials, we are also trying to get to the

bottom of how to best compile and present such models to the

technically less inclined and also how to best support the

transition to more specific design models afterwards.

7. CONCLUSION
Most likely, the production of interactive software applications

using metaphorical archetypes as suggested in this paper will not

result in the best conceivable interaction and interface design

ever. It will however allow for a much more intense involvement

of non-technical parties in the software development process

where such an involvement used to exceed the available

resources. At the same time it allows for software product lines

that don't only look similar, but actually really feel belonging

together without additional effort. Apart from that the use of

interactive archetypes should also speed up the overall software

application development process.

8. REFERENCES
[1] Arlow, J. and Neustadt, I. Enterprise Patterns and MDA -

Building Better Software with Archetype Patterns and UML.

Object Technology Series. Addison-Wesley, Boston, MA,

2003.

[2] Ashley, J. and Desmond, K. Oracle. Interactions, 9(2):81–

86, 2002.

[3] Barr, P., Biddle, R., and Noble, J. A semiotic model of user

interface metaphor. In The 6th International Workshops on

Organisational Semiotics, Reading, UK, 2003.

[4] Beck, K. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Boston, MA, first edition, 1999.

[5] Frankel, D. S. Model Driven Architecture: Applying MDA to

Enterprise Computing. OMG Press. Wiley Publishing, Inc.,

Indianapolis, IN, 2003.

[6] Gryczan, G., Wulf, M., and Züllighoven, H. Prozeßmuster

für die situierte Koordination kooperativer Arbeit. In

Herausforderung Telekooperation (D-CSCW ’96), pages 89–

103. Springer, Berlin, Germany, 1996..

[7] Khoury, G. R. and Simoff, S. J. Enterprise architecture

modelling using elastic metaphors. In Proceedings of the

first Asian-Pacific conference on Conceptual modelling,

pages 65–69, Darlinghurst, Australia, 2004.

[8] Lakoff, G. and Johnson, M. Metaphors We Live By. The

University of Chicago Press, Chicago, IL, 1980.

[9] Madsen, K. H. A guide to metaphorical design.

Communications of the ACM, 37(12):57–62, 1994.

[10] Marcus, A. Metaphors and user interfaces in the 21st

century. Interactions, 9(2):7–10, 2002.

[11] Peirce, C. S. Collected Writings. Harvard University Press,

Cambridge, MA, 1958.

[12] Rose, H., editor. Objektorientierte Produktionsarbeit, pages

23–54. Campus Verlag, Frankfurt, Germany, 1996.

[13] Tristram, C. The next computer interface. Technology

Review, 104(10):52–61, December 2001.

[14] Züllighoven, H. et al. Object-oriented construction

handbook: developing application-oriented software with

the tools and materials approach. Morgan Kaufmann, San

Francisco, CA, 2004

