
Visualization in the Context of Model Driven Engineering

R. Ian Bull
University of Victoria

Victoria, BC
Canada

irbull@cs.uvic.ca

Jean-Marie Favre
LSR-IMAG

University of Grenoble
France

Jean-Marie.Favre@imag.fr

ABSTRACT
Understanding and maintenance of complex information spaces is
often supported through visual interfaces. These interfaces must
be highly flexible in order to adapt to both the user’s role and their
current task. Program comprehension tools are one class of tools
that make heavy use of information visualization techniques, and
Software Engineers use these tools to help understand and maintain
software systems. This paper presents a model-driven approach to
address the customization requirements of visual user interfaces,
and does so in the domain of program comprehension.

1. INTRODUCTION
Understanding large software systems is a difficult task. Over the
past 15 years many software visualization tools have been proposed
to assist Software Engineers while comprehending large systems.
Tools such as Rigi [11] and SHriMP [14] have been used success-
fully to browse software systems containing over a million LOC, in
part due to their ability to generate interactive views. These tools,
based on sophisticated user interfaces with advanced visualization
techniques, suffer from a lack of adaptability and flexibility when
applied in industrial settings [7]. Often the tools are not able to syn-
chronize the many sources of information that exist for a software
system such as source code factbases, requirements information,
repositories of documentation, bug reports, and so forth.

It is well known that visual interfaces are most effective when they
have been customized for specific users and their needs. If an in-
terface does not display the required information for a given task,
or the information displayed does not conform to the user’s mental
model [12], then the interface is not as useful as it could be.

The software industry requires visualization tools that can be adapted
to (1) many different sources of information such as source code,
configuration management data, documentation, user requirements,
(2) various kinds of visualizations, including source code views,
tables, trees, tree maps, graphs, nested-graphs, pie-charts, kiviat-
diagrams, and so on, and (3) many different user roles including
not only developers but also architects, software testers, members
of the quality assurance teams, managers, business architects and
so on. Moreover, experience has shown that in order to increase the
likelyhood of adoption among visualization tools, the tools should
not be standalone monolithic applications, but instead they should
integrated in the developer’s preferred development environment.

Few visualization tools support the level of customization required
to create tailored interfaces, and the tools that do support a high
level of customization, do so at the cost of complexity, or like Hy+
[6, 10] they are monolithic and can’t be integrated with other tools.

While “coding” is the current way of building visualization tools
this method lacks the ease of customization required. This paper
advocates for the use of Model Driven Engineering to achieve cus-
tomizable interfaces by composing small model-driven visualiza-
tion components. This paper focuses on the use of metamodels
and transformations to ease the creation of views from arbitrary
models of information. This paper does not address view com-
position. While the examples in this paper center around program
comprehension, the techniques can be generalized to any structured
data including knowledge management, business processes, finan-
cial data, etc.

The rest of the paper is structured as follows. Section 2 introduces
the notion of model-driven visualization. A simple example is pre-
sented in Section 3 to illustrate the approach. Section 4 outlines
our future work and finally, Section 5 presents some concluding
remarks.

2. MODEL DRIVEN VISUALIZATION

Figure 1: Simple Java MetaModel

2.1 Overview
Model Driven Engineering (MDE) has received a lot of attention
in the past few years. More than 50 conferences and workshops
have been organized to address the issues related to MDE (see
http://planetmde.org ). This success is due to the fact that
MDE is based on very general concepts that can be applied across
many different disciplines. The basic set of concept includes Mod-
els, Metamodels and Transformations [8]. An in-depth discussion
of these concepts is out of the scope of this paper, so these will be
illustrated mostly through examples.

Model driven engineering is based on the systematic use of meta-
models and transformations. In the context of software visualiza-
tion, both the information extracted from the software, and infor-
mation about visualization should be formally defined. While most
tools in software engineering are based on implicit metamodels,



it has been recognized recently that information metamodels (also
called schemas) should be expressed formally. Figure 1 describes
a metamodel for a subset of the Java language.

When building visualization tools, the “visualization metamodel”
should also be explicitly defined. If tool is formally defined, then
software visualization simply becomes a matter of describing the
transformation from one model to another. In the remainder of this
section, we present some examples of metamodels and then dis-
cusses formal transformations.

2.2 Visualization MetaModels
GUI components designed for visualizing data sets, such as Tree
and Table controls, have an implicitmetamodel. A metamodel for-
mally describes the structure of the information the component can
visualize. For example, SHriMP Views [14] a popular nested graph
viewer, is excellent at visualizing large hierarchical datasets with
non-hierarchical relationships between the nodes. Common visu-
alization tools such as Tree Controls or Space Trees [13] are used
extensively to show graph based data in the form of a tree. The
metamodels for these components are rarely described formally.
The details of how the data must be structured in order to visualize
it using one of these tools must be inferred from reading documen-
tation such asJavaDocor Man Pages.

Visualization tools are commonly built by researchers as mono-
lithic applications, complete with a parser, application windows,
menu system and tool bars. Tools such as these usually have a pre-
defined XML schema for the data they can parse. While this pro-
vides a formal metamodel, these tools are hard to re-use in existing
applications. Since these tools defined their own menu system, tool
bars and set of actions, it is difficult to incorporate these visual-
izations into existing environments. In order to provide a set of
reusable components, we advocate that visualization components
should adhere to the API specification of the widget toolkit they
were implemented with, and provider a similar set of interfaces as
the other views in the toolkit. For example, the views should expose
item selection, notifications, view instantion, etc, in the same man-
ner as existing views. For each view, a formal metamodel should
also be defined.

Often there are multiple ways to define a data model. In a table
view, the table can be defined as several rows, each row contain-
ing a fixed number of cells. An equally valid definition would be
to define the table as a set of columns, each column containing a
fixed number of cells. In order to keep our approach generalizable,
several data models have been designed for each component. The
implementation of each view will read any model that conforms
to one of the pre-defined metamodels. By defining several meta-
models for single components, those who use the component can
choose the most appropriate metamodel for their data.

2.2.1 Tree View
The Tree View is widely used to present hierarchical data by listing
children below their parents. Sub-trees can often be expanded and
collapsed. The wide spread adoption of the tree control can par-
tially be attributed to the fact that many widget toolkits include the
control as a standard component. Figure 2 shows an example of a
Tree View’s metamodel.

2.2.2 Graph View
Graph Views display information as a set of nodes connected with
edges to show dependencies among the nodes. Despite the positive

Figure 2: MetaModel for a TreeView

Figure 3: MetaModel for a GraphView

feedback researchers have received from several implementation
of graph based views [9], the views have not received wide spread
adoption in Common Of the Shelf (COTS) Software. Toolkits exist
to help developers create these views [2], however, graph views
themselves are not widely available as standard components. The
Zest toolkit [5] has been designed to addres this problem for SWT,
a widget toolkit for Java.

Graph Views can be defined in terms of their nodes and edges or
simply defined in terms of their nodes. Using the later approach,
the edges can be determined implicitly based on how the nodes are
related to one another. An example of each structure is presented
in Figure 3.

Metamodels for several other views have also been defined for-
mally. Most notably, metamodels have been defined for Nested
Graph Views, Table Views, Matrix Views and Table-Tree Views.

2.3 Visualization Transformations
In order to visualize a partial dataset using one the structures de-
scribed above, application programmers must develop data traver-
sal algorithms and apply them to their data model. The traversal
algorithms are used to walk the data structure, extracting the “in-
teresting” information and using this information to populate the
views. While traversing the data structures, some information is
discarded and new information is deduced. For example, a com-
mon Java model will include interactions between Methods. How-
ever, when attempting to understand a section of source code, a
developer may wish to see how the classes relate to one another. In
order to do this, the method nodes must be discarded and the rela-
tionships between them lifted to the Class level. Using a declarative
language for these transformations is often more concise, and easier
to maintain, then writing the traversal algorithms in source code.

2.4 Techniques
A framework for Model Driven Visualization has been implemented
within Eclipse [1]. The models have been designed using EMF [4].
EMF was used because of its ability to generate working code from
a model, and because it is able to generate XML serialization / de-



Figure 4: Model Transformation

serialization capabilities and an XSD. Each of the visualizations
described in Section 2.2 have also been implemented for Eclipse
using SWT. The JFace Tree and Table controls were used for the
Tree and Table views, while the Zest project was used for the graph-
ical views.

The Atlas Transformation Language (ATL) [3] was used to specify
the transformations. ATL is a transformation language for MDE
and is able to translate EMF models using both declarative and im-
perative constructs. The transformations are described as a set of
transformation rules and the ATL virtual machine uses these rules
to generate an output model from a given input model.

3. CASE STUDY
In order to demonstrate our approach, we have built a small class
browser for Eclipse. Two views were created, one to show the
class hierarchy, and the other to show method invocation between
classes. A Java metamodel was first defined using EMF, and then
using ATL, transformations were written to translate the Java model
to a view model. Finally, using our interactive visualization toolkit,
the view models were rendered.

The Java metamodel presented earlier (Figure 1) defines theJSys-
tem, JClassandJMethodelements.JMethodsare related to one an-
ther through thecalls reference andJClassesreference each other
through theextendedBydependency. The left side of Figure 4
shows a Java model which conforms to the Java metamodel de-
scribed in Figure 1. The two horizontal arrows represent the model
transformations. The two views on the right of Figure 4 show two
translated models. The one on top conforms to the TreeView meta-
model (Section 2.2.1) and the one below conforms to the GraphView
metamodel (Section 2.2.2).

The transformation from the Java Model to the view models is per-

Figure 5: Class Dependency Tool

1 r u l e JSystem2TreeView{
2 from s : j a v a ! System
3 to
4 t : t r e e v i e w ! TreeView (
5 r o o t s <− j a v a ! J C l a s s . a l l I n s t a n c e s ()−>
6 s e l e c t ( s u p e r c l a s s−>isEmpty ( ) )
7 )
8 }
9 r u l e JClass2TreeNode{

10 from c : j a v a ! J C l a s s
11 to
12 n : t r e e v i e w ! TreeNode (
13 l a b e l <− c . name ,
14 c h i l d r e n <− c . extendedBy
15 )
16 }

Listing 1: Java to Tree Translation



1 r u l e JSystem2GraphView{
2 from s : j a v a ! JSystem
3 to
4 ou t : g raphv iew ! GraphView (
5 e n t i t i e s <− j a v a ! J C l a s s . a l l I n s t a n c e s ( ) ,
6 edges<−j a v a ! J C l a s s . a l l I n s t a n c e s ()−>
7 c o l l e c t ( e| t h i sModu le . reso lveTemp ( e , ’ e ’ ) )
8 )
9 }

10 r u l e JClass2NodeAndEdges{
11 from c : j a v a ! J C l a s s
12 to
13 n : graphv iew ! Node (
14 l a b e l <− c . name
15 ) ,
16 e : d i s t i n c t graphv iew ! Edge
17 f o r e a c h ( s i n g l e C a l l i n c . methods
18 −>c o l l e c t ( m|m. c a l l s )−> f l a t t e n ( ) ) (
19 s o u r c e<− n ,
20 d e s t i n a t i o n<− s i n g l e C a l l . p a r e n t
21 )
22 }

Listing 2: Java to Graph Translation

formed using ATL. Listing 1 shows the ATL transformation respon-
sible for translating the Java model to a Tree View model (Sec-
tion 2.2.1). Themain rule matches the Java System and creates
theTreeView’s Root Node. All the classes with no superclass
are listed as roots. The other rule matches theJClasselements.
Each of these elements are translated to TreeView’s Node and the
Label for each node is simply the Class name. Finally, the children
of a given element are determined byextendedByrelationship in
the model.

The second transformation (Listing 2) shows a translation from the
Java model to a Graph Model (Section 2.2.2). The Graph Model
shows dependencies among classes if there is acall relationship
between them. TheJSystem2GraphView rule matches the Java
System and creates a GraphView Root Node. The edges and enti-
ties of the graph are attached to theGraphView. The second rule
creates all theNodesand Edges. Each node directly maps to a
JClasselement in the Java model. For each method call an edge is
created. The edge is lifted to theJClasslevel such thesourceof the
edge is theJClassthat contains theJMethod, and the destination is
theJClassof theJMethodbeing invoked.

Once the transformations is completed, our Visualization Toolkit is
used to read the view models and present the user with the Class
dependencies. Figure 5 shows the output of this tool.

4. FUTURE WORK
In the interest in saving space, only simple examples have been
presented here. Model-based visualization components are com-
monly more sophisticated. Our approach has been used to generate
views using charts, interactive graphs, interactive nested graphs,
time-lines, spectrographs, interactive tree-maps and others. We are
currently continuing our work by creating a complete library of
visualization metamodels and model-driven visualization compo-
nents. The metamodels will be included in Zooomm, the Interna-
tional Zoo of Metamodels, Schemas and Grammars. Model-based
visualization components are also to being developed for integra-
tion within Eclipse using the EMF framework.

5. CONCLUSION
In this paper, Model Driven Engineering techniques have been ap-
plied in the context of softare visualization tools. The techniques
presented here are not only applicable to software, but can be gen-
eralized to any information space. While GUI components found
in traditional widget toolkits are well suited for visualizing small
to medium, rather “flat” information, visualization tools are very
good at exploring large datasets with complex structures. This pa-
per shows how metamodels can be used for describing the structure
of the visualization tool. Designing these metamodels is a difficult
task, but once these models have been created, the explicit map-
pings between datasets and the model-based visualization compo-
nents can be easily described. The work in this paper focusses on
single visualization components, although we realize that software
exploration requires combining and synchronizing multiple views.
Clearly, sophisticated exploration environments in the future will
only be achieved by integrating know-how from Software Explo-
ration community, Model Driven Engineering community and the
User Interface community.

6. REFERENCES
[1] Eclipse. http://www.eclipse.org.

[2] Graphical Editor Framework. Website. http://www.eclipse.org/gef.

[3] Freddy Allilaire and Tarik Idrissi. Adt: Eclipse development tools for
atl. In Proceedings of the Second European Workshop on Model
Driven Architecture (MDA) with an emphasis on Methodologies and
Transformations (EWMDA-2), Canterbury, England, 2004.
Computing Laboratory, University of Kent, Canterbury, Kent CT2
7NF, UK.

[4] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick,
and Timothy J. Grose.Eclipse Modeling Framework. Addison
Wesley, 2003. http://www.eclipse.org/emf.

[5] R. Ian Bull, Casey Best, and Margaret-Anne Storey. Advanced
Widgets for Eclipse. InProceedings of the 2nd Eclipse Technology
Exchange, pages 6–11, 2004.

[6] Mariano Consens, Alberto Mendelzon, and Arthur Ryman.
Visualizing and Querying Software Structures. InProc of
International Conference on Software Engineering, 1992.

[7] J.-M Favre, F Duclos, J Estublier, R. Sanlaville, and J.-J. Auffret.
Reverse engineering a large component-based software product. In
Proc. of Fifth European Conference on Software Maintenance and
Reengineering, pages 95–104, Lisbon, Portugal, 2001.

[8] J.M. Favre. Towards a basic theory to model model driven
engineering. InWorkshop on Software Model Engineering (WISME),
Lisboa, Portugal, 2004.

[9] Ivan Herman and Guy Melançon adn M. Scott Marshall. Graph
Visualization and Navigation in Information Visualization: A Survey.
IEEE Transactions on Visualization and Computer Graphics,
6:24–43, 2000.

[10] Alberto Mendelzon and Johannes Sametinger. Reverse Engineering
by Visualizing and Querying.Software – Concepts and Tools,
16:170–182, 1995.

[11] Hausi A. Müller and Karl Klashinsy. Rigi: A system for
programming-in-the-large. InProc. of the10th Intl. Conference on
Software Engineering (ICSE-10), pages 80–86, Singapore, April
1988.

[12] Donald A. Norman.The Design of Everyday Things. New York:
Basic Books, 1998.

[13] C. Plaisant, J. Grosjean, and B.B. Bederson. Spacetree: Supporting
exploration in large node link tree, design evolution and empirical
evaluation. InProc. Of INFOVIS 2002. IEEE Symposium on
Information Visualization, 2002, pages 57 –64, Boston, October
2002.

[14] M.-A. D. Storey and H. A. M̈uller. Manipulating and documenting
software structures using SHriMP views. InProceedings of the 1995
International Conference on Software Maintenance (ICSM ’95)
(Opio (Nice), France, October 16-20, 1995), 1995.


