
Capturing Common and Variable Design Aspects for
Ubiquitous Computing with MB-UID

Alexander Boedcher, Kizito Mukasa, Detlef Zuehlke
Center for Human-Machine Interaction

at the German Research Center for Artificial Intelligence
P.O.Box 3049

67653 Kaiserslautern, Germany
Phone: +49 631 205 3570

Fax: +49 631 205 3705
[boedcher|mukasa|zuehlke]@mv.uni-kl.de

ABSTRACT
Developing user interfaces for ubiquitous environments is a
challenging task. In such an environment, users can apply
different devices to accomplish the same or different tasks. In
order to support the users, there should be similarities between
user interfaces on these different devices. Hence the user
interfaces need to be homogenous. The user interface developer
has to make sure that this requirement is fulfilled. There are two
approaches; either to design the user interfaces separately or to
find a way of defining common aspects once and then address
device specific aspects separately. Since the homogeneity is
difficult to reach with the first approach – let alone the fact that
much effort and time need to be invested – this paper defines a
concept for the second approach concentrating on applications in
the production automation. Common and variable design aspects
are discussed and a solution approach is presented.

Keywords

MB-UID, use model, user-interface model, Useware, useML

1. INTRODUCTION
As one of the results of the rapid technological advancement
humans will be surrounded with different devices to help them
perform their tasks. This phenomenon of different interconnected
devices is referred to as Ubiquitous Computing (in America) or
Ambient Intelligence (in Europe). They all define the fact that
users will have different, somehow unnoticeable, devices at their
disposal for the same or different tasks. These are characterized
by the miniaturization and embedding of microelectronics in
other objects as well as ubiquity and intelligence [3].

Ubiquitous devices are defined by three interfaces [1]: 1) a
(wireless) network interface to ensure access to other devices or
data bases. 2) Sensors to gather information from the environment
and actors to affect the environment. 3) The user interface to
allow humans the cooperation with different devices.

The development of user-oriented interfaces is already a
challenging discipline. The interactions with different cross-
linked devices will even boost this challenge. The number of
available information for the users will increase and the
complexity to interact with technical systems will get higher.
Platform wide structures for the usage of technical systems have
to be developed to support users in handling their tasks with
different devices.

Also the number of different devices in ubiquitous environments
is mostly not exactly predetermined. Thus the developer is facing
higher complexity as well. Developing user interfaces separately
for each device will lead to very high development efforts [4] and
the risk of implementing different usage structures. Therefore
defined development strategies have to be installed.

A model-based approach to define common and variable aspects
of different devices is the most promising approach that leads to a
ubiquitous environment where:

1) users can accomplish their tasks (on all available devices) in an
intuitive way using the same usage structures for similar tasks.

2) developers have a manageable development effort by defining
common design aspects once and just add the variable aspects for
each device.

The following results concentrate on the domain of production
automation that has some domain-specific restrictions to be
assumed.

2. ANALYZING COMMON AND
VARIABLE DESIGN ASPECTS
Before defining models, it is important to make an analysis of
common and variable design aspects. Till now, there has been no
clear differentiation of this point. Likewise, the term “platform
independent” has not been uniformly used. Some will call a
model “platform independent”, when it contains no specific
implementation terminologies like “window” or “button” etc. Yet
others will refer to models with these terminologies but that can
be adapted to different platforms as “platform independent”.
Clarification of this point is therefore an important issue, if the
model driven approach will come to success. By separating
common and variable aspects, it becomes obvious for developers,
which parts need to be changed in different models describing the
user interface. Figure 1 shows common and variable design
aspects for the production automation domain.

Tasks

Structur

Design

Tasks, Actions, Activities,
Workflow, Hierarchy

Classification, Frequency,
Priority

Composition, Navigation

UI 1 UI 2 UI 3 UI 4

platform independent
design

platform dependent
implementation

User

developer

Variabilities

Commonalities

Figure 1. Common and variable design aspects

2.1 Commonalities
The following commonalities were identified for the domain of
production automation. It has to be mentioned that these
commonalities find their way into the model-driven development
process in different process steps shown in section three to six:

Tasks: For a user-oriented approach the consideration of
hardware aspects is secondary in a first instance. Tasks, actions,
activities and operations describe the complexity and dynamic
aspects of users work in a technical surrounding.

Context: The context tasks are fulfilled in is the same on different
devices. Context might be user group (worker or technician),
usage situation (production or breakdown), surrounding (bureau
or factory floor) and others.

Frequency/Priority of usage: Tasks of special importance or
security relevant tasks can be marked to assure special treatment
within different devices

Navigation control: General aspects of navigation should be
established to assign dynamic sequences to different devices.

Layout/Composition: Abstract terms of design can be expressed
platform independent. This means e.g. relative positioning
aspects.

The consideration of commonalities helps developers to map
platform independent aspects to all development models.

2.2 Variabilities
By considering all commonalities there are only little parameters
left for defining concrete interaction platforms. These are only
briefly addressed by examples to describe their general
appearance.

Hardware-specification: The final definition of the hardware
platform gives way to the final design of user interfaces.
Hardware specification deals with e.g. sizes, interaction-elements,
modalities which define fonts, colours, output modalities, etc.

Technical aspects: Besides the user interface technical
specifications are made. These include interface definitions or
communication protocols.

Localisation: Consideration of different markets brings up
aspects of language and representation.

3. THE MODEL-DRIVEN USEWARE1
DEVELOPMENT PROCESS
A model driven approach requires that models are defined and
generated at specific stages in the development process. Therefore
there must be a specific flow of development activities. When
developing user-interfaces for machines, the Useware
development process indicated in Figure 2 is applied. This
consists of four overlapping phases accompanied by an iterative
evaluation phase. The iteration ensures that the results of each
step are accessed not only by the developers but also by the final
users [6].

Starting with the analysis phase data about user tasks, their
mental model, machine details, the working environment as well
as the organizational structure is collected. Several data collection
methods including interviews, direct observation of workers in
the workspace and questionnaires should be applied, since each
technique will only give partial information. The results are
mainly documented in a preliminary task model. The analyzed
data provides the data base for all following development phases.

task model,
function model

use model

• Users
• Machine
• Organization

task model Useware

user-interface
model,
run time model

use model,
platform model

user-interface
model

Struktur -
gestaltung

Detail -
gestaltung

Realisie -
rung

Evaluation

Analyseanalysis structuring design realisation

evaluation

Struktur -
gestaltung

Detail -
gestaltung

Realisie -
rung

Evaluation

Analyseanalysis structuring design realisation

evaluation

Figure 2. The model-driven Useware development process

Structuring the preliminary task model follows the analysis
phase. The previously defined task model and the model of
machine functionality are the main input of this phase where only
common usage aspects are addressed. This includes defining user
groups and their tasks, the usage context or the accessibility of
tasks at different devices and locations. It should be mentioned
that devices do not play any design role at this stage. They only
serve as filters that can be used to decide which tasks are
available at which device. The resulting use model can be
evaluated in terms of logical grouping, decomposition and others.
It means, for example checking whether each task has been
placed in the right context and if proper decomposition has been
done. The use model is independent of the later implementation
platforms.

Once the use model has been defined, user interface design can
begin. In the first step, further common design aspects
(Commonalities) are addressed in the abstract user interface
model. The next steps results into a concrete user interface model
that refines the abstract model by defining dialog objects and
other platform specific aspects (Variabilities). UI-Prototypes can
be directly generated from this model and tools can be developed
exporting the model into required programming languages.

Hard coding (programming) the GUI and implementing it on the
target machine is the task of the last phase; realization. The

1 Since ‘98 Useware is applied as collective term for all hard- and

software components used for operating technical systems [6].

platform also offers hardware capabilities, like for example
switches and hard-keys. The resulting Useware can then be
evaluated regarding design issues and real time performance.

4. THE USE MODEL
The task model has proven to be a good starting point for user-
oriented interface development [4]. Its feasibility to capture user
tasks and the way they are performed leads to a focus on the final
user during the development process. The preliminary task model
is therefore the basis for the use model.

The use model is defined by using useML. This is an XML-based
markup language for defining and structuring user tasks for
machine users [5]. Its main description elements are the use
objects (UO) and the elementary use objects (eUO). While the
UOs are logical equivalent to one or more related tasks, the eUOs
are the elementary actions. A use object therefore expresses a
general goal of one or more tasks. The useML elements and their
relationships are indicated in a simplified UML class diagram
shown in Figure 3.

UseModel

elementaryUseObject

UseObject
1..*

0..*

0..*

command select edit manipulate inform

0..*

0..*1..*

Figure 3. The main elements of useML
Since the meaning of the use model and the use objects is self-
explanatory, only details of the elementary use objects will be
provided here. As Figure 3 shows, there are five types of eUOs;
select, edit, manipulate, command and inform. These correspond
to the actions of the machine user and can fully describe all
interaction and information needs of users working with technical
systems.

select defines actions where the user can select one or many
values from a set of values that already exist in the system. This
selection can lead to changing a parameter in the machine
control, for example, changing the unit of speed from km/hr to
m/s, or to triggering a machine function, e.g., changing the
machine operation modus from “automatic” to “manual” by
selecting the required modus.

edit involves input of one absolute data value into the machine
system. Any available value will be overwritten.

manipulate is basically like edit with the exception that changes
are made relative to the existing value. It is therefore possible to
increment the speed from 15m/s to 17m/s with a pre-defined
incrimination factor. Logically only numeric values can be
manipulated.

command implies that the user can directly trigger an action or a
machine function resulting into its direct execution.

inform involves the user querying the machine for some
information. For example the user would like to know the status
of the machine. No further interaction is expected here.

With these few but elementary elements, it is possible to define
the use model in a platform independent way as the elements are
directly deduced form users tasks and extended by commonalities
like classifications, priority, etc. For the schema of the use model
and useML refer to [5].

5. THE PLATFORM MODEL
Another model is specified on behalf of the interaction platform.
As the name already implies, the model is platform specific.
However, it is possible to define a family of platforms that share
the same features. A platform is defined in terms of its hardware
specifications, its layout and supported dialog objects as well as
the available interaction devices. Ergonomic design rules to be
observed can also be provided. Hardware specifications include
the size and type of the platform and its resolution.

The platform layout defines the partition of the platform into
regions that hold logically related objects. For example, there may
be region for navigation, for direct function keys and a workspace
region for data display and manipulation [7]. The workspace
region differs from the other two while it contains dynamic
content. It is a main area where the user can view, enter or change
data. This can further be partitioned into message and status
regions and orientation (see Figure 4).

navigation

direct functions

statusmessage

orientation

workspace

navigation

direct functions

statusmessage

orientation

workspace

Figure 4. An example of a platform layout

6. THE USER-INTERFACE MODEL
In order to properly address common and variable design aspects,
the user interface model is organized into abstract and concrete
levels. Here each presentation and interaction is addressed
separately, resulting into a presentation model and an interaction
model as seen in Figure 5.

Presentation model Interaction model

ab
st

ra
ct

co
nc

re
te

Views
- User-interface objects
- layout
Navigation structure
…

Navigation control
Focus control
…

User-Interface model

Windows
- Dialog objects
- layout
Menu
…

Interaction objects
Activation control
…

Figure 5. Organization of the user-interface model

6.1 The abstract user interface model
The abstract user interface model uses special elements to address
platform independent aspects. At the abstract presentation level,
views and user-interface objects are used as abstractions of
screens and dialog objects. A user-interface object can be a
container of other objects or a simple one. Simple user-interface
objects can be of type edit, select or trigger. This corresponds to
input fields where data can be entered or edited, a selection field
with constant or variable data and elements for triggering direct
actions.

In order to define the layout for a view in a platform independent
way, the neighborhood principle is applied. This means that the
relative position of each object is defined by specifying its nearest
neighbors on its four geographical sides; east, west, north and
south. Figure 6 demonstrates the application of this principle to
define the ordering of two objects in the xml-code of the user-
interface model and the resulting user interface.

Info.Info. ContinContin.. OKOK

++

--

HomeHome

ProgrammHeizkurve

Fr.
Wochentag Zeit

00:00:00�

�

Temp.
16

<trigger id="inf" navindex="3">
<neighborhood>

<east neighbor="nav" bound="yes">
</neighborhood>

</trigger>

<trigger id="inf" navindex="3">
<neighborhood>

<east neighbor="nav" bound="yes">
</neighborhood>

</trigger>

<trigger id="nav" navindex="4">
<neighborhood>

<west neighbor=„inf" bound="yes">
<east neighbor="home" bound="no">

</neighborhood>
</trigger>

<trigger id="nav" navindex="4">
<neighborhood>

<west neighbor=„inf" bound="yes">
<east neighbor="home" bound="no">

</neighborhood>
</trigger>

Day
00.00
Time

Figure 6. An example of applying the neighborhood principle

The navigation structure should also be common to all user-
interfaces that are based on the same model. The structure does
not only define the number and ordering of the views, but also
their topology. The topology can be linear, tree like or network
like [2]. Depending on the type used, it can be possible to move
from one view directly to a hierarchical neighbor of the same
branch or to another branch.

In the interaction part of the user-interface model, navigation and
focus control are defined. While the navigation structure defines
the navigation topology, the navigation control specifies how the
change from one view to another should take place. The change
can either be automatic or it can be triggered by the user. An
example of the first case is automatically changing from any view
to a view locating the error source when a system error occurs. In
the second case, the user can explicitly trigger the change, for
example by pressing a button. The change can also be associated
with conditions. For example it can be stated that the change from
one view to another should only be possible when the user inputs
are complete and valid.

Focus control defines the change of sequence of the input focus
for the user-interface objects on one view. This can be
accomplished by providing a local index for each user-interface
object. The index is local since its scope is within a view or a
container.

6.2 The concrete user interface model
Having defined the user interface in an abstract way, the next step
is to map the user interface onto a concrete platform. Dialog

objects that are supported by the goal platform are identified and
the values for their attributes are specified. For example, their
position on the display as well as their size can now be specified.
The decision is made according to the requirements contained in
the abstract interface objects. It is important to mention that these
are general usage requirements and not design rules/principles. It
is left to the platform to find a way of meeting these requirements.
Of course ergonomic rules have to be obeyed.

The specification of the platform can be obtained from the
platform model. Once the platform is known, the number and
location of interaction objects can be determined. These are
special objects, which may be required to interact with other
objects on the user-interface. Basic usages of interaction objects
are navigation, focus control or triggering. Depending on the type
of platform, some might not be needed. For example no focus
control objects might be needed on a touch screen.

After determining the interaction objects, the activation control
can be defined. This specifies which object or object combination
is required to activate an action. This is especially important due
to security reasons. For example it can be required that two
interaction objects must be pressed at the same time in order to
start the machine.

7. Conclusion and future work
This paper has presented an approach for UI-development for
ubiquitous environments. It follows the model-based approach
where design aspects are captured by using different models.
These are products of the model-driven Useware development
process. Emphasis has been put on a clear definition of common
and variable design aspects, since this is a basis for the distinction
between platform independent and platform dependent models.
Platform independent aspects have been addressed in the use
model and in abstract user-interface model. The concrete user-
interface model and the platform model define platform specific
issues. Efforts of providing tool support for the development
process are underway.

8. REFERENCES
[1] Aarts, E.: Ambient Intelligence – A new user experience.

"Philips Ambient Intelligence". Website,
http://www.research.philips.com/InformationCenter/Global/
FArticleSummary.asp?lNodeId=712, 2002

[2] EN ISO 14915-2: Software ergonomics for multimedia user
interfaces- Part 2: Multimedia navigation control, 2003

[3] Mattern, F.: Total vernetzt, Springer, Berlin, Heidelberg,
New York, 2003

[4] Paterno, F.: Santoro, C.: One Model, many Interfaces. In:
Computer-Aided Design of UI, Kluwer Academic Publishers
Dordrecht, Boston, London, 2002

[5] Reuther, A.: useML – Systematic Useware-engineering with
XML. Kaiserslautern University of Technology, 2004

[6] Zühlke, D.: Useware-Engineering für technische Systeme,
Springer, Berlin, Heidelberg, New York, 2004

[7] VDI/VDE3850-Guideline: User-friendly design of useware
for machines, 2000

