
CROSI Mapping System (CMS)
Results of the 2005 Ontology Alignment Contest

Yannis Kalfoglou
Advanced Knowledge Technologies (AKT)

School of Electronics and Computer Science
University of Southampton, UK

y.kalfoglou@ecs.soton.ac.uk

Bo Hu
School of Electronics and Computer Science

University of Southampton, UK

bh@ecs.soton.ac.uk

ABSTRACT
In this results report we summarize our experiences
from running the CROSI Mapping System (CMS) over
three test cases for this year’s OAEI contest: bibliogra-
phy, Web directories and medical ontologies alignment
case studies. CMS successfully parsed and aligned all
input ontologies in all three case studies. We also elabo-
rate on the insights gained and potential research direc-
tions towards building more robust alignment systems
to cope with the increasing diversity of alignment re-
quirements.

1. PRESENTATION OF THE SYSTEM
The CROSI Mapping System (hereafter, CMS) has been
developed in the context of the CROSI project (which
stands for Capturing Representing and Operationalis-
ing Semantic Iinteroperability). CROSI, which is funded
by HP, started in November of 2004 and will run un-
til November of 20051. It aims to develop a systematic
approach upon which semantic interoperability can be
studied and operationalised by (a) capturing and ex-
posing semantics, (b) codify them in Knowledge Repre-
sentation formats, and (c) operationalise them for the
benefit of integration. One of the CROSI deliverables
that we used in the early stages of the CMS design,
was the notion of semantic intensity spectrum2 which
helped us identify what kind of tools and algorithms we
could employ in CMS for the OAEI contest. These were
used in a modular architecture we devised, reminiscent
of similar architectures proposed in the past (see, for
example, [4]), which we depict schematically in figure 1

1more can be found at: www.aktors.org\crosi
2more on: www.aktors.org\crosi\si-spectrum

In the core of this architecture lies the CMS system.
CMS is a structure matching system that capitalizes
on the rich semantics of the OWL constructs found
in source ontologies and on its modular architecture
that allows the system to consult external linguistic re-
sources.

Most of these resources use various families of algo-
rithms which aim to compute similarity based on string
distance, e.g. SecondString packages [1]. String dis-
tance is one of the widely used techniques in finding
correspondences between ontologies. It normally takes
as input the names of two concepts calculating the dis-
tance, by editing the distance in its simplest form or
hybrid distance functions in a more sophisticated form,
and output a numeric value to represent the confidence
of the similarity. Sometimes, natural language process-
ing methods are employed to cut down the number of
string tokens that need to compute the similarity for.

However, string similarity is not sufficient to capture the
subtle differences between classes with similar names
but different meanings and it can produce misleading
results. To alleviate the situation we can work with Nat-
ural Language Processing (NLP) packages that exploit
synonymy at the: 1) lexical-level, e.g. the use of Word-
Net [3] to provide a source of synonyms, hypernyms
and hyponyms; the 2) phrase- and sentence-level, e.g.
phrases and sentences in the active and passive forms
but having the same meanings; and the 3) semantic-
level synonymy.

Although WordNet-based approaches equip themselves
with the lexical synonymy of the names of classes, they
do not have the right measure to capture the struc-
tural information that is conveyed in most taxonomies.
Structural information is exploited in different ways.
Heuristic rules is the most common way to take struc-
tures into account, e.g. identifying similarity of two en-
tities based on the status of their parents and siblings.

The modular architecture depicted in figure 1 employs
a multi-strategy system comprising of four modules,
namely, Feature Generation, Feature Selection and Pro-

77

� � � � � � �
� � � � � � 	
 � � � �

 � � � � � � � � � � � � � �

� � �

� � � � � � �
� � � � � � � 	
 �

� � � � 	 � � � � � � � � �
� 	 � 	 � � � 	 � �

� � � � � � � �
 �
� 	 � 	 � � � 	 � �

� � � � � �
 �

 � � � � � � � � � � � � � !

 � � � � � � � � � � � � � "

 � � � � � � � � � � � � � #

� � �

$ % � � � & � ' � � � � � � � �
$ % � � � & � ' � � � � � � � !

$ % � � � & � ' � � � � � � � #

$ % � � � & � ' � � � � � � � "
� � �

Figure 1: CMS ontology alignment system and its modular architecture.

cessing, Aggregator and Evaluator. In this system, dif-
ferent features of the input data are generated and se-
lected to fire off different sorts of feature matchers. The
resultant similarity values are compiled by multiple sim-
ilarity aggregators running in parallel or consecutive or-
der. The overall similarity is then evaluated to initiate
iterations that backtrack to different stages.

CMS, is an instantiation of such a system. We include
a screenshot of the Web-based interface of CMS in fig-
ure 2. The system is still under development and we
only used the first two components, Feature generation
and Feature Selection and Processing, for aligning the
ontologies in the three case studies of the OAEI con-
test. The alignment algorithms and techniques used
are described in later sections but first we elaborate, in
the next section, on the purpose of CMS and highlight
some of its key characteristics, like the robust features
extraction module.

1.1 State, purpose, general statement
The process of ontology mapping (or alignment), can be
summarised as: given two ontologies, a system measures
the similarity of the source ontological entities against
the target ones and produces a list of correspondences,
i.e. mapping : Os, Ot → Cs×Ct∪Ps×Pt∪Is×It where
Oi is the input ontologies with i ∈ {s, t}, subscript
s indicating the source and t indicating the target, Ci

the set of classes, Pi the set of properties and Ii the
set of instances. Hence, the first step when deploying
CMS was to extract characteristics that can be used to
identify similar entities from different ontologies. We
summarize the characteristics we extracted in table 1.

There are several points that need further explanation.
First, in many cases, identifying corresponding instances
is considered to be an easier task than identifying cor-
responding classes. This is because instances are ex-
pected to have more grounded variables. Correspond-
ing instances provide a ground on which the number of
candidate mapping classes can be narrowed down to a
few (as we discovered in our past work with the IF-Map

instance-based system [?]). Second, in case of comple-
ment classes, let cs be a class from the source ontology
and ct from the target ontology, if sim(cs, ct) = a and
d = ¬c, we can safely conclude that sim(d, cs) = 1− a,
where sim/2 is the similarity function and a, a real
number, gives the confident value.

1.2 Specific techniques used
To fit the requirements of different applications, we
developed and implemented a series of mapping tech-
niques, which are regarded as independent components
that made up the CMS.

Name matchers

Ranging from pure syntactical approaches to more se-
mantic enriched ones, name matchers are categorised
as: String (tokenised) distance, Thesaurus, and Word-
Net hierarchical distance.

Levenstain distance is the simplest implementation of
string distance. More sophisticated ones are: Monge-
Elkan distance optimises edit-distance functions with
well-tuned editing cost and Jaro Metric and its vari-
ants computes an accumulated similarity of s and t from
the order and number of common characters between s
and t, just to name a few. In our system thesaurus
comes into play in two forms: WordNet3 and a prede-
fined corpora that are implemented as WNNameMatcher
and CorpusNameMatcher respectively. To facilitate the
use of WordNet, we assume that the local names of
classes are either nouns or noun phrases while the lo-
cal names of properties are phrases starting with verbs
followed by either nouns or adjectives. Elements in
the retrieved synsets are then compared against each
other using either exact string matching or one of the
string-distance based algorithms discussed in the previ-
ous section. WordNet arranges it entries in hierarchical
structures. Hence, the similarity between names can
be computed as followings: let wi and wj be the cor-
responding WordNet entries of namei and namej , w
3http://wordnet.princeton.edu/

78

Local features

class labels and URIs classes with same local names but different name spaces need to be treated

with caution, as there is a risk that they might be different in different contexts.

equivalent classes equivalent classes give the alternatives of a class that can be regarded as hints for

identifying new mapping candidates.

related property names both declared and inherited properties contribute to the meaning of a class

and thus should be extracted.

complement classes complement classes indicates semantic dissimilarity.

property labels and URIs same as for classes.

property domain and range the domain and range of a property can pin down the meaning of a class when name

matching is not sufficient.

inverse (transitive) property both inverse and transitive properties are regarded as hints for similar properties and

thus indirect hints for similar classes.

functional property functional properties play the same role in identifying corresponding classes as keys

do in element level database schema matching.

instance labels and URIs same as for classes.

instantiated classes instances are treated as a source of understanding semantics.

comments well documented design rationale is a reliable source for revealing semantics.

Global features

super and sub classes subsumption relationship help to identify the location of a class in the taxonomy

and thus capture the structural semantics.

sibling classes sibling classes provide the hint of how the parent class is defined.

super and sub properties properties’ hierarchy is useful in matching both properties and classes

disjoint classes disjoint cover should be treated as a special case.

comments comments sometimes are also given at the global level.

version information the record of modifications and authentication provides alternatives.

Table 1: Features extracted for Ontology Mapping.

be the least common hypernym of wi and wj , r be the
root of the underlying WordNet hierarchy, and hi, hj ,
h be the distances between wi and r, wj and r, w and
r, respectively, the similarity between wi and wj is ap-
proximated as 2× h/hi + hj .

Semantic matchers

In CMS, the flavour of semantic is added in two different
ways: namely structure-aware matchers and intension-
aware matchers.

Structure-awareness refers to the capability of travers-
ing class hierarchies and accumulating similarities along
the sub-class (sub-property) relationships. Let c and
d be two classes from source and target ontologies, ci

and di are their direct parents in respective ontologies,
the similarity between c and d is recursively defined as
sim(c, d) = αsimlocal(c, d)+βsim(ci, di), where α and β
are arbitrary weights and simlocal/2 gives the local simi-
larity with regard to c and d which can be computed us-
ing one or a combination of techniques discussed above.

Intension-awareness takes into account the definitions of
classes. A class c are regarded as a tuple 〈S, P 〉 where
S is a set of classes of which c is a subclass and P is

a set of properties having c as the domain and other
classes or concrete data types as the range. Hence,
finding the semantic similarity between c = 〈Sc, Pc〉
and d = 〈Sd, Pd〉 amounts to finding the similarity be-
tween Sc and Sd as well as Pc and Pd, i.e. sim(c, d) =
αsim(Sc, Sd) + βsimproperty(Pc, Pd), where α and β are
arbitrary weights and simproperty/2 computes the prop-
erty similarity. More specifically, we differentiate the
following situations:

• classes with matching property names, property
domains and property ranges: Lpc = Lpd

and
simset(∆pc , ∆pd

) ≥ v and simset(Φpc , Φpd
) ≥ v

where simset/2 computes the similarity of two sets
of entities and v is a predefined threshold.

• classes with matching property names and prop-
erty domains but different property ranges: Lpc =
Lpd

and simset(∆pd
, ∆pd

) ≥ v, simset(Φpc
, Φpd

) <
v, and

• classes with matching property names but differ-
ent property domains as well as ranges: Lpc = Lpd

and simset(∆pc
, ∆pd

) < v and simset(Φpc , Φpd
) <

v.

79

The first situation contributes the most to the simi-
larity of c and d. We regard classes with matching
names and exact matching properties, i.e., properties
with same name, domain and range, as semantically
equivalent classes.

In many cases, matching between ∆Pc and ∆Pd
(ΦPc

and ΦPc , respectively) can only be concluded after travers-
ing several levels upwards or downwards the class hier-
archy. Although not as strong as exact matching of
property domains and ranges, matching classes of ∆Pc

(ΦPc) to remote ancestors or descendants of classes of
∆Pd

(ΦPd
) provides a hint on how close the different

properties are, and thus how similar the two concepts c
and d are. Such an idea is implemented in our system
as a ClassDefPlusMatcher method.

1.3 Adaptations made for the contest
We didn’t do any major adaptations to CMS in order to
align the OAEI contest ontologies. We only did minor,
routine programmatic adjustments, as for example run-
ning the CMS system from the command line prompt
in a batch mode to parse and align the hundreds of on-
tologies in the Web directories case or include specific
Java heap size adjustment flags in order to run the sys-
tem over the vast FMA ontology. Other than that, the
system ran as normal.

2. RESULTS
CMS benefits from the plug and play of modular match-
ers. In this contest, four different matchers were used,
namely ClassDef for examining the domain and range
of properties associated with classes, CanoName for accu-
mulating similarities among class hierarchies, WNDisSim
for computing the distance between two class names
based on WordNet structures and HierarchyDisSim
for distributing similarity among class hierarchies. The
four major matchers were invoked both in parallel and
sequentially. When invoked in parallel their results were
then aggregated as weight average. On the other hand,
when invoked in sequence, CanoName and WNDisSim give
a list of corresponding classes whose similarities were
then refined by ClassDef and HierarchyDisSim. CMS
ran each test case with different configurations (com-
bination and sequencing) of the aforementioned four
mapping modules and precision and recall values were
calculated for each run. In this report, we include the
the configurations with the highest precision and recall
values.

2.1 Case 1: benchmark/BibTex ontologies
For all the ontologies in this case we used a threshold
of 0.8.

ontology 202: CMS fails to produce any mapping can-
didates with high similarity score in test case 202 due to
the naming convention. We consider class names as the
foundation on which other techniques can be applied

(although not the sole and dominant clue for finding
mapping candidates). Similarly, cases 248 to 266 also
fall into this category: no candidates with high similar-
ity value were found.

ontology 205: CMS does not achieve a high recall
rate for benchmark test case 205 due to the restriction
of WordNet. In case 205, class names are replaced by
randomly selected synonyms. CMS relies heavily on
external resources, e.g. WordNet, to provide lexical al-
ternatives for class and property names and thus fails
to respond well for synonyms that are not recognised
by WordNet. A customised corpus might alleviate the
problem and improve the performance with significant
efforts and domain expertise.

ontology 301: In test case 301, smaller similarity scores
were assigned to mapping candidates. This is due to
the fact that although classes have similar names, they
are defined with different properties which have differ-
ent names, domains and/or ranges. It is our contention
that for classes restricted with different properties, they
should either not be considered as equivalent classes or
their similarity value should be reduced to reflect such
difference.

2.2 Case 2: Web directories ontologies
We do not have any specific comments for Case 2. All
2265 were parsed successfully by CMS and fetched for
alignment. However, 29 ontologies did not produced
any alignment results due to circular definitions in the
original source.owl and target.owl files. So, a total
of 2236 pairs of source.owl/target.owl were aligned.
The system parsed them from the command line in a
batch mode, and the results produced after 2 hours and
53 minutes. Each cycle involved reading and parsing the
source and target ontologies, find alignments (if any)
and save and write the results in the common alignment
format in a file. This was repeated 2265 times.

2.3 Case 3: Medical ontologies
This case was the most interesting. The sheer size of
the input ontologies (especially that of FMA), the mod-
elling style of OWL, the conventions used, and the com-
plexity of the paradigm made it an interesting adven-
ture from the research point of view. We report in more
detail about our experiences in section 3.3.

3. GENERAL COMMENTS
Performance tuning and hardware settings: As
we were facing some really large ontologies (i.e., the 72k
classes FMA ontology), we had to do certain optimiza-
tions to the code and to the computer settings in order
to obtain alignment results in acceptable time. We ran
the tests on a stand-alone PC running Microsoft Win-
dows XP operating system, service pack II, 2003 ver-
sion. The PC had 1GB of memory installed (DDR400-
SDRAM), an 80GB Serial ATA hard disk, and a Pen-

80

Figure 2: Web-based Interface for CMS.

tium 4, 3.0GHz processor. We used Java VM (version
1.5.0 04) and we had to do certain configurations to ad-
just the heap size in Java. For example, the standard
Java heap size is 64MB. This was not enough though for
the Web directory and medical ontologies case. In fact,
for the medical ontologies case, the sheer size of the in-
put ontologies (especially that of FMA) forced us to use
a 768MB heap size. Settings lower than this threshold
caused the system to run out of memory.

Parsing and extracting experiences: FMA owl is a
31MB .owl file comprising of 72545 declarations of owl
classes and 100 relations (object and data type prop-
erties). These numbers were obtained when using our
Jena 2.2 API and probably deviate slightly from other
parsers. Parsing and extracting features from the FMA
ontology took 9 minutes and 17 seconds with Java Heap
Size adjusted to 512MB. However, in order to run the
CMS and find alignments with the OpenGALEN we had
to use a 768MB heap size setting. While parsing, Jena
API was complaining about the syntax idioms used.
For example we had a lot of warnings from Jena’s RDF
syntax handler, or the form ”bad URI in qname XXX:
no scheme found”. We elaborate on the reasons behind
this parsing warnings in section 3.3.

OpenGALEN.owl is a 4MB .owl file comprising of 24
declarations of owl classes and 30 relations (as previ-

ously, object and data type properties, and these num-
bers were obtained from Jena 2.2 API). Parsing and
extracting features from OpenGALEN took just a few
seconds. There was no need to adjust the Java heap
size.

3.1 Comments on the results
Different combinations of CMS plug-in matchers per-
form significantly differently due to the nature of bench-
mark test cases. Table 3.1 lists the choice of matchers
with regard to each test cases while Table 3.2 shows
performance values of different matchers4 with regard
to alignment of ontology 303 in case 1, in terms of pre-
cision and recall.

3.2 Discussions on the way to improve the pro-
posed system

CMS is expected to be improved on the following as-
pects: a more sophisticated aggregation mechanism, a
unified alignment representation formalism, and param-
eterised algorithms for class hierarchy distance.

Firstly, as discussed in previous sections, results from
multi-matchers are aggregated as weighted average with
arbitrary weights to start with. Thus far, the weights
are fine-tuned manually relying on the knowledge of the
4Results are obtained with equal weights for matchers.

81

CMS Matchers Test Case #

A 103, 201, 210,

A, B 205, 206, 207, 209, 301, 303

A, C, D 225, 228, 233, 236, 239-241, 246, 247,

248-266, 302

A, B, C, D 104, 203, 204, 208, 221, 222, 223,

224, 230, 231, 232, 237, 238, 304

A–Class Definition,
B–Canonical Name,
C–WordNet Hierarchy Distance,
D–Class Hierarchy Distance

Table 2: CMS matchers combinations.

CMS Matchers for #303 Precision Recall

Class Definition (A) 0.6923 0.4736

Canonical Name (B) 0.3243 0.6315

WordNet (WN) synonym 0.06 0.7894

WN Hierarchy Dis (C) 0.24 0.3157

Class Hierarchy Dis (D) 1.0 0.5263

WN synonym + hypernym (E) 0.04 0.8421

A + B 0.9 0.4736

A + E 1.0 0.4736

A + B + E 1.0 0.4736

A + B + D 1.0 0.3684

B + C + D 0.8 0.4210

B + C + D 0.8 0.4210

Table 3: Performance of different matchers for
test case #303.

domain of discourse and the underlying algorithms of
CMS. A more sophisticated approach would hire ma-
chine learning techniques to work out the most appro-
priate weights with regard to different matchers aiming
to solve different sort of mappings. Furthermore, re-
sults from different matchers can be sorted locally first
which could make accumulating results from different
matchers to be reduced to ranking aggregation [2].

Secondly, the heterogeneous nature of different match-
ers – some external matchers produce pairwise equiv-
alence with numeric values stating the similarity score
while others output high level relationships, e.g. same
entity as, more specific than, more general than and
disjoint with expressed in high level languages such as
OWL and RDF – suggests that output from different
matchers has to be lifted to the same syntactical and se-
mantic level. A unified representation formalism equipped
with both numeric and abstract expressivity can facili-
tate the aggregation of heterogeneous matchers.

Thirdly, CMS takes into account the exact position of
classes in the class hierarchy. We would like to develop

algorithms that penalise mapping candidates that are
found to be quite apart from each other, and then prop-
agate their similarity values upwards and downwards
in the hierarchy to their descendants and/or ancestors.
There could also be pre-defined parameters that as we
go up or down the hierarchy we change the similar-
ity values of their descendants and/or ancestors accord-
ingly. We expect that this could reduce the number of
false positive results.

3.3 Comments on the test cases
We do not have any specific comments for test cases on
BibTex and Web directories alignments. However, we
found interesting the last test case, that of medical on-
tologies alignment, and we summarize our experiences
below.

FMA.owl was a different case altogether. The ontology
describes the domain of human anatomy and it aims to
provide ”a reference ontology in biomedical informat-
ics for correlating different views of anatomy, aligning
existing and emerging ontologies in bioinformatics” [6].
However, there are two notable facts regarding the syn-
tactic and modelling idioms of FMA and existing re-
sults from previous efforts in trying to align FMA and
GALEN. As far as the former is concerned, the OWL
version we had to work with was a result of translation
from Protege. Previous work has shown that this result
is not always a faithful representation of the original
FMA Protege model. For instance, it has been reported
that FMA DL constructs are often ill-defined and they
lead to inconsistencies when a reasoner parses the ontol-
ogy [5]. Consistency checking for FMA is an acknowl-
edged problem though, even by its authors: ”[. . .] feed-
back from these investigators revealed an aggregate of
a few hundred errors, many of which related to spelling
and only a few to cycles in the class subsumption and
partonomy hierarchies.” [6].

Leaving aside this fact of life (as it is natural for an on-
tology that big and so close to human practice to be in-
consistent), we point to a couple of syntactic idioms that
we found interesting when parsing the ontology with our
Jena-based CMS system. Firstly, the rather unusual
use of unique frame IDs for class names (<owl:Class
rdf:ID> constructs) and the textual description of a
class in an rdfs:label construct. We also noticed some
unusual uses of references to frame IDs. For instance,
the declaration of ”arterial supply” as an object prop-
erty: <owl:ObjectProperty rdf:ID="arterial supply"
rdfs:label="arterial supply"> is used in other parts
of the ontology where it refers to a rdf:resource which
points to a different resource:
<arterial supply rdf:resource="#frame 14586"/>.
Tracing that frame ID leads us to a definition of a ”Tis-
sue” class, and not the ”arterial supply”: <owl:Class
rdf:ID="frame 14586" rdfs:label="Tissue">. The
definition of an instance (with frame ID 14586) of an ob-

82

ject property (”arterial supply”) that is a class (”Tis-
sue”) could lead to modelling misunderstandings and
confusion (although, syntactically speaking, it is allowed
in some versions of OWL).

Going back to our argument for the notable facts, we
found that previous efforts for aligning FMA to GALEN
reported rather controversial results. For example, in
[7], the authors employed two different alignment meth-
ods to map FMA to GALEN. Despite of the subtle dif-
ferences of OpenGALEN with GALEN, the similarity of
their work with that of the OAEI contest 3rd case study
is high but some of their findings are questionable from
the semantics point of view: for example, it was re-
ported that ”Pancreas” in FMA matches ”Pancreas” in
OpenGALEN with 1.0 similarity value which ”indicates
a perfect match” [7]. When we looked carefully at the
definitions of ”Pancreas” in both ontologies we saw that
”Pancreas” is defined as a class in FMA (<owl:Class
rdf:ID="frame 12280" rdfs:label="Pancreas">)
whereas in GALEN (OpenGALEN) as an instance of
class ”Body Cavity Anatomy”
<owl:Class rdf:ID="Body Cavity Anatomy">
<rdfs:subClassOf
rdf:resource="#OpenGALEN Anatomy Metaclass"/>
<Body Cavity Anatomy rdf:ID="Pancreas">
Even if OWL semantics allow to map an individual to
a class (when dealing with OWL Full), such an align-
ment is misleading especially when we consider the high
level of abstraction for the ”Pancreas” class in Open-
GALEN. It seems that the ”lexical phase” parsing used
in [7] was the main contributor to this high similarity
value when relatively little structure information was
taken into account. As a final comment on the case, we
also point the reader to observations made by the FMA
authors when trying to validate mapping results and
differences in terminologies with these two ontologies:
”[. . .]the reasons for the differences have not yet been
explored, but at least some of them may be the different
contexts of modelling. GALEN represents anatomy in
the context of surgical procedures, whereas FMA has a
strictly structural orientation.” [6].

3.4 Comments on the measures
The proposed measures of precision and recall have been
studied and practiced in the NLP community for years
and they are a de facto standard metric for commercial
applications, like search engines. However, we believe
that their adaptation for measuring the performance of
an ontology mapping system is somewhat questionable.
We cannot elaborate fully on our reservations regard-
ing the use of such a metric in this short paper, but we
highlight the main points of our objections: (a) preci-
sion is regarded as hard to implement and reveals the
usefulness of a retrieved document (or hit in a hitlist)
for a search engine. We can’t judge the usefulness of
a found alignment by comparing it with the reference
alignment; (b) neither precision nor recall take into ac-

count the possible applications of the alignments found.
In all the past EON (and this year OAEI) contests, a
set of pre-defined alignments were used as a standard
against which all found alignment were compared. This
does not say anything about the usefulness of the found
alignments, or even of they are complete as the pre-
defined ones can be erroneous. Further to these com-
ments, we would also like to add that the assignment
of numerical values in the range 0.0 to 1.0 does not re-
veal their semantic relevance, but purely a brute-force
algorithmic way of comparing performance. We also
observed a variety of interpretations of precision and
recall metrics by the ontology alignment community.

3.5 Proposed new measures
Devising new measures for assessing the found align-
ments between two ontologies in a universally agreed
manner is a difficult task. We do not see a quick solu-
tion to this problem, but as ontology engineers we can
apply knowledge engineering technologies that encom-
pass as much semantic information as possible; for ex-
ample, we were surprised that the semantically rich def-
initions of OWL for declaring class or property equality
(and inequality) and the universal construct for declar-
ing similarity, are hardly used by the community.

We would also like to see ways of introducing ”application-
driven” alignment metrics where an example applica-
tion (i.e., a Semantic Web service information lookup
engine) will need to access two different ontologies and
the alignments found will need to be used in the appli-
cation in a specific way. Having an application-driven
alignment metric, we can experiment with the notion of
usefulness of alignment in a real world scenario, rather
than doing meaningless number crunching with regard
to found and pre-defined alignments. After all, align-
ment needs to be done in the first place because there
is a real world need for it.

4. CONCLUSION
The 2005 OAEI ontology alignment contest was the
first one that introduced sizeable ontologies and posed
some interesting and challenging problems with respect
to performance, scaling and domain exploration. We
found it a rewarding experience and we look forward to
continue the fruitful exploration of this key field in the
emergent Semantic Web.

5. REFERENCES
[1] W.W. Cohen, P. Ravikumar, and S.E. Fienberg. A

comparison of string distance metrics for
name-matching tasks. In IJCAI 2003 IIWeb
Workshop, pages 73–78, 2003.

[2] R. Fagin, R. Kumar, and D. Sivakumar. Efficient
similarity search and classification via rank
aggregation. In Proceedings of the ACM SIGMOD

83

International Conference on Management of Data,
pages 301–312. ACM Press, 2003.

[3] C. Fellbaum. WordNet: An Electronic Lexical
Database. The MIT Press, 1998.

[4] M. Ehrig and S. Staab. QOM - Quick Ontology
Mapping. In Proceedings of the 3rd International
Semantic Web Confernece (ISWC’04), LNCS
3298, Hiroshima, Japan, page 683–697, 2004.

[5] C. Golbreich, S. Zhang, and O. Bodenreider.
Migrating the FMA from Protege to OWL.
Technical report, jul 2005. In notes of the 8th
International Protege Conference, Madrid, Spain.

[6] C. Rosse and JL. Mejino. A Reference Ontology for
Bioinformatics: The Foundational Model of
Anatomy. Journal of Biomedical Informatics,
36:478–500, 2003.

[7] S. Zhang, P. Mork, and O. Bodenreider. Lessons
learned from aligning two representations of
anatomy. In in Proceedings of the KR 2004
Workshop on Formal Biomedical Knowledge
Representation, Whistler, BC, Canada, pages
102–108, 2004.

6. RAW RESULTS
All of our results are included in a tabular format in
table 6.3. These results have been the best of the CMS
combinations with different matcher. We report on
those in section 3.1. So, for example, alignments for case
#103 were produced using CMS Matcher A, whereas
alignments for case 225 were produced using CMS Match-
ers A+B+C. A list of all this combibnation can be found
in table 3.2.

6.1 Link to the system and parameters file
Access to the Web-based interface of the CMS system
is provided via www.aktors.org/crosi/cms. We note
that the system is not available in the community for
free distribution yet, due to the legalities of the IPR for
the CROSI project.

6.2 Link to the set of provided alignments (in
align format)

The results of all three cases (BibTex, Web directories,
Medical) are available for download from the CROSI
web site at www.aktors.org/crosi/eon05contest/results.

6.3 Matrix of results

Name Prec. Rec. Time (s)
101 Reference alignment N/A N/A N/A
102 Irrelevant ontology N/A N/A 108
103 Language generalization 1.0 0.788 88
104 Language restriction 1.0 0.788 159
201 No names 1.0 0.189 70
202 No names, no comments N/A N/A
203 No comments 1.0 0.697 147
204 Naming conventions 1.0 0.605 153
205 Synonyms 1.0 0.230 85
206 Translation 1.0 0.255 82
207 1.0 0.264 88
208 1.0 0.473 149
209 1.0 0.103 84
210 0.818 0.246 74
221 No specialisation 1.0 0.788 129
222 Flatenned hierarchy 1.0 0.724 169
223 Expanded hierarchy 0.962 0.758 316
224 No instance 1.0 0.788 151
225 No restrictions 0.788 0.788 85
228 No properties 0.788 0.788 76
230 Flattened classes 1.0 0.760 161
231 Expanded classes 1.0 0.788 145
232 1.0 0.788 118
233 0.838 0.788 70
236 0.788 0.788 77
237 1.0 0.724 156
238 0.961 0.757 315
239 0.766 0.793 220
240 0.757 0.757 221
241 0.838 0.788 70
246 0.766 0.793 70
247 0.757 0.757 221
301 Real: BibTeX/MIT 1.0 0.363 30
302 Real: BibTeX/UMBC 1.0 0.348 31
303 Real: Karlsruhe 1.0 0.474 328
304 Real: INRIA 0.85 0.566 131

Acknowledgements
This work is supported under the Capturing, Represent-
ing, and Operationalising Semantic Integration (CROSI)
project which is sponsored by Hewlett Packard Labora-
tories at Bristol, UK. The first author is also supported
by the Advanced Knowledge Technologies (AKT) Inter-
disciplinary Research Collaboration (IRC) project which
is sponsored by the UK EPSRC under Grant number
GR/N15764/01.

84

