
Schema-based Query Optimization for XQuery Queries

Sven Groppe and Stefan Böttcher

 University of Paderborn, Faculty 5, Fürstenallee 11, D-33102 Paderborn, Germany
{sg, stb}@uni-paderborn.de

Abstract. XQuery is widely used for querying XML documents. Within this
paper, we examine optimization rules for XQuery queries that exploit type in-
formation of the input XML document given in XML Schema. These optimiza-
tion rules are applicable for all XQuery expressions and are very useful e.g. in
the scenario of XQuery queries on XQuery views. The basic idea is to trans-
form the XML Schema definition into a graph, which is extended to a graph
representing the XQuery expression. The latter graph is used to delete sub-
expressions of the XQuery expression that are not used to retrieve the final re-
sult of the given XQuery expression. We further include experimental results
that demonstrate the improvement of our optimization.

1 Introduction

The W3C has developed XQuery [25] for querying XML documents in recent years.
XQuery evaluators have not only been implemented for single XML documents, but
XQuery has also been integrated in many XML databases and XML-enabled data-
bases. However, query optimization for XQuery is still a major challenge.

In this paper, we introduce a new optimization technique for the following class of
XQuery expressions. We call the class of XQuery expressions CXQuery, which consist
of all XQuery expressions, which contain at least one sub-expression, which gener-
ates either no output at all or an intermediate result, which is not used to compute the
final result of the query. Our optimization technique identifies and eliminates those
sub-expressions of queries of CXQuery which do not generate any output or generate
superfluous intermediate results.

Even if queries are well designed, queries of CXQuery often occur in the following
important scenario of queries on views. A view describes how a certain section of the
stored data in the database is transformed. Now, a user can query the view to retrieve
all or a subset of the transformed data of the view. Inside database management sys-
tems, the query on the view and the view itself are composed and then evaluated as
one composed query. Whenever the user restricts the view by the query and does not
query for all the data of the view, the composed query can in general belong to the
class CXQuery. In these cases, applying our new optimization technique saves time of
processing the composed query. We show by experimental results that the execution
of the optimized query is much faster than computing the complete query, whenever
the size of all data is relatively large and we can avoid unnecessary computation of
unneeded intermediate results.

80

 81

The rest of the paper is organized as follows. Section 2 outlines an optimization
example. Section 3 describes our general approach for optimizing XQuery queries.
Section 4 presents a performance analysis. Section 5 refers to the related work, and
we end up with the summary and conclusions in Section 6.

2 Optimization Example

In order to illustrate our optimization, we start with an example. Let us consider the
following XQuery query in Fig. 1, which is composed of a view definition in line (1)
to line (19) and of a user defined query on this view in line (21). The XQuery query
in Fig. 1 shall be applied to the input XML document of Fig. 2 that fulfills the XML
schema definition of Fig. 3.

(1)let $view :=
(2) <root>
(3) <result>
(4) {
(5) for $a in
(6) document('p.xml')/conference/paper
(7) let $b :=
(8) <single_result>{$a}</single_result>
(9) return $b
(10) }
(11) {
(12) for $a in
(13) document('p.xml')/conference/tutorial
(14) let $b :=
(15) <single_result>{$a}</single_result>
(16) return $b
(17) }
(18) </result>
(19)</root>
(20)return
(21) $view/result/single_result/tutorial

Fig. 1. Query for retrieving the tutorials
<?xml version="1.0" standalone="no"?>
<!DOCTYPE conference SYSTEM "DTD\proceedings.dtd">
<conference name="All Topics">
 <tutorial name="Web Services">
 <author>Expert</author>
 </tutorial>
 <paper
 name="Solving unsolved problems">
 <author>Problem Solver</author>
 <author>Problem Searcher</author>
 </paper>
</conference>

Fig. 2. Input XML document p.xml

<xsd:schema xmlns:xsd='http://www.w3.org/2001/XMLSchema'>
<xsd:element name='conference'>

 82

 <xsd:complexType>
 <xsd:choice minOccurs=1 maxOccurs='unbounded'>
 <xsd:element name='tutorial'>
 <xsd:complexType>
 <xsd:element ref='author' minOccurs=0 maxOccurs='unbounded'/>
 </xsd:complexType>
 <xsd:attributeGroup ref='name'/>
 </xsd:element>
 <xsd:element name='paper'>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref='author' minOccurs=0 maxOccurs="unbounded"/>
 <xsd:element name='references' minOccurs=0 maxOccurs=1>
 <xsd:complexType>
 <xsd:element ref='conference' minOccurs=0

 maxOccurs='unbounded'/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:attributeGroup ref='name'/>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 <xsd:attributeGroup ref='name'/>
</xsd:element>
<xsd:element name='author'>
 <complexType mixed='true'/>
</xsd:element>
<xsd:attributeGroup name='name'>
 <xsd:attribute name='name' use='required'/>
</xsd:attributeGroup>
</xsd:schema>

Fig. 3. Schema of input XML document p.xml

When the XQuery query in Fig. 1 is evaluated on the XML document 'p.xml'
outlined in Fig. 2 and its XML Schema definition outlined in Fig. 3, at first the vari-
able $view is computed. Its content is presented in Fig. 4.

<root>
 <result>
 <single_result>
 <tutorial name="Web Services">
 <author>Expert</author>
 </tutorial>
 </single_result>
 <single_result>
 <paper
 name="Solving unsolved problems">
 <author>Problem Solver</author>
 <author>Problem Searcher</author>
 </paper>
 </single_result>
 </result>
</root>

Fig. 4. Content of $view when evaluating the query of Fig. 1

Thereafter, the result of the entire query of Fig. 1 is computed, the result of which
is presented in Fig. 5.

 83

<tutorial name="Web Services">
 <author>Expert</author>
</tutorial>

Fig. 5. Result of the query in Fig. 1

Note that the result in Fig. 5 is only a part of the fragment computed by the vari-
able $view. Although XQuery evaluators process the complete query in Fig. 1, and
therefore can optimize the complete query, current implementations ([6, 15, 18, 22])
always compute the entire content of the variable $view either at once or one XML
node after the next XML node by using an iterator. After that, current implementa-
tions project to the required part of $view.

In comparison, our approach computes a variable assignment of $view which
only contains those computations for the required part, which is used to compute the
final result. For example, the query in Fig. 6 is an optimized query of the query in
Fig. 1. Within Section 4, we present experimental results, which show the speed-up
factor of such optimized queries.

let $view :=
<root>
 <result>
 {
 for $a in
 document('p.xml')/conference/tutorial
 let $b :=
 <single_result>{$a}</single_result>
 return $b
 }
 </result>
</root>
return $view/result/single_result/tutorial

Fig. 6. Optimized query of the query in Fig. 1

In the following subsections, we describe how to eliminate sub-expressions in
variable assignments like $view so that only the required part is computed. This
optimization technique can be used in the important scenario of XQuery queries on
XQuery views, because one way to reformulate an XQuery query Q according to an
XQuery view V is to use the pattern presented in Fig. 7. Whenever there is a reference
in the XQuery query Q to the view V, the variable $view is used to access the view.

let $view := <root> { V } </root>
return Q

Fig. 7. Pattern of reformulating an XQuery query Q according to an XQuery view V

3 The General Optimization Approach

We design the optimization step of reducing the XQuery query independently of the
current instance of the XML document. The advantage is that the approach can opti-
mize the XQuery query in advance without connecting to any database. As the output
of XQuery expressions often contains whole sub-trees of the input XML document,

 84

we can use schema information of the input XML document in order to optimize
queries. For this purpose, we introduce the ordered schema graph, which is based on
the schema of the input XML document. We use this ordered schema graph for search
algorithms, which are outlined in Section 3.2 and Section 3.4.

3.1 Ordered Schema Graph

The ordered schema graph is generated from an XML Schema definition. As an ex-
ample, see the XML Schema definition in Fig. 3 and the ordered schema graph in Fig.
8.

Each node of an ordered schema graph represents an element node of the schema,
the document node or a dummy node (called :EMPTY node). The :EMPTY node
represents a whole choice expression or a whole sequence expression. There are three
kinds of edges: parent-child edges represent a parent child relationship between ele-
ment nodes, the document node and/or :EMPTY nodes. A sibling edge represents a
directed sibling relationship between element nodes, the document node and/or
:EMPTY nodes. Finally, an expression edge represents a relationship to a whole
choice expression or a whole sequence expression between element nodes, the docu-
ment node and :EMPTY nodes.

parent child

N2:conference
name CDATA

N4:tutorial
name CDATA

N6:paper
name CDATA

N5:author
text()

N8:author
text()

N9:references

N10:conference
name CDATA

sibling

sibling sibling

sibling

sibling

sibling

sibling

sibling

conference tutorial

paper

references

sibling
name right side

of the
production
“name“

expression
edge

N3:EMPTY

N1:DocumentNode

N7:EMPTY

parent child

N2:conference
name CDATA

N4:tutorial
name CDATA

N6:paper
name CDATA

N5:author
text()

N8:author
text()

N9:references

N10:conference
name CDATA

sibling

sibling sibling

sibling

sibling

sibling

sibling

sibling

conference tutorial

paper

references

sibling
name right side

of the
production
“name“

expression
edge

N3:EMPTY

N1:DocumentNode

N7:EMPTY

Fig. 8. Ordered schema graph of the schema defined in Fig. 3

We present here the general rules for generating the ordered schema graph from an
XML Schema definition:
• We create a start node of type :DocumentNode, the child of which is a node

representing that element, which is the root node of the XML document. In the
example of Fig. 3 and Fig. 8, N1 represents the document node and N2 represents
the root element node.

 85

• We add all (required, implied and fixed) attributes of any type of the correspond-
ing XML element E to the nodes representing E. In the example of Fig. 3 and
Fig. 8, we add the attribute name to the node N2.

• We transform the right-hand side of an element declaration according to the
following rules:

o Nodes of the ordered schema graph representing elements are the par-
ents of the representation of the right-hand sides of their element decla-
rations. In the example of Fig. 3 and Fig. 8, N1 is the parent of N2.

o Whenever an element E1 can be a following sibling node of another
element E2, we insert a sibling edge from E2 to E1. This is the case for
repetitions of elements (see right-hand sides of element declarations of
conference, tutorial, paper and references in Fig. 3 and
Fig. 8) and for sequences of elements (see right-hand side of paper).

Whenever the XML Schema defines an element to be a complexType defined
by a choice (see right-hand side of conference) or a sequence (see right-hand side
of paper), then we create an extra :EMPTY node for easy access to the whole choice
expression or the whole sequence expression, respectively. As an example, see node
N3 in Fig. 8 representing the xsd:choice element in Fig. 3 and node N7 represent-
ing the xsd:sequence element in Fig. 3.

3.2 Satisfiability of an XPath Expression According to a Schema

Definition: An XPath expression XP is satisfiable according to a schema, if and only
if there exists at least one document, which is valid according to the schema, where
XP is evaluated to a non-empty result.

The problem of satisfiability of certain subclasses of XPath expressions (without
respect to a schema) is in NP [14]. We present here a fast (but incomplete) satisfiabil-
ity test for XPath expressions according to a schema. The test is incomplete in the
following way. The test returns not satisfiable if we are sure that the XPath expres-
sion is not satisfiable according to a schema. Otherwise the test returns may be satis-
fiable.

 86

right side
of the
production
“name“

expression
edge

N2:conference
name CDATA

N4:tutorial
name CDATA

N6:paper
name CDATA

N5:author
text()

N8:author
text()

N9:references

N10:conference
name CDATA

sibling

sibling sibling

sibling

sibling

sibling

sibling

conference tutorial

paper

references

sibling

N3:EMPTY

N1:DocumentNode

N7:EMPTY

parent child
sibling

name

1.

2.
3., 8.

4., 9.

5.

6.

7.

Successful
evaluation of

/conference
/paper/

references/
conference/

paperX. marked node
of evaluation
step X

right side
of the
production
“name“

expression
edge

N2:conference
name CDATA

N4:tutorial
name CDATA

N6:paper
name CDATA

N5:author
text()

N8:author
text()

N9:references

N10:conference
name CDATA

sibling

sibling sibling

sibling

sibling

sibling

sibling

conference tutorial

paper

references

sibling

N3:EMPTY

N1:DocumentNode

N7:EMPTY

parent child
sibling

name

1.

2.
3., 8.

4., 9.

5.

6.

7.

Successful
evaluation of

/conference
/paper/

references/
conference/

paperX. marked node
of evaluation
step X

Fig. 9. Ordered schema graph with marked nodes according to the query

conference/paper/references/conference/paper

We use a modified XPath evaluator to test whether or not the XPath expression XP

is satisfiable according to a schema. The input of the modified XPath evaluator is the
schema and XP. First, the ordered schema graph is created according to the schema
by using the rules summarized in Section 3.1. After that, we execute the modified
XPath evaluator, which performs the task to check whether or not all elements and
attributes of paths within XP are available at the required hierarchical position. The
modified XPath evaluator starts at the node of type :DocumentNode representing
the document node. Within the ordered schema graph, there is all necessary informa-
tion in order to execute the modified XPath evaluator, as the parent-child-axis and the
next-sibling-axis are available in the ordered schema graph. The evaluator passes
empty nodes without consuming an element of the XPath expression XP. In compari-
son to an XML document, the ordered schema graph can contain loops. Therefore,
the modified XPath evaluator must consider loops when it revisits a node but did not
process the next location step within XP. For this purpose, the modified XPath
evaluator marks all the nodes that contribute to a successful evaluation of XP.

As an example, see the steps 1, …, 9 performed on the ordered schema graph of
Fig. 9 for the successful evaluation of the XPath query
/conference/paper/references/conference/paper. As in step 9 the
whole XPath expression is processed, this XPath query is considered to be satisfiable.

In general, with this technique, we can test whether or not a schema definition al-
lows only XML documents for which a given XPath expression XP can never be
successfully evaluated, i.e. for which the evaluation of the XPath expression returns
an empty set.

 87

3.3 XQuery Graph

N1:DocumentNode N11:result N12:single_result
sibling

(3) (8)

N13:single_result
sibling

(15)
$a in

line (12)

sibling

subgraph
of ordered schem

a graph

N14:tutorial
name CDATA

N15:author
text()

sibling sibling

tutorial

subgraph of ordered schema graph

N2:paper
name CDATA

sibling

N4:tutorial
name CDATA

N6:paper
name CDATA

N5:author
text()

N8:author
text()

N9:references

N10:conference
name CDATA

sibling

sibling sibling

sibling

sibling

sibling

sibling

conference tutorial

paper

references

sibling

N3:EMPTY

N7:EMPTY

$a in
line (5)

parent child
sibling

name
right side
of the
production
“name“

expression
edge

N1:DocumentNode N11:result N12:single_result
sibling

(3) (8)

N13:single_result
sibling

(15)
$a in

line (12)

sibling

subgraph
of ordered schem

a graph

N14:tutorial
name CDATA

N15:author
text()

sibling sibling

tutorial

subgraph of ordered schema graph

N2:paper
name CDATA

sibling

N4:tutorial
name CDATA

N6:paper
name CDATA

N5:author
text()

N8:author
text()

N9:references

N10:conference
name CDATA

sibling

sibling sibling

sibling

sibling

sibling

sibling

conference tutorial

paper

references

sibling

N3:EMPTY

N7:EMPTY

$a in
line (5)

parent child
sibling

name
right side
of the
production
“name“

expression
edge

Fig. 10. XQuery graph of the XQuery query of Fig. 1

For the optimization rules, we consider that subset of XQuery, where the XQuery
expression must conform to following rule Start in EBNF notation.

Start ::= (FunctionDecl)* FLRExpr.
FunctionDecl ::= "declare" "function" QName "(" ("$"
 QName ("," "$" QName)*)? ")" "{" ExprSingle "}".
FLRExpr ::= (ForClause | LetClause)+ "return" ExprSingle.
ForClause ::= "for" "$" VarName "in" ExprSingle.
LetClause ::= "let" "$" VarName ":=" ExprSingle.
ExprSingle ::= FLRExpr|IfExpr|PathExpr.
IfExpr ::= "if" "(" ExprSingle ")" "then" ExprSingle "else" ExprSingle.
PathExpr ::= ("/" RelativePathExpr?) |
 ("//"RelativePathExpr) | RelativePathExpr.
RelativePathExpr ::= (Step | PrimaryExpr)(("/"|"//")
 (Step | PrimaryExpr))*.
Step ::= ("child" | "descendant" | "attribute" | "self" |
 "descendant-or-self" | "following-sibling" | "following" |
 "parent" |"ancestor" | "preceding-sibling" | "preceding" |
 "ancestor-or-self") "::" (QName | "node()" | "*").

 88

PrimaryExpr ::= "$" QName | Constructor | FunctionCall.
Constructor ::= ("element" | "attribute") QName "{" ExprSingle "}".
FunctionCall ::= QName "(" (ExprSingle ("," ExprSingle)*)? ")".

This subset of XQuery contains nested for-let-return clauses, if expres-
sions, element and attribute constructors, declarations of functions and function calls.

We present here the general rules for generating the XQuery graph from an
XQuery expression: We generate an own XQuery graph for each variable assignment
$view of the XQuery expression. Every expression within the variable assignment
of $view, which generates output, gets its own new node N representing the output.
Variables (and also nested variables) are replaced with their content. We set a new
node N as parent node of every node in the XQuery graph representing output, which
could be generated as child node to the output of node N by the XQuery evaluator.
Furthermore, we relate the new node N with every node in the XQuery graph repre-
senting output, which could be generated as sibling node to the output of node N by
the XQuery evaluator, by a directed sibling relation. If the next generated output of
the XQuery evaluator is a sub-tree of the input XML document specified by an XPath
expression XP, we search within the ordered schema graph by the modified XPath
evaluator as before, and we retrieve a node set SN of nodes of the ordered schema
graph. We first copy the nodes of SN and copy all descendant nodes and all sibling
nodes, which can be reached from the nodes of SN by parent-child relationships and
sibling relationships. We copy also all parent-child relationships and sibling relation-
ships for the copied nodes. Finally, we set the current node as parent node of the
copies of SN. In the example of Fig. 10, which represents the XQuery graph of the
XQuery query of Fig. 1, these copies consists of the node N2 and its descendant
nodes N3 to N10, and the node N14 and its descendant node N15. We label the asso-
ciation with the XPath expression of the XQuery expression (or we use a reference;
here, line number (5) and (12)).

3.4 Optimization

This section outlines how the XQuery graph is used to optimize queries. In the fol-
lowing paragraphs, we describe the general rules for optimizing the query.

The first step of the optimization approach is as follows: Whenever the content of
a variable $view is queried by an XPath expression XP by $view/XP in the
XQuery query, we process the following optimization steps. We execute the modified
XPath evaluator on the XQuery graph of the variable assignment of $view with the
input XPath query XP. In the case of the XQuery expression in Fig. 1, the XPath
query XP is /result/single_result/tutorial for $view. The modified
XPath evaluator marks all nodes within the XQuery graph that contribute to a suc-
cessful evaluation of the query XP in the same way as an XPath query is evaluated on
the ordered schema graph.

 89

N1:DocumentNode N11:result N12:single_result
sibling

(3) (8)

N13:single_result
sibling

(15)
$a in

line (12)

sibling

subgraph
of ordered schem

a graph

N14:tutorial
name CDATA

N15:author
text()

sibling sibling

tutorial

subgraph of ordered schema graph

N2:paper
name CDATA

sibling

N4:tutorial
name CDATA

N6:paper
name CDATA

N5:author
text()

N8:author
text()

N9:references

N10:conference
name CDATA

sibling

sibling sibling

sibling

sibling

sibling

sibling

conference tutorial

paper

references

sibling

N3:EMPTY

N7:EMPTY

1. 2.

3. 4.

Successful evaluation of
/result/single_result

/tutorial

$a in
line (5)

right side
of the
production
“name“

expression
edge

parent child
sibling

name

X. marked node
of evaluation
step X

N1:DocumentNode N11:result N12:single_result
sibling

(3) (8)

N13:single_result
sibling

(15)
$a in

line (12)

sibling

subgraph
of ordered schem

a graph

N14:tutorial
name CDATA

N15:author
text()

sibling sibling

tutorial

subgraph of ordered schema graph

N2:paper
name CDATA

sibling

N4:tutorial
name CDATA

N6:paper
name CDATA

N5:author
text()

N8:author
text()

N9:references

N10:conference
name CDATA

sibling

sibling sibling

sibling

sibling

sibling

sibling

conference tutorial

paper

references

sibling

N3:EMPTY

N7:EMPTY

1. 2.

3. 4.

Successful evaluation of
/result/single_result

/tutorial

$a in
line (5)

right side
of the
production
“name“

expression
edge

parent child
sibling

name

X. marked node
of evaluation
step X

Fig. 11. Marked nodes of ordered schema graph for

/result/single_result/tutorial

Within a second step, we do not delete all the sub-expressions within the XQuery
expression from which the marked nodes in the XQuery graph are generated and
which do not assign variables, which are used in sub-expressions of marked nodes.
The for-statement defines how often and in which order the result-statement is
executed. Therefore, we do not delete for-statements, except if their return-
statement is reduced to an empty statement.

We delete all other unmarked sub-expressions and finally the optimized query re-
mains.

The pseudo code of the entire algorithm for optimizing XQuery queries is given in
Fig. 12, which expects an XQuery query Q as input and which returns the optimized
XQuery query Q’ as output.

In the case of the XQuery query in Fig. 1, we first generate the XQuery graph
shown in Fig. 10 for the variable assignment of $view. Then we mark the nodes
shown in Fig. 11, and finally we optimize to the XQuery query in Fig. 6.

 90

Algorithm OptimizeQuery
Input: XQuery query Q conforming to rule Start in Section 3.3
Output:Optimized XQuery query Q’

(1) Generate abstract syntax tree T of Q
(2) Compute XQuery graph XG with marked nodes of T
(3) all nodes in T, which correspond to marked nodes in XG Mark
(4) while(all children of a symbol ExprSingle of a LetClause

expression are unmarked) do
(5) delete the whole LetClause expression
(6) For all nodes n in T do
(7) If(n and its child nodes are unmarked and
 (n is a symbol ExprSingle and
 not(n is a parameter of a function call or
 n is a condition of an if-statement))
) then
(8) delete n (and its children)
(9) Compute Q’ from the remaining nodes of T

Fig. 12. Algorithm for optimizing XQuery queries

4 Performance Analysis

The test system for all experiments is a 1.7 GHz Intel Pentium 4 processor with 128
Megabyte RAM, Windows 2000 as the operating system and Java VM build version
1.4.2. We use the XQuery evaluator of Saxon version 7.9 [15].

We have generated test input XML documents of different size valid according to
the schema of Fig. 3 for all experiments, where every paper and tutorial ele-
ment contains exactly one empty author element. Furthermore, we have used the
XQuery query of Fig. 1 and the optimized query of Fig. 6. In the figures, we present
the average of 10 experiments.

In the first experiment, the test input XML documents consist of the same amount
of paper and tutorial elements. We increase the file size of the input XML
documents from approximately 8 Kilobytes to approximately 8 Megabytes. Fig. 13
shows the evaluation time depending on the filesize in Kilobytes. The evaluation of
the optimized query is approximately 1.8 times faster than the evaluation of the origi-
nal query for file sizes larger than 1.5 Megabytes. Fig. 14 presents how much faster
the evaluation of the optimized query is than the evaluation of the non-optimized
query.

 91

filesize in kilobytes
0 1000 2000 3000 4000 5000 6000 7000 8000

E
va

lu
at

io
n

tim
e

in
 s

ec
on

ds

0

10

20

30

40

50
non−optimized reformulated query
optimized reformulated query

Fig. 13. Experiment 1: Evaluation time depending on filesize

filesize in kilobytes
0 1000 2000 3000 4000 5000 6000 7000 8000

X
 ti

m
es

 fa
st

er

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
speed−up factor of the optimized reformulated query

Fig. 14. Speed-up factor in Experiment 1

In the second experiment, the size of the input XML document is constant (here
approximately 2 Megabytes), but we vary the amount of paper and tutorial
elements (see Fig. 15). The speed-up factor of the optimized query varies from 14.6,

 92

when there are no tutorial elements, to 1, when there are only tutorial ele-
ments (see Fig. 16).

Amount of tutorial elements in %
0 10 20 30 40 50 60 70 80 90 100

E
va

lu
at

io
n

tim
e

in
 s

ec
on

ds

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

non−optimized reformulated query
optimized reformulated query

Fig. 15. Experiment 2: Evaluation time depending on the selectivity of the query for a

constant filesize of 2 Megabytes

Amount of tutorial elements in %
0 10 20 30 40 50 60 70 80 90 100

X
 ti

m
es

 fa
st

er

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

speed−up factor of the optimized reformulated query

Fig. 16. Speed-up factor of Experiment 2

 93

5 Related Work

The contributions [8, 10, 20] introduce an algebra for XQuery. Additionally, they list
transformation and optimization rules based on the introduced algebra, but they do
not contain the optimization approach presented in this paper.

[2] describes how the language XQuery can be extended to support views. It de-
scribes the language extensions but does not describe how to optimize.

[17] projects XML documents to a sufficient XML fragment before processing
XQuery queries. It contains a static path analysis of XQuery queries, which computes
a set of projection paths formulated in XPath. Our approach optimizes the XQuery
expression itself and does not project XML documents.

Whereas the complexity of XPath query evaluation on XML documents is exam-
ined in [9], we consider the complexity of our XPath query evaluation algorithm on
an XQuery graph, which is a part of the proposed optimization steps for XQuery
queries.

[7] uses graph schemas to optimize regular path expressions within queries for
semistructured data. In comparison, we do not optimize a path expression according
to a schema, but avoid unnecessary transformation steps by eliminating query code
for the generation of output, which is not used further. Furthermore, we introduce an
ordered schema graph (and an XQuery graph as extended version for XQuery expres-
sions), which contain additional information in comparison to graph schemas like a
sibling relationship, and we deal with XPath as path language.

[14] deals with the problem of satisfiability of XPath expressions without respect
to schema information as e.g. by an XML schema definition. In comparison, we in-
troduce a fast (but incomplete) test that checks whether or not a given XPath expres-
sion is valid according to a given schema and according to a given XQuery expres-
sion.

[16] deals with the test of satisfiability of tree pattern queries, which cover a frag-
ment of XPath, without respect to a schema and with respect to an acyclic schema.
[16] discusses, when the test of satisfiability is NP-complete and when there exist
polynomial time algorithm for the test of satisfiability. In comparison, we introduce a
fast (but incomplete) satisfiability test according to a given schema, which can be also
a cyclic schema, and according to a given XQuery expression.

Papakonstantinou et al. [19] studies the inference of DTDs for views of XML data,
but uses the language loto-ql for the definition of XML views, which is less powerful
than XQuery. Furthermore, our approach optimizes all XQuery queries and cannot be
only used in the scenario of XQuery queries on XQuery views.

[4] investigates XML document specifications with schemas and integrity con-
straints. It deals with the consistency problem, i.e. whether or not there exists an
XML document that both conforms to the schema and satisfies the constraints. In
comparison, we investigate XPath and XQuery expressions and present a fast (but
incomplete) test that checks whether or not a given XPath expression is valid accord-
ing to a given schema.

[5, 21] describe frameworks for publishing relational data in XML. Both frame-
works allow specifying view definitions formulated in XQuery, and optimize the
reformulated query of a user-defined query according to a view by deleting unneces-

 94

sary parts. We follow this idea; however, we optimize even more, as we also consider
the restrictions of copied sub-trees of the input XML document within the user-
defined query and view.

Our work was inspired by contributions in [11, 12, 13], which deal with XPath
query reformulation according to an XSLT view and its optimization. In comparison,
in this paper we describe general optimization rules, which are especially applicable
for query reformulation on an XQuery view.

In comparison to all other approaches, we focus on the optimization of XQuery
queries based on the schema of the input XML document in order to eliminate
unnecessary query code, which computes not used intermediate results.

6 Summary and Conclusions

In this paper we have examined general optimization rules, which are applicable for
all XQuery queries, and which are very useful for example in the scenario of XQuery
queries on XQuery views. First, we have introduced a tester, which checks whether or
not a given schema allows only XML documents, where the evaluation of a given
XPath expression returns an empty set for all valid XML documents. In the second
step, we have extended the tester. The extended tester optimizes variable assignments
of XQuery queries so that computations of unnecessary intermediate results are elimi-
nated.

We have shown by experimental results that the evaluation of the optimized que-
ries saves processing costs depending on the amount of saved unnecessary intermedi-
ate results.

Future work will include further optimization rules, which, for example, also opti-
mize the order of operations within the XQuery expression.

References

1. Altinel, M., Franklin, M. J.: Efficient Filtering of XML documents for Selective Dissemi-
nation of Information. In Proceedings of 26th International Conference on Very Large Da-
tabases, Cairo, Egypt (2000)

2. Chen, Y. B., Ling, T. W., Lee, M. L.: Designing Valid XML Views, ER 2002, LNCS
2503 (2002) 463-477

3. Deutsch, A., Tannen, V.: Reformulation of XML Queries and Constraints, In ICDT 2003,
LNCS 2572 (2003) 225-241

4. Fan, W., Libkin, L.: On XML Integrity Constraints in the Presence of DTDs, Journal of
the ACM, Vol. 49, No. 3 (2002) 368-406

5. Fernández, M., Kadiyska, Y., Suciu, D.: SilkRoute: A Framework for Publishing Rela-
tional Data in XML, ACM Transactions on Database Systems, Vol. 27, No. 4 (2002) 438-
493

6. Fernández, M., Siméon, J., Chen. C., Choi, B., Dinoff, R., Gapeyev, V., Marian, A., Mi-
chiels, P., Onose, N., Petkanics, D., Radhakrishnan, M., Re, C., Resnick, L., Sur, G.,
Vyas, A., Wadler, P.: Galax pre-release 0.4.0 (2004) http://www.galaxquery.org

 95

7. Fernández, M., Suciu, D.: Optimizing Regular Path Expressions Using Graph Schemas,
Proceedings of the Fourteenth International Conference on Data Engineering (ICDE), Or-
lando, Florida, USA (1998)

8. Fisher, D., Lam, F., Wong, R. K.: Algebraic Transformation and Optimization for
XQuery, APWeb 2004, LNCS 3007 (2004) 201-210

9. Gottlob, G., Koch, C., Pichler, R.: The Complexity of XPath Query Evaluation, In Pro-
ceedings of the 22th ACM SIGMOD-SIGACT-SIGART symposium of Principles of data-
base systems (PODS 2003), San Diego, California, USA (2003)

10. Grinev, M., Kuznetsov, S.: Towards an Exhaustive Set of Rewriting Rules for XQuery
Optimisation: BizQuery Experience, ADBIS 2002, LNCS 2435 (2002) 340-345

11. Groppe, S., Böttcher, S.: XPath Query Transformation based on XSLT stylesheets, Fifth
International Workshop on Web Information and Data Management (WIDM’03), New
Orleans, Louisiana, USA (2003)

12. Groppe, S., Böttcher, S., Birkenheuer, G.: Efficient Querying of transformed XML docu-
ments, 6th International Conference of Enterprise Information Systems (ICEIS 2004),
Porto, Portugal (2004)

13. Groppe, S., Böttcher, S., Heckel, R., Birkenheuer, G.: Using XSLT Stylesheets to Trans-
form XPath Queries. Eighth East-European Conference on Advances in Databases and In-
formation Systems (ADBIS 2004), Budapest, Hungary (2004)

14. Hidders, J.: Satisfiability of XPath Expressions, DBPL 2003, LNCS 2921 (2004) 21 – 36
15. Kay, M.H.: Saxon - The XSLT and XQuery Processor (2004) http://saxon.sourceforge.net
16. Lakshmanan, L., Ramesh, G., Wang, H., Zhao, Z.: On Testing Satisfiability of Tree Pat-

tern Queries, In Proceedings of the 30th VLDB Conference (VLDB 2004), Toronto, Can-
ada (2004)

17. Marian, A., Siméon, J.: Projecting XML Documents. In Proceedings of the 29th VLDB
Conference, Berlin, Germany (2003)

18. Oracle, Oracle XQuery Technology – Preview (2004)
http://www.oracle.com/technology/tech/xml/xquery/index.html

19. Papakonstantinou, Y., Vianu, V.: DTD Inference for Views of XML Data, In Proceedings
of the Nineteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Data-
base Systems (PODS 2000), Dallas, Texas, USA (2000)

20. Paparizos, S., Wu, Y., Lakshmanan, L. V. S., Jagadish, H.V.: Tree Logical Classes for
Efficient Evaluation of XQuery, SIGMOD 2004, Paris, France (2004)

21. Shanmugasundaram, J., Kiernan, J., Shekita, E., Fan, C., Funderburk, J.: Querying XML
Views of Relational Data, In Proceedings of the 27th VLDB Conference, Roma, Italy,
(2001)

22. Software AG, Tamino XML Server (2004)
http://www.softwareag.com/tamino/News/tamino_41.htm

23. Wang, L., Mulchandani, M., Rundensteiner, E.A.: Updating XQuery Views Published
over Relational Data: A Round-Trip Case Study, Xsym 2003, LNCS 2824 (2003) 223-237

24. W3C, XML Path Language (XPath) Version 1.0 (1999) http://www.w3.org/TR/xpath
25. W3C, XQuery 1.0: An XML Query Language, W3C Working Draft (2003)

http://www.w3.org/TR/xquery

