
Automated context-driven composition of pervasive
services to alleviate non-functional concerns

Davy Preuveneers
Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Leuven, Belgium
Email: davy.preuveneers@cs.kuleuven.ac.be

Telephone: (+32) (0)16 327853
Fax: (+32) (0)16 327996

Yolande Berbers
Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Leuven, Belgium
Email: yolande.berbers@cs.kuleuven.ac.be

Telephone: (+32) (0)16 327636
Fax: (+32) (0)16 327996

Abstract— Service-oriented computing is a new emerging com-
puting paradigm that changes the way applications are designed,
implemented and consumed in a ubiquitous computing environ-
ment. In such environments computing is pushed away from the
traditional desktop to small embedded and networked computing
devices around us. However, developing mobile and pervasive
services for a broad range of systems with different capabilities
and limitations while ensuring its users a minimum quality of
service is a daunting task.

The core contribution of this paper is a context-driven com-
position infrastructure to create an instantiation of a pervasive
service customized to the preferences of the user and to the capa-
bilities of his device. We implement services as a composition of
components. This enables us to compose a service implementation
targeted at a specific device while still being able to adapt it at
run-time to respond to changing working conditions.

I. I NTRODUCTION

The third wave of computing is slowly appearing: ubiq-
uitous computing. This new computing paradigm promises
an augmented reality that changes the way people interact
with computers. It promises continuous human computer
interaction with small embedded and networked computing
systems around us that provide 24/7 access to information and
computational capabilities, and envisions pushing computing
away from the traditional desktop system [1].

When Weiser introduced the area of ubiquitous comput-
ing [2] in 1991, he put forth a vision of a deployment of
devices at varying scales, ranging from hand-held personal
digital assistants to larger shared devices providing the neces-
sary infrastructure support. He also envisioned a new paradigm
of interaction using natural interfaces such as speech, video
and sensor inputs, instead of traditional keyboard and mouse,
to facilitate communication between humans and computers.

This new way of interaction with computational devices
introduces two important non-functional requirements with
respect to the development of pervasive services. The first
requirement is that services should not be developed from
scratch to provide an optimal implementation for each device
with different capabilities and limitations. As such, the design
and the deployment process of services should offer the
software engineer the necessary flexibility to target services

to a broad range of systems, ranging from personal hand-
helds and smart phones to larger set-top boxes. The second
requirement is that applications and services need to be less
dependent on user-intervention and prevent users from being
overwhelmed with intrusive human computer interactions.
Therefore, service-oriented architectures must be able to gather
information about the user and his physical and digital envi-
ronment to autonomously adapt the behavior of the provided
services according to the current context of the user and the
device he is interacting with. It are these two gaps that our
infrastructure is trying to fill in.

To alleviate the first concern we employ a component-based
software engineering methodology [3] for building services
to be consumed within ubiquitous computing environments.
Component-based software engineering is being recognized
as an important approach for software upgrade and dynamic
reconfiguration in dependable resource-constrained and em-
bedded devices. As such, services are a collection of inter-
connected computational building blocks that offer a certain
functionality to a network of devices with varying capabilities.
The second concern with respect to customization of services
is tackled by context-driven composition of components and
using context-awareness, including user preferences, to in-
crease the non-intrusiveness of pervasive services. The overall
objective is to achieve automatic composition of customized
pervasive services using components as building blocks by us-
ing contextual information [4] for dealing with the variability
of pervasive computing devices and user personalization.

In section II we discuss several non-functional concerns
with respect to services being targeted at ubiquitous comput-
ing environments and how a component-based development
methodology can be of help for designing and deploying per-
vasive services. Section III discusses how context, including
user preferences and resource availability among other infor-
mation, and components are formally specified in OWL to sup-
port automated service composition for optimal deployment
on a specific device. The core ideas of automated context-
driven composition of components into services are directly
illustrated in section IV and build upon previous work on
context modeling [4], pervasive service specification [5] and

context management support [6]. In section V we evaluate our
composition infrastructure. Section VI provides an overview
of related work. We end with conclusions and future work in
section VII.

II. N ON-FUNCTIONAL CONCERNS OF PERVASIVE SERVICES

Pervasive services offer a certain functionality to nearby
customers and are accessed in ananytime-anywherefashion,
while being deployed on all kinds of devices. The aspects
of user mobility, personalization and context-awareness may
activate service adaptation and migration to other devices
with different characteristics. In this section we review several
non-functional concerns with respect to ensuring that all the
requirements of the delivery and provision of the service to
be consumed in a mobile and pervasive setting are met.

These concerns have an impact on the design and the de-
ployment of services and often define deployment constraints
that take the capabilities and limitations of a device into
account as well as any user requirements or preferences with
respect to the service.

A. Resource-awareness

In the ubiquitous computing setting, available services will
approach the user on detection of his presence, while the user
wants to have the best deals. However, this multi-user and
multi-computer interaction causes a competition of resources
on shared devices. Therefore, resource-awareness about the
maximum availability and current usage of processing power,
memory, network bandwidth, battery lifetime, etc., is a pre-
requisite to guarantee a minimum quality of service.

Due to the black box nature of components, a component’s
functional properties (interfaces and task description) as well
as its non-functional properties (resource requirements and
adaptation policies) [7] can be specified more easily to better
support resource-awareness.

B. Mobility

User mobility is a corner stone of the society of tomorrow.
Due to possible wireless network disruptions, a user may wish
to download and run a service locally. If, on the other hand, the
downloaded service does not run within the currently available
resources of the device, the user may wish to run the service
on a remote more powerful device in the vicinity of the user
or to relocate (parts of) an already running service. In both
cases the mobile setting of the user triggers service migration
to other devices.

The encapsulation of the implementation of components and
their message-based interaction make it easy to relocate a com-
ponent for distributed execution of the service by instantiating
the component elsewhere [8] and rerouting the messages.

C. Adaptation

In the face of highly dynamic environments, heterogeneous
devices and their changing context, services will need to adapt
to changing working conditions.

For stateless components, a component can be replaced
with a similar component at runtime as long as the syntax

Fig. 1. A simple component-based application

and semantics of the interfaces of a component remain the
same [9]. Other components may require state transfer first.

D. A simple component-based application

Our pervasive service design methodology makes use of the
SEESCOA component methodology [10] which is targeted at
software development for embedded systems. This implies that
a pervasive service incorporates components and connectors
to fulfill its functional aspects.Componentsprovide the func-
tional building blocks of a service and useComponent Ports
as communication gateways to other components.Connectors
serve as the message channel between these ports. Commu-
nication between component ports is managed by sending
asynchronousMessages. Contracts [7] define restrictions or
requirements on two or more components or ports, for ex-
ample, to limit or guarantee memory availability or to define
timing constraints.Composite Componentsare prefabricated
compositions of component instances and act to the outside
as regular components. Their component ports are exported
internal component ports.

The example in Figure 1 shows how three components,
Number Generator , Switch andControl Relay , are
composed into a new composite componentPausible
Number Generator . The number generator repeatedly
provides random numbers with a user-defined frequency. If
the Switch component is enabled, then the numbers are
shown on a screen by theNumber Display component.
The random number generator interacts with theScheduler

component to get notified of when to send out a new number.
The user is able to interact with the application by using the
Interactive Shell component. It provides a prompt to
send messages to the application, for example, to pause and
later continue the random number generation by (de)activating
the switch. These messages are intercepted by theControl
Relay component, which forwards the messages to the right
component. TheTiming contract specifies timing constraints
for sending messages from the number generator to the switch
to ensure that messages are delivered on time, and is only
shown here for demonstration purposes.

III. I NTEGRATING CONTEXT-AWARENESS INTO

COMPONENT-BASED PERVASIVE SERVICES

The example in Figure 1 is an extension of an even smaller
application that does not include the switch and control relay.
In the latter case, the user is not able to pause the random
number generation.

The core of our contribution is that pervasive services
are modeled by specifying all components, including the
optional components and that these components are instan-
tiated by selecting an appropriate implementation or bypassed
depending on the current context of the device or any user
requirements. The functional specification of components and
runtime support for their non-functional concerns in com-
ponent systems allow the programmer to design services in
terms of components and focus on program logic instead of
deployment dependencies. With proper middleware support,
the programmer does not need to implement resource moni-
toring, decision making or adaptation of services to respond
to changing working conditions.

Two prerequisites for context-aware composition of per-
vasive services are an explicit model for specifying context
and middleware that is able to gather and interpret this
contextual information. In the Context Toolkit [11], context
is modeled as a set of key-value pairs. The more structured
approaches for modeling context that have been proposed
in the past use RDF [12], UAProf and CC/PP [13], and
CSCP [14]. Ontologies, which allow the definition of more
complex context models, have been used in several context
modeling approaches [15], [16], [17].

We have designed a context ontology [4] in OWL based on
the concepts ofUser, Platform, ServiceandEnvironment. This
ontology is specifically targeted at context-driven adaptation
of mobile services [18]. This context ontology is used in our
context management system which is discussed in [6]. The
context management system, which in itself is also component-
based, provides all the necessary information for context-based
composition and adaptation of pervasive services. Pervasive
services in our methodology are more than just a collection of
components with specific responsibilities. In [5] we provide
a more detailed specification of pervasive services. In short,
pervasive services act as normal composite components but
with the following extra dedicated ports:

• Service Information Interface:the Service Information
Interface provides a static description of the semantics

<owl:Class rdf:ID="SimpleComponent">
<rdfs:subClassOf>

<owl:Restriction>
<owl:minCardinality rdf:datatype="&xsd;#int">
1</owl:minCardinality>
<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasPort" />
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="CompositeComponent">
<rdfs:subClassOf rdf:resource="#SimpleComponent" />
<rdfs:subClassOf>

<owl:Restriction>
<owl:minCardinality rdf:datatype="&xsd;#int">
1</owl:minCardinality>
<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasComponentInstance" />
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:about="#hasComponentInstance">
<rdfs:domain rdf:resource="#CompositeComponent" />
<rdfs:range rdf:resource="#ComponentInstance" />

</owl:ObjectProperty>

<owl:Class rdf:ID="Port">
<rdfs:subClassOf>

<owl:Restriction>
<owl:cardinality rdf:datatype="&xsd;#int">
1</owl:cardinality>
<owl:onProperty>

<owl:DatatypeProperty rdf:ID="maxInstances" />
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="PortGroup">
<rdfs:subClassOf rdf:resource="#Port" />

</owl:Class>

...

Fig. 2. A meta-model specification of a component in OWL

and syntax of a service and its service ports, and hence
of how the service can be interfaced, so that other
components or services can discover and use the service.
This information is expressed in OWL-s [19]. This port
is used to gather information about resource requirements
and adaptation policies.

• Service Control Interface:The Service Control Interface
is a standard dedicated interface for controlling a service.
It allows the service to be (re)started, updated, relocated,
stopped and uninstalled. By making this an obligatory
interface, no knowledge about the other service ports is
required for basic service management. This port is used
to alleviate the adaptation concern.

• Context Interface:The Context Interface is responsible
for the sending and receiving of the context information
available at run-time when the service is active. Among
other things, it allows the service to be notified of new
resources, and to inform other services or devices about
resources currently in use by this service.

By modeling services as components, all aspects of composing

Fig. 4. Internet Gateway Service and Communication Service

<profile:serviceParameter>
<compprofile:RequiredResources rdf:ID="requiredMemory">

<profile:sParameter>
<context : Memory>

<context : bytes >1048576</ context : bytes >
</ context : Memory>

</profile:sParameter>
</compprofile:RequiredResources>

</profile:serviceParameter>

Fig. 3. Minimum memory requirement as ServiceParameter in OWL-s

components into a services apply to services is well, which
means that services can be combined to form a new service.

The automated composition of our infrastructure requires
that all components are fully specified. We therefore created
a component ontology in OWL which serves as a meta-model
of all the concepts of the SEESCOA methodology, speci-
fying components, ports, messages, parameters, connectors,
contracts, etc. as anOWL Class, ObjectPropertyor Datatype-
Property with cardinality restrictions where appropriate. See
Figure 2 for a partial meta-model specification of a compo-
nent in OWL 1. It allows the software engineer to validate
component descriptions by using a regular OWL validator [20]
so that for automated composition the infrastructure can rely
on correctly specified components. As components are self-
contained and perhaps independently developed, we have to
make sure that messages sent out by one component port are
well understood by the other component port on the receiving
part of the connector. We therefore also declare all message

1The complete OWL meta-model specification of a component can
be found at http://www.cs.kuleuven.ac.be/˜davy/owl-s/
Component.owl

types as concepts in another OWL file. This concept ontology
is necessary as messages are not restricted to primitive data
types, such as strings and integers, but can also include
objects of any kind of which the inheritance properties can
be modeled in the concept ontology as well. The component
and concept ontology allow us to make sure that alternative
implementations of the same blueprint match syntactically and
semantically and that connected component ports exchange
messages that are understood by both parties.

Context-awareness comes into play during the evaluation
of the non-functional properties of services and components.
The service and each component separately can specify min-
imum resource requirements, such as the minimum avail-
ability of memory, processing power or network bandwidth.
These resource requirements are specified by extending the
serviceParameter concept in OWL-s of which an exam-
ple is given in bold in Figure 3. In this example, a minimum
memory requirement for the service is specified, but it could
have been any contextual requirement with respect to concepts
in our context ontology [4]. For example, user preferences in
a certain context with respect to a service could be taken into
account to increase the non-intrusiveness of the service.

Our context-driven composition infrastructure instantiates a
pervasive service by connecting a selection of components
such that all requirements hold. In the next section, we will
describe an example of a service with several optional com-
ponents that can be activated when possible. These optional
components require extra resources, and we therefore specify
triggers to model QoS requirements and to define adaptation
policies.

IV. CONTEXT-DRIVEN COMPOSITION OF PERVASIVE

SERVICES

The core ideas of how our infrastructure supports automated
context-driven composition of pervasive services are discussed
in this section. The concepts of taking into account the
capabilities and limitations of a device, resource awareness and
user preferences in a specific context are illustrated by means
of an example. We also provide an outline of our algorithm
to discuss the steps taken to deploy a customized pervasive
service and mention implementation details.

Consider the following scenario in a ubiquitous and mobile
computing environment where two friends, Jack and Jill, are
having a conversation over the Internet:

“Jack is heading off to work and using public transport.
He is using his advanced smartphone and a shared Internet
gateway service on the train. Bandwidth is equally shared by
all passengers currently logged on to the Internet gateway
service. Jill is at home using her laptop with broadband
Internet connection and has no resource limitations.

The communication service both Jack and Jill downloaded
on their device is able to communicate using text messaging,
speech and video, sorted by increasing bandwidth require-
ments. The speech and video quality (high, medium and low)
depends on the compression, the frame rate and the frame
size being used. These parameters are chosen dynamically
depending on the available bandwidth and processing power
on the smartphone or are defined as user preferences in a
certain context.”

A. The component-based model of the communication service

See Figure 4 for a simplified overview of both services. We
will now focus on theCommunication Servicefor which a
composition will be auto-instantiated depending on the current
context of the user and the communication device. The service
has the following components:

• Audio Encoder and Decoder: Adaptable and optional
components for (de-)compressing the audio stream with
high, medium or low quality encoding.

• Video Filter: Optional components for reducing the video
frame rate or changing the frame size. See Figure 5
for an instantiation of the OWL component meta-model.
The component name and port names are in bold for
clarification purposes.

• Video Encoder and Decoder: Adaptable and optional
components for (de-)compressing the video stream with
high, medium or low quality encoding.

• Controller: (de-)multiplexes text, speech and video, and
sends/receives the combined data stream.

The audio and video components in this service model are
optional, and can be activated when enough resources are
available. These components can have several implementations
using different encoding schemes. Both parties would have to
agree which encoding schemes can be used on the two com-
munication devices. However, in this example one party, Jill,
has no resource restrictions and can instantiate any component
she likes.

<component: SimpleComponent rdf:ID=" FrameRateFilter ">
<component: hasPort rdf:resource="# FrameRate "/>
<component: hasPort rdf:resource="# VideoIn "/>
<component: hasPort rdf:resource="# VideoOut "/>

<component: PortGroup rdf:ID=" FrameRate ">
<component:maxInstances rdf:datatype="&xsd;#int">
1</component:maxInstances>
<component:hasMessage>

<component:InMessage rdf:ID="SetFrameRate">
<component:hasParameter>

<component:Parameter rdf:ID="FramePerSec">
<component:parameterType rdf:datatype=

"&xsd;#anyURI">&xsd;#int
</component:parameterType>

</component:Parameter>
</component:hasParameter>

</component:InMessage>
</component:hasMessage>

</component: PortGroup >

<component: PortGroup rdf:ID=" VideoIn ">
<component:maxInstances rdf:datatype="&xsd;#int">
1</component:maxInstances>
<component:hasMessage>

<component:InMessage rdf:ID="NewFrame">
<component:hasParameter>

<component:Parameter rdf:ID="Frame">
<component:parameterType rdf:datatype=

"&xsd;#anyURI">&concepts;#VideoFrame
</component:parameterType>

</component:Parameter>
</component:hasParameter>

</component:InMessage>
</component:hasMessage>

</component: PortGroup >

<component: MulticastPort rdf:ID=" VideoOut " />
<!-- Similar to the video-in port -->

...
</component: SimpleComponent >

Fig. 5. Instantiation of the OWL component meta-model for a video frame
rate filter component

B. Resource requirements for deployment

The minimum resource requirements for the service, as
shown in bold in Figure 3, specify what is needed to have a
text-based conversation. This kind of communication requires
the least bandwidth and processing power. If more resources
are available, audio and video-based communication can be
enabled as well. Information about available resources is pro-
vided by our context management system [6]. In this example,
the limiting factors are the processing capabilities of the smart
phone and the available bandwidth for each passenger. An
overview of all resource requirements is given in Table I.
The total bandwidth requirements for video streaming depend
on the quality options and the use of other video filters. The
processing power requirements are only an estimate as a real
device may have hardware support for multimedia applica-
tions. Our prototype is implemented in the Java language and
makes use of other pure Java libraries. Therefore, the system
requirements are a lot higher to process audio and video on
demand in real-time.

C. User preferences in a certain context

A user may have a preference stating that during office hours
the high quality option for video encoding should be used.

TABLE I

NON-FUNCTIONAL REQUIREMENTS AND RESTRICTIONS OF THE COMMUNICATION SERVICE.

Component Optional User Preference Processing power Bandwidth
Text-based Messenger false - ≈ 50 MIPS > 0 bps

Audio Encoder/Decoder true High Quality ≈ 200 MIPS 64 kbps

Medium Quality 32 kbps

Low Quality 8 kbps

Video Encoder/Decoder true High Quality ≈ 800 MIPS 10:1 Reduction

Medium Quality 20:1 Reduction

Low Quality 30:1 Reduction

Frame Resizer true - ≈ 100 MIPS 4:1 Reduction

Frame Rate Filter true - ≈ 50 MIPS 2:1 Reduction

<context :UserPreference rdf:ID="VideoEncoding1">
<context : prefProperty rdf:resource="# VideoQuality "/>
<context : prefValue rdf:resource="&concepts;# High "/>
<context :prefCondition>

<context : Location >
<context :where rdf:resource="&concepts;# Office "/>

</ context : Location >
</ context :prefCondition>
<context :prefCondition>

<context : Time >
<context :when rdf:resource="&concepts;# NineToFive "/>

</ context : Time >
</ context :prefCondition>

</ context :UserPreference>

Fig. 6. User preference with respect to video encoding

See Figure 6, the preference property and value as well as the
time and location conditions are marked in bold. Using this
contextual information, an appropriate service is instantiated
that takes any user preferences and the current available
resources and the limitations and capabilities of the device into
account. For example, before deploying the communication
service on a PDA or smart phone, we check if the hardware
has the necessary support for video communication as, for
example, not all devices have a camera on-board.

D. Outline of the context-driven service composition proce-
dure

The goal of our context-driven composition infrastructure
is an automated instantiation of a service targeted at the
capabilities of a specific device that takes into account any
user preferences in a specific context. The whole algorithm
is entirely based on the processing of OWL and OWL-s
specifications and consists of the following steps.

1) Hardware Process the hardware description of the de-
vice to discover resource specifications, such as max-
imum available memory, processing power, network
bandwidth, etc., as well as support for user input and
output, such as microphone, camera, speaker, keyboard,
display, sensors, etc. This is part of the context specifi-
cation of a device and is largely static information.

2) Resource awarenessRequest the current available re-
sources from the context management system. This is
also part of the current context, but mostly dynamic
information achieved by monitoring the system.

3) Service requirementsCheck any I/O requirements of
the service with the I/O support of the device. Check
if the minimal resource requirements can be fulfilled. If
deploying is not possible, then stop or propose to run
the service on another device in the neighborhood or
relocate already running services.

4) User preferencesCheck for all preferences if the con-
text of application is fulfilled and if these preferences
can be enforced given the available resources. Checking
if the context applies, may require some reasoning steps,
for example, to determine that geographical coordinates
of a GPS system point to a location known as our office.

5) Component selectionGiven the available resources,
eliminate all optional components which resource re-
quirements are too demanding. For each obligatory
component, retrieve the resource requirements for all of
its implementations.

6) Constraint solving Given the above resource constraints
of the device and the requirements for the obligatory
components and user preferences, solve the set of equa-
tions to find a minimal composition of component in-
stances. Cut down on the user preferences if no solution
is found.

7) Adaptation policy Check which optional components
can be enabled for the preliminary minimal service
instantiation from the previous step. Given the available
resources, these optional components can be enabled
immediately, when enough resources are available or
when the context changes and other user preferences
are to be applied.

For the multimedia components of the communication ser-
vice, we made use of the IBM Mpeg4 Java toolkit [21]
and for the OWL parsing and reasoning the Jena2 frame-
work [22] is used. The necessary infrastructure support for
instantiating a customized service based on the service model
was developed on top of Draco [23], an extensible runtime
system for components designed to be run on embedded
devices. It acts as a component container that instantiates
components and manages all connections between compo-
nents. It has runtime support for non-functional concerns, such
as component distribution, live updates, contract monitoring
and resource management. This runtime environment with

extensions provides a unique test platform for validating the
proposed service concepts in a ubiquitous computing context.

V. EVALUATION

The case study has shown that for varying hardware and
resource descriptions the implemented infrastructure is able to
compose and instantiate a service while also taking the user
preferences into account. Another advantage is that composing
the service targeted at a specific device can also be carried out
on a more powerful device when composing the service, for
example, on a personal hand-held would take too long.

Something that is currently not implemented is multi-party
negotiation of which components to instantiate as there can
be dependencies between component deployments on different
devices. In the above example, there is no use in instantiating
a video encoding component on one device if the other party
is not able to process or show the video stream.

The two non-functional concerns with respect to resource-
awareness and user-preferences in a certain context are easily
managed using a component-based methodology if all aspects
are fully specified. These aspects are specified by hand in
OWL using the Prot́eǵe [24] tool. We acknowledge that this
is not a user friendly way to declare user preferences.

However, not all non-functional aspects can be solved that
easily using a component-based software engineering method-
ology. For cross-cutting concerns, such as security or logging,
an aspect-oriented software development approach (AOSD)
can prove to be more useful. Security concerns, for example,
relate to the connection between components and may impose
restrictions on how to customize and adapt pervasive services,
such as restricting the relocation of parts of a service to another
device to avoid interception of sensitive messages sent over
a network. The disadvantage of using AOSD techniques is
that depending on the tools applied, such as AspectJ [25],
the technology can be quite invasive while modifying the
component in such a way that other non-functional concerns,
such as resource requirements, are no longer guaranteed to be
correct.

VI. RELATED WORK

Two very well-known component models are OMG’s
CORBA Component Model (CCM) [26] and Sun’s Enterprise
JavaBeans (EJB) [27]. However, both only provide limited
support for non-functional concerns, such as persistency, trans-
actions and access control. Neither of them provide support for
dynamic selection of component instantiations.

The COMQUAD component model [28] provides support
for non-functional aspects and describes them orthogonally
to the application structure using descriptors. These non-
functional aspects are woven into the application using an
AOSD approach based on the non-functional properties of
components. Additionally, the COMQUAD component model
has extensions to provide support for stream-based commu-
nication. However, selecting components based on functional
properties is not the goal of the authors. In our composition
infrastructure, both functional and non-functional properties

need to be considered to guarantee interoperability. The
authors are working on providing support for adaptational
behavior, as already supported in our infrastructure using
composite components. The authors also acknowledge the
interference between functional and non-functional aspects
and between different non-functional concerns. Additionally,
our infrastructure supports automated component selection and
composition using a context-driven approach.

Efstratiou et al. [29] propose an architecture with support
for context-aware service adaptation. The authors describe the
architectural requirements for adaptation control and coordi-
nation for mobile applications. The adaptation mechanisms to
respond to, for example, a change in resource availability, are
less flexible than ours as the authors define operational modes
of an application together with a contextual trigger that would
make the application switch to that mode. This coarse-grained
adaptation mechanism allows them to use very simple XML
descriptions of a service and operation mode. Our approach
does not require the software engineer to define all possible
instantiations of a service. Our composition infrastructures
takes care of finding an appropriate composition, which
additionally supports taking user preferences into account.
Our infrastructure allows operation modes that the software
developer originally may have not yet foreseen.

Lin et al. [30] propose a goal description language for
automatic composition of semantic web services. The authors
acknowledge that it is hard to adapt to users’ requirements
in current web service compositions, and propose a goal
description language based on the OWL ontology description
language to describe the goals that need to be achieved,
relationships within goals, constraints for achieving the goals,
and a way to detect any inconsistencies in the specified goals.
However, this language for automatic composition is targeted
at web services and does not consider the non-functional
requirements of pervasive services as mentioned in a previous
section.

VII. C ONCLUSION AND FUTURE WORK

We have developed infrastructure support for automated
context-driven composition of components into pervasive ser-
vices, while taking into account non-functional concerns such
as the capabilities and limitations of a device on which it will
be deployed, resource availability and user preferences in a
specific context. It lets the software engineer focus on the
application logic of smaller building blocks, while optimal
deployment of a service on a specific device and adaptation
support for responding to changing working conditions is
managed by our supporting infrastructure.

First, we have identified several non-functional concerns
with respect to pervasive services and then discussed how a
component-based methodology can alleviate these concerns.
We formalized the component methodology by creating a
meta-model of all software aspects of components to allow au-
tomated processing of the functional and non-functional prop-
erties of components and services. We discussed how context-
awareness can be used for composition of component-based

services using our previous work on context modeling [4],
specification of pervasive services [5] and context management
support [6]. We illustrated the core ideas of our infrastructure
support by means of an example, and gave an outline of all
the steps in the procedure to achieve a customized service.
We evaluated our work and can conclude that for targeting
a specific platform and incorporating user preferences, our
automated context-driven composition infrastructure is able
to provide the necessary support for these non-functional
concerns typical for pervasive services.

However, more work should be carried out to provide sup-
port for cross-cutting non-functional concerns, such as secu-
rity. Security requirements cannot be derived from component
descriptions as is the case for resource requirements. Future
work in the short term will focus on how to integrate multi-
party negotiation for selecting and instantiating components in
the presence of dependencies between component deployments
on different devices.

REFERENCES

[1] M. Weiser, “The world is not a desktop,”Interactions, pp. 7–8, Jan.
1994.

[2] M. Weiser, “The Computer for the Twenty-First Century,”Scientific
American, pp. 99–104, Sept. 1991.

[3] C. Szyperski,Component Software: Beyond Object-Oriented Program-
ming, 2nd edition. Addison-Wesley and ACM Press, 2002.

[4] D. Preuveneers, J. Van den Bergh, D. Wagelaar, A. Georges, P. Rigole,
T. Clerckx, Y. Berbers, K. Coninx, V. Jonckers, and K. De Bosschere,
“Towards an extensible context ontology for Ambient Intelligence,” in
Proceedings of the Second European Symposium on Ambient Intelli-
gence. Springer-Verlag, November 2004.

[5] D. Preuveneers and Y. Berbers, “Semantic and syntactic modeling
of component-based services for context-aware pervasive systems us-
ing OWL-s,” in Proceedings of 1st International Workshop on Man-
aging Context Information in Mobile and Pervasive Environments
(MCMP2005) (to appear), Ayia Napa, Cyprus, May 2005.

[6] D. Preuveneers and Y. Berbers, “Adaptive context management using
a component-based approach,” inLNCS 3543: Proceedings of 5th IFIP
International Conference on Distributed Applications and Interoperable
Systems (DAIS2005) (to appear), ser. Lecture Notes in Computer Science
(LNCS), L. Merakos, N. Alonistioti, and L. Kutvonen, Eds., vol. 3543.
Athens, Greece: Springer, June 2005, pp. 14–26.

[7] A. Wils, J. Gorinsek, S. Van Baelen, Y. Berbers, and K. De
Vlaminck, “Flexible Component Contracts for Local Resource
Awareness,” inECOOP 2003 Workshop on resource aware computing,
C. Bryce and G. Czajkowski, Eds., July 2003. [Online]. Available:
http://www.cs.kuleuven.ac.be/∼andrew/stuff/ecoop2003.pdf

[8] P. Rigole, Y. Berbers, and T. Holvoet, “Mobile adaptive tasks guided by
resource contracts,” inthe 2nd Workshop on Middleware for Pervasive
and Ad-Hoc Computing, Toronto, Ontario, Canada, October 2004, pp.
117–120.

[9] Y. Vandewoude and Y. Berbers, “Run-time evolution for embedded
component-oriented systems,” inProceedings of the International Con-
ference on Software Maintenance, B. Werner, Ed. Canada: IEEE
Computer Society, October 2002, pp. 242–245.

[10] D. Urting, S. Van Baelen, T. Holvoet, and Y. Berbers, “Embedded
software development: Components and contracts,” inProceedings of the
IASTED International Conference Parallel and Distributed Computing
and Systems, 2001, pp. 685–690.

[11] A. K. Dey, D. Salber, and G. D. Abowd, “A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications,”Human-Computer Interaction (HCI) Journal, vol. 16, no.
2-4, pp. 97–166, 2001.

[12] Korpipää, P., et al., “Managing context information in mobile devices,”
IEEE Pervasive Computing, Mobile and Ubiquitous Systems, vol. 2,
no. 3, pp. 42–51, July-September 2003.

[13] Indulska, J., et al., “Experiences in using cc/pp in context-aware sys-
tems,” in LNCS 2893: Proceedings of 4th IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable Systems
(DAIS2003), ser. Lecture Notes in Computer Science (LNCS), J.-B.
Stefani, I. Dameure, and D. Hagimont, Eds., vol. 2893. Paris/France:
Springer Verlag, November 2003, pp. 224–235.

[14] S. Buchholz, T. Hamann, and G. Hubsch, “Comprehensive structured
context profiles (cscp): Design and experiences,” inProceedings
of the Second IEEE Annual Conference on Pervasive Computing
and Communications Workshops, March 2004. [Online]. Available:
citeseer.ist.psu.edu/690057.html

[15] Strang. T., et al., “CoOL: A Context Ontology Language to enable
Contextual Interoperability,” inLNCS 2893: Proceedings of 4th IFIP
WG 6.1 International Conference on Distributed Applications and
Interoperable Systems (DAIS2003), ser. Lecture Notes in Computer
Science (LNCS), J.-B. Stefani, I. Dameure, and D. Hagimont, Eds., vol.
2893. Paris/France: Springer Verlag, November 2003, pp. 236–247.
[Online]. Available: http://www.kn.op.dlr.de/∼strang/paper/dais2003

[16] Gu, T., et al., “An ontology-based context model in intelligent envi-
ronments,” In Proceedings of Communication Networks and Distributed
Systems Modeling and Simulation Conference, San Diego, California,
USA, January 2004.

[17] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware
pervasive computing environments,”Special Issue on Ontologies for
Distributed Systems, Knowledge Engineering Review, 2003.

[18] DistriNet (K.U.Leuven), EDM (LUC), ELIS-PARIS (UGent), PROG
(VUB) and SSEL (VUB), “CoDAMoS: Context Driven Adaptation of
Mobile Services,” http://www.cs.kuleuven.ac.be/cwis/research/distrinet/
projects/CoDAMoS/.

[19] The OWL Services Coalition, “OWL-S: Semantic Markup for Web Ser-
vices, Release 1.1,” http://www.daml.org/services/owl-s/1.1/index.html,
November 2004.

[20] BBN Technologies, “vOWLidator, version 20040716,”
http://projects.semwebcentral.org/projects/vowlidator/, 2004.

[21] IBM alphaWorks, “IBM Toolkit for MPEG-4,”
http://www.alphaworks.ibm.com/tech/tk4mpeg4.

[22] HP Labs, “Jena 2 - A Semantic Web Framework,” http://www.hpl.hp.
com/semweb/jena2.htm, 2004.

[23] Y. Vandewoude, “Draco: An adaptive runtime environment for compo-
nents ,” http://www.cs.kuleuven.ac.be/˜yvesv/Draco/index.html.

[24] Stanford Medical Informatics, “The Protéǵe Ontology Editor and
Knowledge Acauisition System,” http://protege.stanford.edu/, 2005.

[25] The AspectJ project, “aspectj - crosscutting objects for better modular-
ity,” http://www.eclipse.org/aspectj/, 2005.

[26] Object Management Group, “CORBA Component Model, v3.0,”
http://www.omg.org/cgi-bin/apps/doc?formal/02-06-65.pdf, 2005.

[27] Sun Microsystems, “The Enterprise JavaBeans 2.1 specification,”
http://java.sun.com/products/ejb/docs.html, 2005.

[28] S. Göbel, C. Pohl, S. R̈ottger, and S. Zschaler, “The COMQUAD
component model: enabling dynamic selection of implementations by
weaving non-functional aspects,” inAOSD ’04: Proceedings of the
3rd international conference on Aspect-oriented software development.
New York, NY, USA: ACM Press, 2004, pp. 74–82.

[29] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday, “An architecture
for the effective support of adaptive context-aware applications,”
in Proceedings of 2nd International Conference in Mobile Data
Management (MDM‘01), vol. Lecture Notes in Computer Science
Volume 1987. Hong Kong: Springer, January 2001, pp. 15–26.
[Online]. Available: citeseer.ist.psu.edu/efstratiou01architecture.html

[30] M. Lin, H. Guo, and J. Yin, “Goal description language for semantic
web service automatic composition.” inSAINT, 2005, pp. 190–196.

