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Abstract

This paper presents a first proposal for improving the efficiency of modern
description logic (DL) reasoners that are known to be less efficient for DLs
with inverse roles. The current loss of performance is usually caused by the
missing applicability of well-known optimization techniques such as caching the
satisfiability status of modal successors. In order to improve this situation
we propose a first version of a modified tableau algorithm for ALCI that can
be considered as a basis for integrating sound caching techniques into modern
reasoners supporting DLs with inverse roles.

1 Introduction

Caching satisfiability results of modal successors is important for speeding up tableau
decision procedures for description logics (DLs). In propositional logics, semantic
tableau procedures augmented by unsatisfiable lemma generation were reported to be
significantly faster than resolution based decision procedure [11]. In DLs, ExpTime
worst-case tableau procedures for ALC [2] also rely on caching. Several sophisticated
caching-related techniques have been reported and analyzed in [5, 6]. Besides the
caveat about caching satisfiable results in ALC [2], it is also known that caching
techniques are subject to unsoundness in the presence of inverse roles [7]. In this
paper, we discuss tableau procedures with an integrated caching functionality for
the DLs ALC and ALCI respectively. We also propose for ALCI a polynomial-
time procedure for estimating back-propagated information [9, 3] in the presence of
unfoldable cyclic TBoxes. This could be considered as a first step to alleviate the gap
between the unsatisfactory performance of tableau procedures for DLs with inverse
roles and a long-known fact that inverse roles alone do not add to the worst-case
complexity of the underlying logics. Finally, we report on an axiom transformation
technique with a great potential to switch between the use of roles and their inverses.
This transformation technique could be employed in the process of axiom absorption,
which is a standard optimization technique used in modern DL reasoners.



2 Tableau Rules for ALC Augmented by Caching

As already analyzed in [5], caching unsatisfiability results of modal successors does not
cause any major problems. However, this changes completely for caching satisfiability
results because additional bookkeeping is required to guarantee the soundness of this
technique. One possible strategy is to use only local caches. In this proposal, we to
cache satisfiable results in a global cache, and use subset caching because of its wide
acceptance in real systems [4, 8, 6].

In our tableau procedure, we use twin two labels as in [9]: L(x) is the normal label
as used in the literature; and an additional label C(x), which is used for caching. In
ALC there is only one type of clash trigger, {A,¬A} for some concept name A [1] (⊥
is used as an abbreviation for A u ¬A). To integrate caching into the tableau rules
for ALC, a second clash trigger is needed. When creating a successor node y from a
node x, if there exists some label L(z) known to be unsatisfiable and C(z) ⊆ C(y),
then a clash trigger is applicable. We call a clash of this kind an unsat-cached clash.

Definition 2.1 (sat-cached) Let node x have a label {C(x),L(x)}, and y be a newly
generated successor node of x with {C(y),L(y)}. If there exists a node z such that
C(y) ⊆ C(z) and L(z) does not contain a clash, then node y is sat-cached by node z.1

Below is a set of tableau rules for ALC with caching integrated. It consists of the
standard tableau rules for ALC except for the combined ∃∀-rule.2 The precedence of
the rules is in the order of u-rule, t-rule, ∃∀-rule.

u-rule if 1. C1 u C2 ∈ L(x)
2. {C1, C2} ∩ L(x) 6= {C1, C2}

then L(x) = L(x) ∪ {C1, C2}
t-rule if 1. C1 t C2 ∈ L(x)

2. {C1, C2} ∩ L(x) = ∅
then L(x) = L(x) ∪ {E} for some E ∈ {C1, C2}

∃∀-rule if 1. ∃R.C ∈ L(x)
2. x is not sat-cached
3. x has no R-successor y with C ∈ C(y)

then create a label C(y) = {C} ∪ {D|∀R.D ∈ L(x)}
set L(y) = C(y), L(〈x, y〉) = R

List 1: Tableau rules for ALC with an integrated generalized cache.

Definition 2.2 Let E be an ALC concept in negation normal form (NNF) and RE

be the set of roles occurring in E. A tableau structure for E is a triple (S,L, E) where

1We dismiss the possibility of a chain of x1, ..., xn for n ≥ 3, such that xi is sat-cached by xi+1,
where i = 1, ..., n− 1.

2See [7] for a discussion of ∃∀-rule without caching conditions.



S is a finite set of individuals, L : S → 2sub(E), E : RE → 2S×S, and the following
properties hold:

(1) ⊥ /∈ L(s), and if C ∈ L(s), then ¬C /∈ L(s),
(2) if C uD ∈ L(s), then C ∈ L(s) and D ∈ L(s),
(3) if C tD ∈ L(s), then C ∈ L(s) or D ∈ L(s),
(4) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t),
(5) if ∃R.C ∈ L(s), then there is some t ∈ S s.t. 〈s, t〉 ∈ E(R) and C ∈ L(t).

Proposition 2.3 The tableau structure introduced above is sound and complete for
testing the satisfiability of ALC concepts.

Proof. We acknowledge that this proof is almost a ALC variant of the one for
ALCIR+ proven in [9], if one reads ‘blocked’ as ‘sat-cached’. Additionally, the tableau
structure T = (S,L, E) is composed from the tableau tree T as follows:

S = {x |x is a node in T, and x is not sat-cached},
L = the restriction of the labeling L in T to S,
E(R) = {(x, y) ∈ S × S | 1. y is an R-successor of x, or

2.L(〈x, z〉) = R and z is sat-cached by y}.
If L(〈x, z〉) = R, ∀R.C ∈ L(x), and z is sat-cached by y, then C ∈ C(z). Since
C(z) ⊆ C(y) ⊆ L(y), so C ∈ L(y). It is guaranteed for L(y) that no clash is introduced
in the final tableau structure. Summing up, ∃∀-rule does not violate or change the
property of a tableau structure and its corresponding tableau tree. For the remaining
proof of termination and completeness we refer to the relevant parts in [9]. �

3 Tableau Rules for ALCI
In order to extend the previous ideas to ALCI, we need to consider in the tableau
tree the two-way computations, i.e., the back-propagation due to ∀-restrictions, and
accordingly reflect the satisfiability of ALCI concepts. Please refer to [9, 3] for a
discussion on how to handle this back-propagation. We again use the notions of an
unsat-cached clash and a C-label as given in the previous section. In addition, we
introduce a U -label, and require that C(x) ∪ U(x) ⊆ L(x). We restrict a C-label
such that it keeps the information propagated down the tree, a U -label keeps the
information propagated up the tree, while L(x) contains all information.

Definition 3.1 Given a node x with {C(x), U(x), L(x)} and its R-successor y with
{C(y), U(y), L(y)}, we define the function up(y, R) = {C | ∀R−.C ∈ L(y)}. It is easy
to see that up(y, R) ⊆ U(x) holds.

Definition 3.2 Given a node x with {C(x), U(x), L(x)}, a set of back-propagation
edges for x is defined as {R− | ∀R−.C ∈ L(x)} and denoted by a function bedge(x).



Definition 3.3 (sat-cached) Given a node x with {C(x), U(x), L(x)} and its R-
successor y with {C(y), U(y), L(y)}, and some node z with {C(z), U(z), L(z)} such
that C(y) ⊆ C(z) and L(z) does not cause a clash.
IF:
(case-1) R /∈ bedge(z); or
(case-2) R /∈ bedge(y); or
(case-3) up(z, R) ⊆ L(x); or
(case-4) z has a predecessor w s.t L(w) ⊆ L(x), and L(w) does not cause a clash;
THEN: node y is sat-cached by node z.

Below is a set of tableau rules for ALCI with caching integrated.

u-rule if 1. C1 u C2 ∈ L(x)
2. {C1, C2} ∩ L(x) 6= {C1, C2}

then L(x) = L(x) ∪ {C1, C2}
t-rule if 1. C1 t C2 ∈ L(x)

2. {C1, C2} ∩ L(x) = ∅
then L(x) = L(x) ∪ {E} for some E ∈ {C1, C2}

∀-rule if 1. ∀R.C ∈ L(x)
2. there is an R-predecessor y of x with C /∈ U(y)

then U(y) = U(y) ∪ {C},L(y) = L(y) ∪ {C}
2’. there is an R-successor y of x with C /∈ C(y)

then C(y) = C(y) ∪ {C},L(y) = L(y) ∪ {C}
∃∀-rule if 1. ∃R.C ∈ L(x)

2. x is not sat-cached
3. x has no R-neighbor y with C ∈ C(y)

then create C(y) = {C} ∪ {D|∀R.D ∈ L(x)} with L(〈x, y〉) = R
set L(y) = C(y)

List 2: Tableau rules for ALCI with an integrated generalized cache.

Definition 3.4 A tableau structure for an ALCI-concept E is defined as in Definition
2.2 plus an additional condition:
(6) 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(R−).

Proposition 3.5 The above tableau procedure is sound and complete for the testing
satisfiability of ALCI concepts.

Proof. It is easy to see that case-1 is a situation already covered by proposition
2.3; case-4 is a special case of case-3. Therefore, only case-2 and case-3 remain to be
proven:

(case 3) Given C(y) ⊆ C(z) and a known label L(z), there must exist an L-label
for y s.t. L(y) ⊆ L(z). So, for any ∀R−.C, if ∀R−.C ∈ L(y), it must be the case



that ∀R−.C ∈ L(z). Given up(z, R) ⊆ L(x), it means that for any ∀R−.C ∈ L(z)
it holds C ∈ L(x). So, for any ∀R−.C, if ∀R−.C ∈ L(y), then C ∈ L(x). To
construct the tableau structure T out of the tableau tree T, we need E(R) ⊇ {(x, z) ∈
S × S |L(〈x, y〉) = R and y is sat-cached by z (case-3)}.

(case 2) It is only necessary to discuss R /∈ bedge(y) ∧ R ∈ bedge(z) and not
up(z, R) ⊆ L(x). We need to construct the sub-tableau T ′ for y in way that no clash
will be introduced to L(x) due to extra back-propagated information. And T ′(y)
indeed can be copied from a subset of T (z) s.t. no back-propagation to x will be
introduced. For the remaining proof for termination and completeness we refer to [9].
�

4 Estimating Back-Propagation Edges

The correct recognition of back-propagation edges for a cached satisfiable label is
critical to the soundness of this caching technique. In this section, we discuss a
relevant and generalized topic, i.e., how to find back-propagated information [9, 3]
for a given concept w.r.t. a cyclic unfoldable ALCI TBox.5 We first introduce a
method to represent ALCI concepts in a graph whose size is linear to the size of
the given concept. Then, an extension of this representation to cyclic unfoldable
TBoxes is introduced. A method is sketched for finding the possibly back-propagated
information.6

Definition 4.1 Given an ALCI expression C in NNF and its directed multi-edge
graph G(V , E)7, there exists a one-to-one mapping f : V → sub(C), and it satisfies
(Mi stands for ∀R or ∃R for some role name R, or if it is empty then denoted as ε;
⊕ denotes u or t):
(1) There is exactly one v0 ∈ V s.t. f(v0) = C;
(2) There is exactly one vi ∈ V s.t. f(vi) = Ci for each concept name Ci occurring in
C;
(3) For any v1 ∈ V, f(v1) = M1.C1⊕M2.C2 iff there are v21, v22 ∈ V s.t. f(v2i) = Ci,
and Mi ∈ E(〈v1, v2i〉) for i=1,2.

Definition 4.2 A directed multi-edge graph G(V , E) is a graph for a TBox T in NNF8

if and only if:
(1) There is exactly one vi ∈ V such that f(vi) = a for each concept name a in T ;
and

5Due to lack of space we will not discuss the corresponding tableau rules.
6This method can be easily adapted to estimate back-propagation edges, and can also serve as

heuristics for tableau procedure to refine sat-cached conditions.
7(1) Multi-edge means E : V × V → 2S for some alphabet S; (2) The graph could be cyclic for

unfoldable cyclic TBox; (3) If simply pushing modality prefixes inside, quadratic space is needed in
the worst case.

8We assume the unfoldable cyclic TBox consists of definitions like CN v D only.



(2) There is exactly one sub-graph G ′(V ′, E ′) of G(V , E)9, s.t. G ′(V ′, E ′) is the graph
of b as by definition 4.1 for each axiom a v b ∈ T ; and
(3) There is a sub-graph G ′(V ′, E ′) in G(V , E) iff G ′(V ′, E ′) is a graph of sub(b) for
some axiom a v b ∈ T .

Informally, a combined directed multi-edge graph G(V , E) for a concept expression
C w.r.t. a TBox T consists of exactly two, no more and no less, components: (1) a
sub-graph G ′(V ′, E ′) in G(V , E) for TBox T ; and (2) a sub-graph G ′′(V ′′, E ′′) in G(V , E)
for concept C. In addition, V = V ′ ∪ V ′′, and E(x, y) = E ′(x, y) ∪ E ′′(x, y) for each
x, y ∈ V . By the definitions, it is easy to see such a graph is minimal w.r.t. the number
of its nodes and edges.10

Example: Given a TBox T0 = {C v ∃R.Au∀R.B; B v ∀R−.A}. The sub-graph
for TBox T0 is shown as the triangle in Figure 1. Let concept D = ∃S.(C uA), a sub-
graph for D is shown to the left of the triangle. Figure 1 shows the combined graph
for D w.r.t T0, in which: f(2) = C uA, f(1) = ∃S.(C uA), f(5) = A, f(4) = ∀R−.A.
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Figure 1: An example of a combined graph.

Definition 4.3 A multi-valued function match is defined as match(∃R) = {∀R−},
match(∀R) = {∀R−,∃R−}.

Proposition 4.4 Given a combined graph G(V , E) for a unfoldable cyclic TBox T
and a concept C, there exists a polynomial-time bounded procedure for estimating the
back-propagated information.

Proof. (only sketch of the algorithm and its proof and analysis)
The correctness of this estimating method is based on the correspondences between
the syntactic structure and the tableau proof tree forALCI w.r.t. a unfoldable (cyclic)
TBox. The idea of a polynomial-time bounded estimation procedure is based on the
following algorithm working on the combined graph G(V , E):
The size of graph G(V , E), i.e., ‖V‖ + ‖E‖, is of size O(n), where n is the total
size of the given TBox and concept. It takes O(n3) steps for line 1 to initialize a
transitive closure for ε. For each node v ∈ V , it is reasonable to assume the number
of incoming and outgoing edges are some constant. So, line 4 takes a fixed cost. The
loop between line 3 and line 6 loops at most n2 times. It takes a cost of O(n3) for
line 8 to compute transitive closure. Thus, it takes O(n3) for each pair (a, b) ∈ R.
Since ‖R‖ ≤ n2, the loop between line 2 and line 9 loops at most n2. So, we get a
total upper bound of O(n5). The final R records back-propagated information, for
any x ∈ V , {y|(x, y) ∈ R} is the back-propagated information for x. �

9I.e., V ′ ⊆ V, E ′ : V ′ × V ′ → 2S for the alphabet S, and for each x, y ∈ V ′ it holds that
E ′(x, y) ⊆ E(x, y).

10I.e., no node and no edge can be deleted, and there exists no pair of nodes that can be identified.



(01) initialize L = ∅, R = {(a, a)|a ∈ V} ∪ {(a, b)|〈a, b, ε〉 ∈ V}∗
(02) for each (a, b) ∈ R ∧ (a, b) /∈ L
(03) for each xi ∈ V ∧ yj ∈ V
(04) if ∃ek∃el s.t. (xi, a, ek) ∈ E ∧ (b, yj , el) ∈ E ∧ ek ∈ match(el)
(05) then R = R ∪ {(xi, yj)}
(06) endfor
(07) L = L ∪ {(a, b)}
(08) R = R∗

(09) endfor

5 Elimination of Inverse Roles through Axiom Transforma-
tion

Due to the current lack of appropriate optimization techniques in the presence of
inverse roles, DL tableau procedures are very sensitive in their performance in this
situation but resolution-based approaches to DL reasoning are unaffected. Hence, it
might be beneficial if we look at the fragment of first order logic (FO) translated from
expressions or axioms of description logics with inverse roles.

For an axiom C v ∀R.D, based on the standard semantics, a translation into FO
looks like ∀x(c(x) → (∀y(r(x, y) → d(y)))). Its prenex form is ∀x∀y(¬c(x)t¬r(x, y)t
d(y)) (axiom 1). On the other hand, the corresponding FO for ¬D v ∀R−.¬C is
∀z(¬d(z) → (∀w(r−(z, w) → ¬c(w)))), and its prenex form is ∀z∀w(d(z)t¬r−(z, w)t
¬c(w)) (axiom 2). It is easy to see that (2) ⇔ ∀z∀w(d(z) t ¬r(w, z) t ¬c(w)) ⇔
∀z∀w(¬c(w) t ¬r(w, z) t d(z)) (axiom 2.1).

Based on the variable substitution {x/w, y/z}, (1) becomes identical to (2.1). In
this sense, we can conclude that the two axioms are equivalent, i.e. C v ∀R.D ⇔
¬D v ∀R−.¬C, w.r.t. the above mentioned translation into first-order logic.

With respect to DL tableau procedures C v ∀R.D ⇔ ¬D v ∀R−.¬C also holds
because they implies each other.

6 Conclusion

We presented a refined caching technique for the DLs ALC and ALCI. The proposed
technique uses an additional label C especially designated for the purpose of caching
intermediate satisfiable computation results during the execution of tableau proving
procedures. Furthermore, we presented a polynomial-time bounded algorithm, which
is able to estimate the back-propagated information in tableau procedures for satis-
fiability tests of the DL ALCI under unfoldable cyclic TBoxes. We accomplish this
by constructing a graph for the underlying unfoldable TBox and the given concept
in such a way to abstract away the interaction between the ∃-rule and ∀-rule, and
to treat the u-rule and t-rule equally. This algorithm is based on a simulation of
the behavior of the ∀-rule in a tableau tree with an edge-matching procedure on the
graph.



We also presented a transformation for axioms that can be used to eliminate the
use of inverse roles and possibly enhance the absorption of global axioms.

Our plans for future work include, but are not limited to, narrowing down the esti-
mation of back-propagation, sharpening the sat-cached conditions, and re-formulating
new tableau or pre-test procedures exploiting back-propagated information. These
could be added to well-established optimization techniques [7] in tableau procedures
for languages having inverse roles, and will possibly lead to an optimized implemen-
tation of DL systems [10]. Our immediate plan is to add this new caching technique
to Racer [4] and evaluate its effectiveness.
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