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Abstract

We present the fuzzy description logic ALCFLH . ALCFLH is based

on ALCFH , but linear hedges are used instead of exponential ones. This

allows to solve the entailment and the subsumption problem in a fuzzy

description logic, where arbitrary concepts and roles may be modified.

1 Motivation

In most applications of description logics that we are aware of, except [7] and [8],
concepts are crisp unary relations, i.e., an object may or may not be an element
of a particular concept. On the other hand, in many real-world applications like,
for example, intelligent e-commerce information is often vague and imprecise.
Fuzzy set theory introduced by Zadeh (see e.g. [9]) provides an ability to denote
non-crisp concepts, i.e., an object may belong to a certain degree (typically a
real number from the interval [0, 1]) to a particular relation.

Humans typically use linguistic adverbs like very , more or less, etc. to dis-
tinguish, for example, between a customer who is interested in technical details
and one who is very interested in these details. In [10] Zadeh introduces so-
called linguistic hedges modifying the shape of a fuzzy set by transforming it
into another. Hedge algebras were considered in [5, 4] to give an algebraic char-
actrization of linguistic hedges. They have been applied to fuzzy logic in various
ways (see e.g. [3]).

In ALCFH [1, 2] hedges were used to modify concepts in the fuzzy description
logic ALCF [7], which itself is an extension of ALC. There was, however, a main
restriction, viz. that modifiers had to be restricted to primitive concepts in order
to solve the subsumption problem. In this paper we overcome this restriction



by introducing so-called linear hedges in Section 3. ALCFLH is defined as an
extension of ALCFH allowing to modify arbitray concepts and roles in Section 4.
We specify two normal forms and show that each concept can be normalized in
Section 5. The entailment and subsumption problems are solved in Sections 6
and 7, respectively. A brief disussion concludes the paper in Section 8.

2 Preliminaries

The approach presented in this paper is based on ALCFH [1, 2], which is an
extension of ALC and ALCF [7]. Concepts C and D are constructed by the rule
C,D → A | > | ⊥ | ¬C | C uD | C tD | MC | ∃R.C | ∀R.C where A denotes
primite concepts, R roles, and M modifiers. We interprete formulas as usual in
a fuzzy setting by mapping concepts and roles onto membership functions. Let
I = (∆I , ·I) be an interpretation. Then,

AI : ∆I → [0, 1]
RI : ∆I × ∆I → [0, 1]

>I(d) = 1 for all d ∈ ∆I

⊥I(d) = 0 for all d ∈ ∆I

(¬C)I(d) = 1 − CI(d)
(C uD)I(d) = min{CI(d), CI(d)}
(C tD)I(d) = max{CI(d), CI(d)}

(MC)I(d) = ηM(CI(d))
(∀R.C)I(d) = infd′∈∆I{max{1 − RI(d, d′), CI(d)}}
(∃R.C)I(d) = supd′∈∆I{min{RI(d, d′), CI(d)}}

where ηM is used to modify a membership function and d ∈ ∆I. Modifiers
or linguistic hedges were introduced by Zadeh in [10], where he also proposed
to use exponent functions as hedges. In [1, 2] a function exponent has been
specified, which applied to a modifier M computes an exponent β such that
ηM(x) = xexponent (M) = xβ, where x ∈ [0, 1].

Fuzzy assertions are expressions of the form 〈α◦n〉, where ◦ ∈ {>,≥,≤, <},
α is of type a : C or (a, b) : R, and n ∈ [0, 1]. Fuzzy terminological axioms as
well as the semantics for fuzzy assertions and terminological axioms are defined
as usual.

3 Linear Hedges

The main idea proposed in this paper is the use of linear instead of exponential
hedges. Linear hedges were first introduced in [6], where it has been shown



that they have better algebraic and computational properties than existing ap-
proaches for a parametric representation of linguistic truth-values. Here we con-
sider the following linear hedges: Given a modifier M and let β = exponent (M)
and x ∈ [0, 1], then

ηM(x) =

{

1
β
x if x ≤ β

β+1
,

1 + β(x− 1) otherwise.

One should observe that its inverse function is

η−1
M (x) =

{

βx if x ≤ 1
β+1

,

1 + 1
β
(x− 1) otherwise.

Hence, η−1
M is obtained from ηM by replacing β by 1

β
. By abuse of notation we

sometimes will use ηβ and η 1

β
to denote ηM and η−1

M , respectively.

4 ALCFLH

We can now specify ALCFLH as follows: Concepts are defined as in Section 2.
Roles R are defined as R → Q | MR, where Q are primitive roles and M are
modifiers. Let I = (∆I, ·I) be an interpretation. Then,

QI : ∆I × ∆I → [0, 1]
(MR)I(d, d′) = ηM(RI(d, d′))

where ηM is a linear linguistic hedge as defined in Section 3.
For each modifier M we assume that there is an inverse modifier M−1 with

ηM−1 = η−1
M . In the view of semantics, this assumption will be useful for equiv-

alently converting a concept in ALCFLH into a normal form. It is easy to see
that concepts can be expressed without using inverse modfiers. For instance,
the concept M−1C is semanctically equal to ¬M(¬C).

5 Normalizing Concepts in ALCFLH

Proposition 1 The following semantic equivalences hold in ALCFLH :

M(¬C) ≡ ¬M−1C

M(C uD) ≡ M(C) uM(D)
M(C tD) ≡ M(C) tM(D)
M(∀R.C) ≡ ∀M−1R.MC

M(∃R.C) ≡ ∃MR.MC



The set of simple concepts is the smallest set satisfying the following condi-
tions: (i) each primitive concept is a simple concept; (ii) if X is a simple concept
and M is a modifier, then MX is a simple concept. In other words, simple con-
cepts are obtained from primitive concepts by prefixing the latter with a string
of modifiers. Likewise, we define the set of simple roles.

A concept C is said to be in modifier normal form (MNF ) iff all modifiers
occurring in C act only on simple concepts and roles. The following result is
an immediate consequence of Proposition 1. It is obtained by pushing modifiers
into the concepts as much as possible.

Proposition 2 For each concept in ALCFLH there is a semantically equivalent

one in MNF.

A concept C is said to be in negative modifier normal form (NMNF ) iff C is
in MNF and all negation signs occurring in C act only on simple concepts or
roles.

Proposition 3 For each concept in ALCFLH there is a semantically equivalent

one in NMNF.

This is result is shown by first transforming a given concept C into MNF C ′ and,
thereafter, to transform C ′ into NMNF as usual while treating simple concepts
as atoms. The complexity of the whole normalization process is polynomial wrt
the length of input concept.

6 The Entailment Problem in ALCFLH

Let Σ be a set of fuzzy assertions. As in the case of ALCFH , an entailment
problem Σ |= 〈α◦n〉 is converted into the problem of Σ∪{〈α•n〉} is unsatisfiable,
where • is the inverse of ◦. The latter problem is solved by a tableau algorithm.
As usual, we use propagation rules on a set of assertions (or constraints) to
convert constraints into simpler ones. This process will terminate and result
in a completion set to which no propagation rule can be applied. As we will
show in Proposition 4 a set of assertions is unsatisfiable iff the corresponding
completion set contains a clash, where clashes are defined as in [7].

Due to lack of space we cannot present the 16 propagation rules, but show
only some of them. In the following let β = exponent (M). We start with the
rules for modified concepts:

(M≥) 〈w : MC ≥ n〉 → 〈w : C ≥ η 1

β
(n)〉

The rules (M>), (M≤) and (M<) can be defined similarly. Because ALCFLH

allows negated and modified roles we need 8 new propagation rules to cope with
these extensions.



(¬R
≥) 〈(w,w′) : ¬Q ≥ n〉 → 〈(w,w′) : Q < 1 − n〉

(MR
≥ ) 〈(w,w′) : MQ ≥ n〉 → 〈(w,w′) : Q ≥ η 1

β
(n)〉

The rules for (¬R
>), (¬R

≤), (¬R
<), MR

> , MR
≤ and MR

< can be defined similarly.
The existence of complex roles in ALCFLH forces us to change the propagation
rules (∀≥), (∀>), (∃≤) and (∃<) used in ALCFH slightly. We show one of these
modified propagation rules; the other rules can be modified in a similar way.

(∀≥) 〈w1 : ∀R.C ≥ n〉, ψc → 〈w2 : C ≥ n〉,

where ψ = 〈(w1, w2) : Q ≤ η 1

βk

(...η 1

β2

(η 1

β1

(1 − n))...)〉, R = M1(M2(...Mk(Q)..)),

exponent (Mi) = βi for i = 1..k, and ψc is the conjugated constraint of ψ. This
condition is similar to the one of the corresponding propagation rule in ALCFH.

Proposition 4 A finite set of constraints in ALCFLH is unsatisfiable iff it con-

tains a clash.

The proof of this result is analogous to the case of ALCFH proved in [1].
Because we use the same way as [7, 1] to deal with the entailment problem, our
given decision procedure is also PSPACE-hard. As in [1] the propagation rules
for ∀ and ∃ would lead to an exponential explosion. In [7, 1] this problem was
solved by using so-called trace rules. We have not yet investigated the use of
trace rules in ALCFLH , but, due to the similarity of the propagation rules we
believe it also works for our case.

7 The Subsumption Problem in ALCFLH

We will approach the subsumption problem as in the case of ALCFH [2] or ALCF

[7]. In a first step, all complex concepts are expanded, which leads to a sub-
sumption problem over an empty set of terminological axioms, and, thereafter,
the subsumption problem is reduced to an entailment problem.

Proposition 5 Let C and D be two concepts in ALCFLH . Then C v∅ D iff

〈a : C ≥ n〉 |= 〈a : D ≥ n〉 for all n ∈ (0, 1], where a is an arbitrary individual.

The proof of this proposition is similar to the corresponding one in [1]. The
entailment problems considered in Proposition 5 will be reduced to equivalent
unsatisfiability problems of the form S = {〈a : C ≥ n〉, 〈a : D < n〉} for all
n ∈ (0, 1], to which we can apply the tableau algorithm presented in Section 6.
Wlog we assume that all concepts mentioned in this section are in MNF.



Proposition 6 Let C and D be two concepts in ALCFLH and S = {〈a : C ≥
n〉, 〈a : D < n〉}. The following holds:

1. There is a finite set of completion sets of S, to each of which an interval

(a, b] ⊆ (0, 1] is associated.

2. Let S̃ be a completion set of S, (a, b] the interval associated with S̃, x ∈
(a, b], and S̃ ′ be obtained from S̃ by replacing n by x. If S̃ ′ is unsatisfiable

then S̃ is unsatisfiable for all y ∈ (a, b].

3. C v∅ D iff all completion sets of S are unsatisfiable.

This proposition specifies an obvious method to solve the subsumption prob-
lem. Due to lack of space we can only sketch the proof here. The proof is based
on the following property:

Proposition 7 Let C and D be two ALCFLH concepts, S = {〈a : C ≥ n〉, 〈a :
D < n〉}, and S ′ be obtained from S by applying some propagation rules. Then,

every constraint in S ′ is in one of the following forms:

〈w ≥ ηβl
(ηβl−1

(...ηβ1
(n)...))〉, 〈w ≤ ηβl

(ηβl−1
(...ηβ1

(1 − n)...))〉,
〈w < ηβl

(ηβl−1
(...ηβ1

(n)...))〉, or 〈w > ηβl
(ηβl−1

(...ηβ1
(1 − n)...))〉,

where β1, β2, ..., βl > 0, l ≥ 0 and w is the form of a : C or (x, y) : R.

The proof is by induction on the length of the derivation generated by
the propagation rules. Returning to the proof of Proposition 6, we introduce
〈S, (a, b]〉 to be a pair where all constraints occurring in S are in the form listed in
Proposition 7 and (a, b] stands for the value restriction of the symbol “n” in S. In
order to determine whether a propagation rule is applicable to a pair 〈S, (a, b]〉,
we classify the propagation rules into three types: (a) non-deterministic rules
consisting of (t≥), (t>), (u≤) and (u<), (b) condition rules consisting of (∀≥),
(∀>), (∃≤) and (∃<), and (c) deterministic rules consisting of all remaining rules.

Now, a propagation rule is said to be applicable to 〈S, (a, b]〉 iff it is applicable
to any set obtained by replacing “n” with an arbitrary x ∈ (a, b]. The following
case analysis shows a way to check whether a propagation rule is applicable to
this pair or not.
(a): A non-deterministic rule Φ → Ψ1|Ψ2 is applicable to 〈S, (a, b]〉 iff S ⊇ Φ. In
this case we obtain two new pairs 〈S1, (a, b]〉 and 〈S2, (a, b]〉 where S1 = S ∪ Ψ1

and S2 = S ∪ Ψ2.
(b): A condition rule Φ → Ψ if Γ is applicable to 〈S, (a, b]〉 iff S ⊇ Φ and Γ
is satisfied. In some cases Γ will force us to devide 〈S, (a, b]〉 into m ≥ 1 pairs
〈S, (ai, ai+1]〉 with i = 1..m where (a, b] = (a1, a2]∪̇(a2, a3]∪̇...∪̇(am, am+1]. In
order to complete this part of the proof, one needs to to apply the following
properties of linear functions:



1. 1 − ηβ(n) = η 1

β
(1 − n)

2. f(n) = ηβl
(...ηβ1

(n)...) is an increasing, continuous function, which it in-
creases from 0 to 1 when n runs from 0 to 1.

(c): A deterministic rule Φ → Ψ is applicable to 〈S, (a, b]〉 iff S ⊇ Φ. In this
case we obtain the the new pair 〈S ′, (a, b]〉 where S ′ = S ∪ Ψ.

By this case analysis, we have a way to apply the propagation rule to an
arbitrary pair. To continue, we consider 〈S̃, (a, b]〉 to be a completion pair, in
which no propagation rules can be applied to S̃ over (a, b]. We continue to check
the existence of a clash in S̃ over (a, b]. If S̃ contains an unsatisfiable constraint,
it is trivially true that S̃ is unsatisfiable over (a, b]. If S̃ contains a conjugated
pair of constraints, then there are at most four kinds of clashing pairs according
to Proposition 7:
Case 1: The pair 〈w ≥ ηβk

(...ηβ1
(n)...)〉 and 〈w ≤ ηαl

(...ηα1
(1 − n)...)〉 clashes

iff ηβk
(...ηβ1

(n)...) > ηαl
(...ηα1

(1−n)...) or η 1

α1

(...η l
αl

(ηβk
(...ηβ1

(n)...)...)) > 1−n.

It is easy to see that the equation η 1

α1

(...η l
αl

(ηβk
(...ηβ1

(n)...)...)) = 1−n has only

one solution nm ∈ (0, 1]. If nm ≤ a, i.e., the inequation holds for n ∈ (a, b],
then S̃ is unsatifiable for all n ∈ (a, b]. If nm > b, i.e., the inequation does not
hold for n ∈ (a, b] then S̃ is satifiable for all n ∈ (a, b]. If nm ∈ (a, b], i.e., the
inequation does not hold for n ∈ (a, nm] but holds for n ∈ (nm, b], then 〈S, (a, b]〉
is divided into 〈S, (a, nm]〉 which is satisfiable over (a, nm] and 〈S, (nm, b]〉 which
is unsatisfiable over (nm, b].
Case 2, 3 and 4: The pairs (〈w ≥ ηβk

(...ηβ1
(n)...)〉, 〈w < ηαl

(...ηα1
(n)...)〉) and

(〈w > ηβk
(...ηβ1

(1 − n)...)〉, 〈w ≤ ηαl
(...ηα1

(1 − n)...)〉) and (〈w > ηβk
(...ηβ1

(1 −
n)...)〉, 〈w < ηαl

(...ηα1
(n)...)〉) can be treated similarly as in case 1.

It follows that eventually we obtain a set of completion sets with corre-
sponding intervals. Let us start with the initial pair 〈S, (0, 1]〉. We will check a
propagation rule can be applied. After applying a rule, we get at least one and
at most finitely many new pairs. For each new pair, we repeat this process until
no rule can be applied any longer. This process will terminate because the size
of S is finite. Finally, we get a finite set of completion sets, which is checked
for a clash. This proves the two first parts of Proposition 6. Part 3 follows
immediately because if all completion sets are unsatisfiable then the initial set
S is unsatisfiable for all n ∈ (0, 1] and vice versa. That finishes our proof of
Proposition 6. Furthermore, because the way used to solve the problem is simi-
lar to the case of the entailment problem, the decision procedure of subsumption
problem has the same complexity.

8 Conclusion

In this paper we have introduced the fuzzy description logic ALCFLH, where
concepts and roles are modified using linear hedges, and have solved the entail-



ment as well as the subsumption problem. This extends previous work [1, 2],
where modifiers were restricted to primitive concepts in order to solve the sub-
sumption problem. We are currently in the process of building in trace rules in
order to avoid an exponential explosion when applying the propagation rules for
the quantifiers. We are also working on a prototypical implementation, which is
the basis for running real-world examples.
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