
A Generator for Description Logic Formulas

Jan Hladik

Theoretical Computer Science, TU Dresden

hladik@tcs.inf.tu-dresden.de

Abstract

We introduce a schema for generating random formulas for different descrip-
tion logics, which extends an existing pattern for modal logics. Using the DL
reasoners FaCT and Racer, we test the difficulty of these formulas, and it turns
out that the properties that make a formula in an expressive DL hard are quite
different from those known for ALC formulas.

1 Introduction

Empirical evaluation of description logic (DL) reasoners with benchmark formulas
serves many purposes. Firstly, it enables the programmer to verify that changes
he makes to his program improve efficiency. Secondly, it makes comparisons between
different system possible. Thirdly, the question is still open why existing DL reasoners
perform much better “in practice” than their worst-case complexity suggests, and the
observation which kinds of formulas are easy or hard for a reasoner can help answer
it. Finally, empirical tests allow for the verification of the correctness of the reasoner’s
results, if the satisfiability/unsatisfiability of the corresponding formula is known.

Comparison of the efficiency of different DL systems has taken place frequently
during the recent years [BH98, Mas99, MD00, PSS03]. In the absence of existing
benchmark formulas for DLs, these comparisons used benchmark formulas for modal
logics (ML), which allowed for the comparison DL reasoners with SAT-based systems
like *SAT [GGT02] or resolution-based systems like MSpass [HS00] for modal logics,
as in the TANCS-2000 comparison [MD00].

However, using ML benchmark formulas to test DL reasoners also has a significant
shortcoming: it only allows for the test of those language features that are common
to DL and ML. In practice, this restricted the logic to K in TANCS-98 and -99
[BH98, Mas99] and K− (K with inverse modality) in TANCS-2000 [MD00]. Thus,
even if most DL systems nowadays can handle logics which are significantly more
expressive than the modal logics mentioned, these additional features are not evaluated
in the comparison tests. For example, qualifying number restrictions (QNR) [HST99]
are a very important feature of expressive DLs, whereas the corresponding construct
in ML (graded modalities) receives less attention and does therefore not appear in the
formulas used in the above-mentioned comparisons. Thus, they cannot tell us if one
reasoner handles QNR significantly better than another one, and they do not allow

the programmer to thoroughly test his implementation of the corresponding function
for correctness.

In this paper, we present a schema for randomly generating DL formulas, which is
based on the pattern described in [MD00, PSS03], but extends this to cover a much
larger range of features available in current description logics, like QNR, transitive
roles, or nominals. Since many language features can also be disabled by the user, our
schema covers a wide range of DLs from EL and FL0 to ALCQIOR+ .

Remark. Because of the close relationship between modal and description logics,
we will occasionally use modal logic terminology to describe features of description
logics, e.g. for the concept ∀R.∃S.∀R.(Cu(Dt¬E)), we will call ∀R.∃S.∀R the modal
part and (C u (Dt¬E)) the propositional part. We will also use the terms “formula”
and “concept” synonymously.

2 Random DL formulas

The KCNF benchmark formulas, which were used in most of the comparisons men-
tioned above [Mas99, MD00, PSS03], are based on a schema developed by Giunchiglia
and Sebastiani [GS96], which was subsequently analysed and improved by Hustadt and
Schmidt [HS97], adapted by Massacci for the Tableaux system comparison (TANCS)
[Mas99] and most recently extended by Patel-Schneider and Sebastiani [PSS03] for a
comparison between *SAT and DLP [PS98]. The following definition is according to
[PSS03].

Definition 1 (KCNF) Let {A1, . . . , AN} be a set of propositional variables and
{21, . . . , 2m} be a set of modal operators. A KCNF formula is a conjunction of
KCNF clauses. A KCNF clause is a disjunction of literals. A literal is an atom or
its negation. There are two kinds of atoms: a propositional atom is a propositional
variable, and a modal atom has the form 2iC, where C is a KCNF clause.

A KCNF formula is characterised by the following parameters: the number L of
top-level conjuncts, the size C of the clauses, the number N of propositional variables,
the number m of modal variables, the maximum quantification depth d, and the
probability p of an atom occurring at depth < d being purely propositional.

In order to adapt this pattern to produce formulas suited for state-of-the-art DL
reasoners, we added several features: we allow for qualifying number restrictions,
transitive as well as inverse roles [HST99], and nominals (see e.g. [Tob00]). Instead
of clauses, we can create arbitrary Boolean combinations of literals. (At the top level,
there is still a conjunct because otherwise a simple satisfiable disjunct could make a
formula trivially satisfiable.) Moreover, the parameters d, L and C can be treated as
a fixed or as a maximum value, i.e. C = 5 can mean either “every clause is of size
5” or “the size of every clause is between 1 and 5.” Most syntactic elements can be
switched off, so that also inexpressive DLs are supported.

We also modified some properties of the KCNF pattern: in [PSS03], most formulas
for the parameters d = 2 and p = 0 (i.e. the depth 2 is reached in every conjunct)

cannot be solved within a timeout of 1000 seconds. As this strongly restricts the
formulas which can reasonably be generated by this method, we imposed the additional
constraint that every clause can contain at most one modal literal, which means that
the size of the formula only increases linearly with d instead of exponentially.

Under this condition, determining the depth of a random formula using the pa-
rameter p would result in different probabilities for each depth. Since we consider an
equal probability to be desirable, we removed the parameter p and gave each depth
between 1 and d the same probability (the user has the option to enforce the maximum
depth, which corresponds to setting p = 0).

During our tests, we observed that formulas that have propositional atoms only
at the maximum quantification depth (i.e. formulas consisting of a purely modal
and a purely propositional part) are much harder than formulas with propositional
atoms at every depth (see Section 4). Therefore, we included the option of allowing
propositional atoms at every depth, only at maximum depth, or randomly.

Hustadt and Schmidt [HS97] argued that the possibility to create trivially satisfi-
able or unsatisfiable clauses can lead to the creation of formulas which do not provide
useful results, and thus the creation of a clause like A t ¬A t B must be avoided.
However, our propositional formulas are not necessarily clauses (disjunctions), but
random combinations of conjunctions and disjunctions, and a formula A t (¬A u B)
is not trivial. Therefore we do not enforce that all concept names in a propositional
formula are distinct. This leads us to the following definition:

Definition 2 (RDL) A random DL (RDL) formula D of depth d is a conjunction
E1 uE2 u . . .uEL. Each conjunct E of depth d > 0 has the format P #QR.E ′, where
is a Boolean junctor, Q is a quantifier (∀, ∃, > n, 6 n), R is a role, E ′ is a concept
of depth d − 1, and P is a propositional formula: it consists of C concept names,
connected with randomly selected junctors. A conjunct of depth 0 only consists of the
propositional formula P .

If inverse roles are permitted, each occurrence of a role name is inverse with a
probability of 50%. If transitive roles are permitted, each role is transitive with a
probability of 50%. If primitive negation is permitted, each concept name is negated
with a probability of 50%. If propositional formulas are only permitted at maximum
quantification level, the propositional formula P only appears at depth 0.

Thus, an RDL formula is characterised by the following parameters: the set SQ

of available quantifiers (among ∃, ∀, 6, >) the set SB of available Boolean operators
(among ¬,u,t) the maximum value q for the number n appearing in QNR, the num-
ber of nominals O, the probability o of a propositional atom being a nominal, the
possibility of transitive and inverse roles, and the parameters L, C, N , m and d of
KCNF formulas.

For example, a formula for the parameter set L = 2, d = 2, C = 3, SQ = {∀, ∃, >},
SB = {¬,t,u}, q = 5, N = 10, m = 2, O = 1, propositional formulas at every level
and the possibility of inverse roles, might look like this:

∃R1 (C5 u (¬C9 t C4) u (> 4 R1− (C2 t ¬C8 t ¬C6))) u
∀R2− (¬C1 u (C5 t C2) t ∀R2((C3 t C5) u ¬C5))

3 The Generator

We will now briefly describe the formula generator, which was implemented by Raj
Mudunuri in the language TK as a student project. The user interface (Figure 1)
essentially consists of masks for the parameters described in Section 2.

Figure 1: User interface of the generator.

If the “Fix” checkbox next to the parameters L, d, C and q is checked, the corre-
sponding value is treated as the exact parameter, otherwise it is the maximum possible
one. When the “Generate” button is clicked, the desired number of formulas is gener-
ated and written into a file in KRSS syntax [PSS93]. A second file is created with the
definitions of primitive concepts and roles, and a third one containing the parameters.

4 Empirical Results

Firstly, we wanted to try if, using appropriate settings, it is possible to produce for-
mulas resembling the KCNF ones, and if FaCT [Hor98] and Racer [HM01] would
display a behaviour similar to KSAT and DLP in [PSS03]. In order to achieve this,
we chose only ∀ and ∃ as quantifiers, and ¬ and t as Boolean operators. We fixed
the other parameters as follows: m = 1, C = 3, N ∈ {3, 6, 9}. For the modal depth
d, we chose the value 4 in order to test if a limitation on the width makes a larger
depth possible (see Section 2). Since we observed that having a propositional formula
not at every level of quantification, but only at the maximum one, leads to much
more challenging formulas (see below), we chose the latter option. In order to obtain
a homogeneous set of formulas for each setting, the parameters are L, d and C are
fixed.

Our results are presented in Figure 2 in a format similar to the one used in [PSS03]:
the first diagram shows the percentage of satisfiable and unsatisfiable formulas in

Satisfiable/unsatisfiable ratio

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

ra
tio

L/N

N=3
N=6
N=9

Racer median runtimes

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160

se
co

nd
s

L/N

N=3
N=6
N=9

FaCT median runtimes

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160

se
co

nd
s

L/N

N=3
N=6
N=9

Figure 2: KCNF-like formulas

Satisfiable/unsatisfiable ratio

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

ra
tio

L

N=3
N=4
N=5
N=6

Racer median runtimes

0.01

0.1

1

10

100

0 10 20 30 40 50 60 70

se
co

nd
s

L

N=3
N=4
N=5
N=6

FaCT median runtimes

0.01

0.1

1

10

100

0 10 20 30 40 50 60 70

se
co

nd
s

L

N=3
N=4
N=5
N=6

Figure 3: QNR formulas

relation to L/N ,1 and in the graphs below we show the runtimes of Racer and
FaCT for different values of N . For each measuring point, we tested 100 formulas,
with a timeout of 100 seconds per formula. The first two experiments were performed
on a Pentium 4 (2.4GHz) with 2GB RAM, the remaining two on a Pentium 4 (1.7GHz)
with 512MB RAM. We used FaCT version 2.31.7 and Racer version 1.6.7.

1If both numbers do not add to 100 for a single value, this indicates that not all formulas could be
tested within the timeout.

Satisfiable/unsatisfiable ratio

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

ra
tio

d

L=15
L=30
L=45

Racer median runtimes

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8

se
co

nd
s

d

L=15
L=30
L=45

FaCT median runtimes

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8

se
co

nd
s

d

L=15
L=30
L=45

Figure 4: Formulas with different depth

Satisfiable/unsatisfiable ratio

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50

ra
tio

L

maximum depth
randomly at every depth

Racer median runtimes

0.01

0.1

1

10

100

5 10 15 20 25 30 35 40 45 50

se
co

nd
s

L

maximum depth
randomly at every depth

FaCT median runtimes

0.01

0.1

1

10

100

5 10 15 20 25 30 35 40 45 50

se
co

nd
s

L

maximum depth
randomly at every depth

Figure 5: Expressive formulas

We can observe that the ratio of satisfiable and unsatisfiable formulas depends
primarily on the ratio L/N : the larger the value of this fraction is, the more formulas
are unsatisfiable. The crossover point is near the value 20, and this is also the region
for which the calculation takes the longest time. A larger value of N does not have an
influence on these characteristics, but it makes a formula harder. This is very similar
to the observations made in [PSS03], and therefore we believe it is justified to say
that, using appropriate settings, we can reproduce the results made with the KCNF

formulas by Patel-Schneider and Sebastiani. However, we observe a modest increase
in computation time for very large values of L/N . Comparing the two reasoners, one
can see that Racer is approximately one order of magnitude faster than FaCT.

In order to test the influence of the DL features added to the formulas, we allowed
for qualifying number restrictions with a maximum value of q = 10 for our next
experiment (Figure 3). It turns out that with these settings, the location of crossover
point between satisfiable and unsatisfiable formulas does not depend on the ratio L/N ,
instead it is always near L = 15 (note the different labelling of the x-axis), i.e. much
sooner than for the KCNF-like formulas. Racer again displays a peak in computation
time in this area, but there is another significant increase for values of L > 40. The
behaviour of FaCT is completely different: for values of L < 25, it is between one
and two orders of magnitude faster than Racer, but for values of L > 30, it can
never solve more than half of the formulas, which results in a median time of 100
seconds. This behaviour indicates that FaCT is faster for satisfiable formulas and
Racer is faster for unsatisfiable ones. The parameter N has little influence on both
the satisfiability ratio and the computation time, which leads us to the conclusion
that for formulas including QNR, these two values are determined by the modal part
of the formula instead of the propositional part.

In our next test, which is intended to measure the influence of the quantification
depth, we therefore kept the parameter N fixed at the value 5 and varied d between
1 and 8 for L ∈ {15, 30, 45} (Figure 4). Note that for this test, the ratio of satisfiable
formulas increases from the left to the right end of the diagram, unlike in the other
experiments. For L ∈ {30, 45}, most formulas are either very easy or very hard to
solve. For L = 15, the difficulty increases continuously with the depth, independently
of the crossover point. In this test, FaCT is significantly faster than Racer.

In our final experiment, we also added conjunction and inverse roles, so that we
generated formulas for the logic ALCQI. The parameters are N = 5, d = 6, and we
vary L between 5 and 50. We also generated a formula set with the same parameters,
but propositional formulas appearing not only at the maximum depth, but randomly
at every depth. The results are shown in Figure 5. For the benchmark set with
propositional formulas appearing only at maximum depth, the graph for FaCT is
nearly linear, which indicates an exponential increase of the runtime in relation to
L, whereas Racer takes much more time if there are more than 15 conjuncts. With
propositional formulas randomly at every depth, the formulas become trivial for both
reasoners.

5 Conclusion and Further Work

We have developed and implemented a generation schema for DL formulas. Using
existing DL reasoners, we have tested several sets of formulas to determine the ratio
of satisfiable vs. unsatisfiable formulas and the difficulty (measured in terms of calcu-
lation time), and our results show that the logics ALC and ALCQ differ significantly
with respect to the parameters which determine these two properties. Firstly, while
the satisfiability of an ALC formula depends on the ratio of the size of the formula
(more precisely, the number of conjuncts) and the number of available concept names,

only the size has influence for an ALCQ formula. Secondly, while the hardest ALC
formulas are found near the crossover point, the difficulty of an ALCQ formula in-
creases continuously with its size. We also noticed different patterns in the behaviour
of the reasoners used: FaCT is faster for satisfiable formulas and can deal better with
formulas of a large depth, whereas Racer is better for unsatisfiable formulas and for
those formulas which resemble the KCNF pattern for modal logic.

We are currently extending the formula generator to TBoxes. Our aim is to gen-
erate TBoxes with properties resembling to existing “real-life” knowledge bases like
GALEN and to test which properties have to be modified in order to make a TBox
harder to classify.

References

[BH98] P. Balsinger and A. Heuerding. Comparison of theorem provers for modal logics. In
H. de Swart, editor, Proceedings of TABLEAUX-98, number 1397 in LNAI. Springer-Verlag,
1998.

[Dyc00] R. Dyckhoff, editor. Proceedings of TABLEAUX 2000, volume 1847 of LNAI. Springer-
Verlag, 2000.

[GGT02] E. Giunchiglia, F. Giunchiglia, and A. Tacchella. SAT based decision procedures for classical
modal logics. Journal of Automated Reasoning, 28:143–171, 2002.

[GS96] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from propo-
sitional decision procedures — the case study of modal K. In M. A. McRobbie and J. K.
Slaney, editors, Proceedings of CADE-96, volume 1104 of LNAI. Springer-Verlag, 1996.

[HM01] V. Haarslev and R. Möller. RACER system description. In Proceedings of IJCAR-01,
volume 2083 of LNAI. Springer-Verlag, 2001.

[Hor98] I. Horrocks. Using an expressive description logic: FaCT or fiction? In A. G. Cohn, L. Schu-
bert, and S. C. Shapiro, editors, Proceedings of KR-98. Morgan Kaufmann Publishers, 1998.

[HS97] U. Hustadt and R. A. Schmidt. On evaluating decision procedures for modal logic. Technical
Report MPI-I-97-2-003, Max-Planck-Institut für Informatik, Saarbrücken, 1997.

[HS00] U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by translation and first-order
resolution. In Dyckhoff [Dyc00].

[HST99] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics.
In Harald Ganzinger, David McAllester, and Andrei Voronkov, editors, Proceedings of LPAR

’99, number 1705 in LNAI. Springer-Verlag, 1999.

[Mas99] F. Massacci. Design and results of the Tableaux-99 non-classical (modal) systems compari-
son. In N. Murray, editor, Proceedings of TABLEAUX-99, volume 1617 of LNAI. Springer-
Verlag, 1999.

[MD00] F. Massacci and F. M. Donini. Design and results of TANCS-2000. In Dyckhoff [Dyc00].

[PS98] P. F. Patel-Schneider. DLP system description. In E. Franconi, G. De Giacomo, R. M.
MacGregor, W. Nutt, and C. A. Welty, editors, Proceedings of DL’98, CEUR Proceedings,
1998.

[PSS93] P. F. Patel-Schneider and B. Swartout. Description logic knowledge representation sys-
tem specification from the KRSS group of the ARPA knowledge sharing effort. Technical
report, AI principles research department, AT&T Bell Laboratories, 1993. Available at
http://dl.kr.org.

[PSS03] P.F. Patel-Schneider and R. Sebastiani. A new general method to generate random modal
formulae for testing decision procedures. Journal of Artificial Intelligence Research, 18:351–
389, 2003.

[Tob00] S. Tobies. The complexity of reasoning with cardinality restrictions and nominals in ex-
pressive description logics. Journal of Artificial Intelligence Research, 12:199–217, 2000.

