
Explaining Subsumption in ALEHFR+ TBoxes

Thorsten Liebig and Michael Halfmann
University of Ulm, D-89069 Ulm, Germany

liebig@informatik.uni-ulm.de

michael.halfmann@informatik.uni-ulm.de

Abstract
This paper presents current work on generating textual explanations

for subsumption within an expressive fraction of OWL Lite TBoxes. Our
approach is based on a tableau-style algorithm. We describe how to ex-
plain subsumptions within ALE extended by role hierarchies, transitivity,
cardinality restrictions, and domain as well as range restrictions. We also
illustrate some optimization features, comment on our implementation,
and discuss future extensions concerning more expressive languages.

1 Motivation

Authoring ontologies is a difficult conceptual task. An Ontology is an explicit
and formal specification which requires a basic understanding of the underlying
semantics and its reasoning services. Especially novices are faced with compre-
hension problems, concerning the proper use of role hierarchies, the influence of
transitive roles on reasoning or the effect of domain and range restrictions, etc.

A better understanding can be fundamentally supported by on-demand ex-
planations of subsumption, a core inference service. Embedded in an interactive
editing environment explanations can improve the authoring process to a large
degree. Another important issue is the acceptance of reasoning results, which
is closely related to trust in its inference services. Belief in a system can be
increased by evidence of how and why it was derived.

In this paper, we describe ongoing work towards a system for explaining
subsumption for a significant fraction of the DL underlying OWL Lite. Our
approach generates quasi-natural language from text templates, which are dis-
tilled from a corresponding tableau proof. First we describe how to use a tableau
algorithm for subsumption explanation by extending the work of [2]. We then
present some optimization techniques, describe our current implementation and
further improvements. We conclude with a discussion of related work and an
outlook.



2 Tableau-Based Explaining

Our approach is based on the ideas of extending a Description Logic tableau
prover for explaining purpose as suggested in [2]. Our current implementation
covers definitorialALEHFR+ TBoxes with global domain and range restrictions.
We restrict TBox axioms to be unique. I.e. all axioms of a TBox T are of the
form A v D or A ≡ D, where A is atomic and has no other definition within T .

As commonly known, tableau systems implement a refutation strategy. E. g.
in order to prove the subsumption A v D a refutation prover will show the un-
satisfiability of Au¬D which is the negation normal form of the complementary
query ¬(A v D). Apparently, this kind of argumentation is not intuitive or
natural in the human way of thinking. However, this is inconsequential, as long
as the user is only interested in the answer of the TBox query itself.

2.1 Tagging

When using a tableau prover for the task of explaining how a query answer
actually has been derived, the refutation strategy explicitly has to be hidden to
the end-user. Instead, the original (positive) query should be used for illustration
of the derivation steps. In order to achieve this, a technique called tagging has
been introduced in [2]. For a subsumption query A v D the right hand side is
tagged in the corresponding refutation problem (namely Au¬D†). To generate
an explanation, all tagged expressions have to be negated again in order to
comply to the original query. E. g. the tagged expression Au⊥† corresponds to
the TBox query A v > which can be explained by the statement: “Everything
is subsumed by the most general concept”. Obviously a tableau-based explainer
has to carefully distinguish between the rhs and lhs of a given subsumption
problem in order to be able to reconstruct the original query at any time. It
follows, that many optimizing simplification strategies are no longer applicable.

2.2 Lazy Unfolding

Generally, concepts are defined with help of references to other concept defini-
tions of the TBox. In order to successfully build a tableau proof those references
require to unfold to their given definition. A well known optimization technique
of DL tableau algorithms is lazy unfolding, which delays the unfolding of a con-
cept until it is actually required. In order to keep the user informed, each un-
folding step has to be explained. Therefore, all necessary unfolding steps within
a tableau node are collected and explained before further processing. E. g. a
query C v D could expand to an expression ∃r.A v ∃r.B, which would lead to
an explanation statement “We have to check whether C v D which unfolds to
∃r.A v ∃r.B”.



2.3 ALE
A methodology for explaining the subsumption relationship between ALC con-
cepts based on a sequent proof, derived from a tableau-based algorithm, can
be found in [2]. This approach proposes some straight-forward extensions to a
naive tableau algorithm and build the basic procedure of our explanation gen-
erator. Since our aim is to cover a sensible fraction of OWL Lite, namly OWL
Lite− [4], we build on top of the slightly less expressive language ALE . Note,
that in ALE disjunction comes implicitly on rhs due to the refutation strategy
of the tableau approach. In this instance, each disjunctive element leads to an
alternative tableau expansion. On the explanation level a disjunction on rhs
corresponds to a conjunction and will therefore be explained with help of an
enumeration of sub-explanations.

In a successfully closed tableau a clash occurs in some branch of the tableau
tree (resp. in every alternative expansion in case of disjunction). The type of the
clash is important for explanation generation. Due to a lack of space we refer
to [2] or [1] for the possible set of qualitatively different clashes within ALC and
discuss those types of clashes which extend ALE with role hierarchies, transitive
and functional roles as well as domain and range restrictions (ALEHFR+) in
the following.

2.4 Cardinality Restrictions and Merging

Following the language expressivity of OWL Lite we support functional roles
and a limited form of cardinality restrictions within our explainer. Particulary,
we cover cardinality restrictions (≥ n r) and (≤ n r) with n ∈ {0, 1} as well as
global constraints restricting a role to have at most one filler. In fact, the “at
least” restrictions are already covered by ALE , because (≥ 0 r) reduces to >
and (≥ 1 r) is equivalent to ∃r.>. In contrast, the “at most” restrictions and
the combination of conflicting cardinality restrictions require an extension of the
tableau as well as the explanation process. Since we have to take the origin of the
restrictions (lhs vs. rhs) into account we have to distinguish between four types
of cardinality clashes. Each of which result in a different explanation statement:

• (≤ n r) u (≥ m r) v . . . (with m > n)
“There can’t be at-least m and at-most n fillers for role r. The subsumee
is equivalent to ⊥ which is subsumed by everything.”

• . . . v (≤ n r) t (≥ m r) (with m ≤ n + 1)
“There are always either less than n or more than m fillers for role r. The
subsumer therefore is equivalent to > which subsumes everything.”1

1This kind of clash/explanation can only occur in the ALC language family.



• (≤ n r) v (≤ m r) (with m ≥ n)
“At most n fillers for r is subsumed by at most m fillers for r.”

• (≥ m r) v (≥ n r) (with m ≥ n)
“At least m fillers for r is subsumed by at least n fillers for r.”2

Another extension of the reasoning procedure is concerned with the combination
of existential quantifications and at most restrictions. Moreover, a (≤ 1 r)
restriction forces a role r to have at most one r-successor. In case of additional
existential quantification this requires to merge all existing successor nodes to
one single node. Since we do not allow for full negation such a merge can only
locally occur on lhs. Consider the query ∃r.A u ∃r.B u (≤ 1 r) v ∃r.(A u B).
As a result of the at most restriction the r-successor node will be explained as
follows: “Since there has to be at least one filler for each of the types A and B
and at most one filler for r on lhs this filler has to be of type (A uB)”.

An analogous explanation is needed for functional roles even without an
explicit at most restriction. E. g. ∃r.A u ∃r.B v ∃r.(A u B) holds in case of
a functional role r. The corresponding explanation would state: “Since r is
functional there is at most one filler which has to be of type (A uB)”.

2.5 Role Hierarchies

Within role hierarchies each role filler also is a filler of all super roles. The
effect of role restrictions in a tableau proof is the reverse — from a role to its
sub-roles. E. g. quantitative restrictions of a role like domain and range as well
as filler types also apply to all sub-roles. Consider a sub-role p of r (p v r)
and an expression (≥ 1 p) u ∀r.A. Each p-successor node will get an additional
explanation stating that “All fillers of r are restricted to be of type A. Since p
is a sub-role of r this restriction also applies to p.”

Cardinality restrictions and merging require a likewise handling. As with
“direct” cardinality restrictions we have to take the side of each expression into
account and therefore need to distinguish between four different types of clashes.
These are analogous to the ones described in section 2.4 but additionally explain
the corresponding sub-role relationship.

2.6 Domain and Range Restrictions

Global domain and range restrictions of a role become proof relevant as soon as a
tableau rule generates a successor node for that role. The given range or domain
restriction will then be added to the successor resp. predecessor node. Such a
restriction may consist of an arbitrary expression of the underlying language. As

2Within OWL Lite (n = 0) this case does not occur (rhs will reduce to > beforehand).



a consequence, in case of a resulting clash due to a domain or range restriction
one of the previously mentioned explanations will apply. In addition, the source
of the domain or range expression has to be explained. Accordingly, we need
additional explanation steps for domain and range restrictions. Hence, whenever
a role r has a domain or range restriction an additional explanation statement
will be given just after a generating r-successor rule. As an example, consider
the following query ∃r.A v ∃r.B and a range restriction B on role r. The two
existential quantifications are then explained as given in section 2.3: “For role
r we have to check whether A v B”. Because of the relevant range restriction
an additional explanation step states “Since role r has a range restriction on B
the subsumption evolves to (A uB) v B”.

2.7 Transitive Roles

Restrictions on transitive roles (∀r.C with r transitive) have to be propagated
to all descendants referenced over a sequence of r-successors. In the tableau
this is achieved by adding the qualifier C as well as the whole construct ∀r.C
to all direct successors of the node containing the restriction ∀r.C. In order
to supply inverse roles in a future version a pair-wise blocking strategy is used
to ensure termination. This causes the following sub-proofs to change in an
unobvious way. Therefore we add an additional explanation statement: “Since
r is a transitive role ∀r.C also has to hold for all its successors”.

3 Optimizations

The preceeding section introduced the basic techniques for explaining expressive
TBox queries. As with many approaches, a naive algorithm often leads to sub-
optimal results. In the case of explaining TBox queries, the full amount of
axioms needed and tableau rules applied in order to complete the proof can lead
to confusingly complex explanations. Therefore the major goal of optimizations
is to cut down the explanation length wherever possible.

3.1 Switching Explanation Mode

Special cases within subsumption determination are those where at some point of
processing either the subsumee is equivalent to ⊥ or the subsumer is equivalent
to > independently from each other. On tableau side this turns out as a clash
caused by equivalence to ⊥ on either side. Explanation statements for those
cases finally state “Everything is subsumed by the most general concept” for the
lhs or “The most specific concept is subsumed by everything” for the rhs.

However, it requires two independent unsatisfiability tests (for rhs and lhs)
to detect unsatisfiability on either side. Consider the subsumption ∀r.(∃s.((≤



0 t) u (≥ 1 t))) v ∀r.C. The latter holds because of the unsatisfiability of the
subsumees s-successor node on lhs. As a general consequence, instead of explain-
ing subsumption an optimized approach will switch to unsatisfiability explaining
as soon as the rhs or lhs of a node becomes independently unsatisfiable.

The previous example would then be explained as follows:
“For role r the left hand side (∃s.((≤ 0 t)u (≥ 1 t))) is equivalent to ⊥ which is
subsumed by everything.”
“For role s the left hand side ((≤ 0 t) u (≥ 1 t)) is equivalent to ⊥.”
“There can’t be (≥ 1) and (≤ 0) fillers for role t so this is equivalent to ⊥.”

3.2 Filtering of Disjunction on rhs

There are specific query types which are typically considered as obviously true
by end users. We propose a structural approach for these cases which avoids
additional tableau branches by pruning out disjunction on rhs. Consider the
query A u (≤ 1 r) u C v A u (≤ 1 r). Quite obviously this subsumption holds,
since the subsumee is a direct specialization of the subsumer. On tableau side
the subsumer is represented as ¬A t (≥ 2 r). A naive approach would split
up the proof by providing an explanation for each part of the disjunction. On
explanation side this case analysis is very likely unnecessary because of the intu-
itive and commonly agreed relationship between conjunction and specialization.
Therefore, an optimized explainer could simply provide an explanation state-
ment like “Obviously A u (≤ 1 r) u C is subsumed by A u (≤ 1 r) since the
former is a simple specialization of the latter”. To provide such explanations,
the corresponding situations have to be recognized and filtered. This can be
achieved by a structural comparison of subsumer and subsumee.

4 Implementation and Future Work

4.1 Prototype

Our prototype called Mex is implemented in Lisp and capable of explaining
subsumption within ALEHFR+ TBoxes. The syntax follows the KRSS syntax.

An explanation provided by Mex is a list of explanation steps. These steps
are created “on-the-fly” during proof generation. For each relevant tableau step
one or more explanation steps are added. When split into multiple branches
each branch consists of an independent sub-subsumption explanation. A tableau
clash causes an explanation branch to terminate with a type-specific explanation
step. In order to keep track of the structure of the explanation branches the
tableau tree depth is stored with each step. We have also implemented a Java-
based visualization component which displays an explanation as an expandable
tree list. As explaining is most powerful when used in combination with a tool



for editing ontologies. Therefore we have integrated Mex and its visualization
component as a plugin into OntoTrack [4].

Although we haven’t done extensive testing concerning Mexs performance,
it is quite obvious, that it is far behind the performance of highly optimized
reasoners like RACER or Pellet. On one hand this is because additional oper-
ations for explanation generation are necessary. On the other hand this is due
to the fact that none of the common tableau optimization techniques (except
lazy-unfolding) are used. Those techniques have not been applied because they
typically change the structure of the involved terms and ignore the seperation
of lhs and rhs, which is harmful in terms of providing explanations.

In order to allow for switching from subsumption to unsatisfiability explain-
ing, unsatisfiability on rhs or lhs needs to be identified before clash detection.
Therefore, both sides of a node are checked for unsatisfiability with help of the
RACER reasoner before further expansion rules are applied. Optionally, the
highly optimized RACER system can be used to further prune the Mex tableau
tree to those clauses which actually contribute to the clash, by making use of
the dual-reasoner strategy proposed in [3].

To enable advanced optimizations in order to increase the explanation quality
we suggest to generate explanations after building up the complete tableau in
future implementations. Additionally we aim to develop a more sophisticated
data structure in order to store additional information (e. g. origin and history)
for each construct in the tableau-nodes.

4.2 Further Optimization: Hiding

Constructs like domain and range restrictions or propagations of ∀-restrictions
on transitive roles increase the amount of clauses in a tableau. Occasionally,
they do not account for the final clash. When adding general concept inclusions
(GCIs) this becomes a serious problem, because lazy unfolding is not applicable
here.3 In order to reduce an explanation to its essential components we propose
to hide all those (otherwise mechanically added) constructs that are irrelevant
for the terminating clash. In a second step even all those irrelevant constructs
could be hidden which explicitly occur in the given definitions. However, to
hide individual constructs their clash relevance has to be detected prior clash
occurrence. A likewise concept called Relevant has been introduced in [2].

5 Related Work and Outlook

Work on explaining TBox inference services for expressive DLs has just started
mainly because of publishing of OWL to a larger audience. An early work

3Potential optimizations like absorption would in turn require other explanation steps.



deals with structural subsumption algorithms in order to provide explanations
as proof fragments within the Classic system [5]. An approach for explaining sub-
sumption by computing an interpolation of an intermediate concept in-between
subsumer and subsumee for ALC is given in [6]. The most related work seems
to be the dual-reasoner approach [3] which is also based on [2].

Our approach covers a fairly expressive DL. In order to deal with SHF (with-
out GCIs) we only need to add full negation and disjunction, which we already
have to cope within our tableau algorithm. However, full negation requires to
explain the transformation steps into negation normal form.

Explaining subsumption within OWL Lite ontologies (which are virtually
SHIF(D) TBoxes) requires support for GCIs (easy in combination with hiding
but may significantly decrease performance), concrete domains, inverse roles
(which may require to jump back and forth due to dynamic blocking), and
multiple definitions (for which we currently have no idea how to explain). It is
even more challenging to deal with OWL DL ontologies (SHOIN (D) TBoxes).
Explaining TBoxes with nominals is costly because it adds ABox reasoning
and therefore requires ABox explaining. In addition, unrestricted cardinality
constraints may blow up the explanation because of a potential huge set of
cardinality enforced combinatorial changes.

References

[1] A. Borgida, E. Franconi, and I. Horrocks. Explaining ALC subsumption.
In Proc. of the 14th European Conf. on Artificial Intelligence (ECAI 2000),
pages 209–213, 2000.

[2] A. Borgida, E. Franconi, I. Horrocks, D. McGuinness, and P. F. Patel-
Schneider. Explaining ALC subsumption. In Proc. of the Int. Workshop
on Description Logics (DL99), pages 37–40, 1999.

[3] F. Kwong. Explaining Description Logic Reasoning. In Proc. of the Int.
Workshop on Description Logics (DL04), Whistler, BC, Canada, 2004.

[4] T. Liebig and O. Noppens. OntoTrack: Combining Browsing and Editing
with Reasoning and Explaining for OWL Lite Ontologies. In Proc. of the
International Semantic Web Conf. (ISWC 2004), pages 244–258, Hiroshima,
Japan, 2004.

[5] D. McGuinness. Explaining Reasoning in Description Logics. PhD thesis,
Rutgers University, 1996.

[6] S. Schlobach. Explaining Subsumption by Optimal Interpolation. In Proc.
of the European Conf. of Logics in Artificial Intelligence, pages 413–425,
Lisbon, Portugal, 2004.


