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Abstract
We investigate whether path-functional dependencies can be granted

full status as a concept constructor in a Boolean-complete description
logic. In particular, we show that this leads to undecidability of the asso-
ciated logical implication problem if such dependencies are allowed within
the scope of a negation or on the left-hand-side of inclusion dependencies.
We then show that allowing such dependencies to occur in the scope of
monotone concept constructors on the right-hand-side of inclusion depen-
dencies will still lead to decidable implication problems.

1 Introduction

To date, description logics (DLs) have incorporated keys or functional depen-
dencies in one of two ways. The first introduces a separate family of constraints,
e.g., in the form of a key box [5, 6, 12, 13], while the second incorporates such con-
straints by introducing a concept constructor called a path-functional dependency
(PFD) [10, 16, 17]. However, even the latter approach has so far fallen short
of a “full integration” of keys or functional dependencies since occurrences of
this constructor are essentially limited to top-level concept descriptions on right
hand sides of inclusion dependencies. In this paper, we investigate whether such
syntactic restrictions are necessary—unfortunately we show that indeed this is
the case—and study the limits of decidability in such a setting. Our main con-
tributions are as follows.

• We show in general that allowing PFDs in the scope of negation or on the
left hand side of inclusion dependencies leads to undecidability.

• Conversely, we show that allowing PFDs in the scope of monotone con-
cept constructors on the right hand side of inclusion dependencies leads to
decidable implication problems.



1.1 Background and Related Work

PFDs were introduced and studied in the context of object-oriented data models
in [8, 20]. In [4], an FD concept constructor was proposed and incorporated in
Classic, an early DL with a PTIME reasoning procedure, without changing the
complexity of its implication problem. In [10], it is shown that the generalization
of this constructor to PFDs will alone lead to EXPTIME completeness of the
implication problem; [16, 17] show that this complexity remains unchanged in
the presence of very rich, e.g., Boolean complete DLs. Note that this earlier
work assumes the above syntactic restrictions on occurrences of the PFD concept
constructor in inclusion dependencies. PFDs have also been used in a number
of applications in object-oriented schema diagnosis and synthesis [2, 3], in query
optimization [7, 9] and in the selection of indexing for a database [14].

The remainder of the paper is organized as follows. The definition of DLFD, a
Boolean complete DL based on features that includes the PFD concept construc-
tor is given next. In Section 3, we show that the interaction of this constructor
with negation leads to undecidability. Section 4 then shows how decidability
can be regained while still allowing PFDs in the scope of monotone concept con-
structors on the right hand sides of inclusion dependencies, most significantly
in the scope of concept union and feature restriction. Our summary comments
follow in Section 5.

2 Definitions

We use the following DL dialect in this paper:

Definition 1 (Description Logic DLFD) Let F and C be sets of attribute
names and primitive concept names, respectively. A path expression is defined
by the grammar “Pf ::= f. Pf | Id” for f ∈ F. We define derived concept descrip-
tions by the grammar on the left-hand-side of Figure 1. A concept description
obtained by using the final production of this grammar is called a path functional
dependency (PFD).

An inclusion dependency C is an expression of the form D v E. A termi-
nology T consists of a finite set of inclusion dependencies.

The semantics of expressions is defined with respect to a structure (∆, ·I),
where ∆ is a domain of “objects” and (.)I an interpretation function that fixes
the interpretation of primitive concepts C to be subsets of ∆ and primitive at-
tributes f to be total functions (f)I : ∆ → ∆. The interpretation is extended
to path expressions, (Id)I = λx.x, (f. Pf)I = (Pf)I ◦ (f)I and derived concept
descriptions D and E as defined on the right-hand-side of Figure 1.

An interpretation satisfies an inclusion dependency D v E if (D)I ⊆ (E)I.
The logical implication problem asks if T |= D v E holds; that is, for a posed
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Syntax Semantics: Defn of “(·)I”
D,E ::= C (C)I ⊆ ∆

| D1 uD2 (D1)I ∩ (D2)I

| D1 tD2 (D1)I ∪ (D2)I

| ∀f.D {x : (f)I(x) ∈ (D)I}
| ¬D ∆ \ (D)I

| D : Pf1, ...,Pfk → Pf {x : ∀ y ∈ (D)I .∧k
i=1(Pfi)I(x) = (Pfi)I(y) ⇒ (Pf)I(x) = (Pf)I(y)}

Figure 1: Syntax and Semantics of DLFD.

question D v E, if (D)I ⊆ (E)I for all interpretations that satisfy all inclusion
dependencies in T .

3 Undecidability

First we show that allowing an arbitrary use of the PFD concept constructor
leads to an undecidable implication problem. We show a reduction of the un-
restricted tiling problem to the DLFD implication problem. An instance U of
the unrestricted tiling problem is a triple (T,H, V ) where T is a finite set of tile
types and H, V ⊆ T × T two binary relations. A solution to T is a mapping
t : N×N → T such that (t(i, j), t(i + 1, j)) ∈ H and (t(i, j), t(i, j + 1)) ∈ V for
all i ∈ N. This problem is Π0

0-complete [1, 19]. The main part of the reduction
constructs a terminology for a given tiling problem, denoted T (T, H, V ), in the
following four steps.

1. To establish an integer grid, begin by enforcing the creation of an infinite
horizontal sequence of objects that are instances of alternating concepts C
and D.

C v (∀f.Cf ) u (C : f → Id) u (∀g.Cg) u (C : g → Id)
D v (∀f.Df ) u (D : f → Id) u (∀g.Dg) u (D : g → Id)

(Cf tDf ) v ¬(Cg tDg)
C v ¬(D : g → f)
D v ¬(C : f → g)

The infinite sequence is enforced by requiring the existence of a single
instance of C u ∀f.¬Df (see later); this is illustrated by the first two rows
of concepts at the top of Figure 2.
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Figure 2: Defining a Grid.

2. Then extend this sequence in the vertical direction to form squares.

C v (∀h.C) u (D : g → h.g)
D v (∀h.D) u (C : f → h.f)

(C tD) v (C tD) : h → Id

The effect of these additional assertions is depicted in the lower part of
Figure 2.

3. Introduce primitive concepts Ti for each tile type in T , and ensure the
types are distinct.

C tD v (
⊔

Ti)
Ti u Tj v ⊥ for i < j

4. And finally, enforce the tiling constraints.

(vertical adjacency) Ti u ∀h.Tj v ⊥ for (i, j) 6∈ V

(horizontal adjacency) Ti u C v (Tj uD) : g → Id and
Ti uD v (Tj u C) : f → Id for (i, j) 6∈ H

The construction above yields immediately the following result:

Theorem 2 An instance (T,H, V ) of the infinite tiling problem admits a solu-
tion if and only if

T (T,H, V ) 6|= C u ∀f.¬Df v ⊥.

Corollary 3 The logical implication problem for DLFD is undecidable.
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4 On Regaining Decidability

We now show that undecidability is a consequence of allowing PFDs to occur
within the scope of negation. In particular, and for the remainder of the paper,
we shall assume a limited DLFD in which inclusion dependencies, D v E, are
presumed to adhere to the following less general grammar.

D ::= C | D1 uD2 | D1 tD2 | ∀f.D | ¬D
E ::= D | E1 u E2 | E1 t E2 | ∀f.E | D : Pf1, ..., Pfk → Pf

Observe that PFDs must now occur on right hand sides of inclusion dependencies
at either the top level or within the scope of monotone concept constructors; this
implies that limited DLFD is a strict generalization of earlier dialects. Note
that allowing PFDs on left hand sides is equivalent to allowing PFDs in the
scope of negation:

Example 4 C v ¬(D : f → g) is equivalent to C u (D : f → g) v ⊥.

In the following, we reduce logical implication problems in limited DLFD to
simpler formulations for which existing decisions procedures can be applied [16].

4.1 Transformation of Terminologies

We start by showing that allowing PFDs in monotone concept constructors
within terminologies can be avoided by a syntactic transformation.

Definition 5 (Simple Constraints and Terminologies) An inclusion depen-
dency D v E ∈ T is called simple if it conforms to limited DLFD and if the
right hand side can be parsed by the following grammar.

E ::= D | D : Pf1, ..., Pfk → Pf

A terminology T is called simple if all its inclusion dependencies are simple.

For a given terminology T , we construct a simple terminology T simp by rewriting
the right hand sides of inclusion dependencies as follows:

(D v D′)simp = {D v D′}
(D v E1 u E2)

simp = {D v D1 uD2} ∪ (D1 v E1)
simp ∪ (D2 v E2)

simp

(D v E1 t E2)
simp = {D v D1 tD2} ∪ (D1 v E1)

simp ∪ (D2 v E2)
simp

(D v ∀f.E1)
simp = {D v ∀f.D1} ∪ (D1 v E1)

simp

for D v D′ a simple inclusion dependency and D1 and D2 fresh primitive concept
names. We define T simp =

⋃
DvE∈T (D v E)simp.
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Figure 3: Counterexamples for Examples 8 and 9.

Lemma 6 1. Let I |= T simp. Then I |= T ;

2. Let I |= T . Then there is I ′ such that I and I ′ agree on the interpretation
of all symbols in T and I ′ |= T simp.

Proof: Follows by straightforward inductions on the definition of (·)simp. 2

Thus, in terminologies, the interaction of positive concept constructors with
PFDs poses little difficulty and we can use existing decision procedures for the
implication problem.

Theorem 7 Let T be a terminology conforming to limited DLFD and C a sim-
ple inclusion dependency. Then T |= C is decidable and complete for EXPTIME.

Proof: The theorem is a consequence of Lemma 6 and of reductions presented
in [16]. 2

4.2 Transformation of Posed Questions

Now assuming, w.l.o.g., that a given terminology is simple, we exhibit a reduc-
tion of a logical implication problem with a posed question expressed in limited
DLFD. Unfortunately, allowing other than simple inclusion dependencies as
posed questions leads to more complications. Consider the following two exam-
ples.

Example 8 A counterexample to D v (C : f, g → h) t (C : f, h → g) is
depicted in Figure 3(a). Note that any such counterexample must also falsify
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C v C : f → Id since distinct C objects that agree on f will be required. Thus:

{C v C : f → Id} |= D v (C : f, g → h) t (C : f, h → g).

Example 9 A counterexample to D v (C : f → g) t ∀f.(C : f → g) is shown
in Figure 3(b). Observe with this case that distinct C objects must occur at
different levels when compared to a D-rooted tree.

The examples illustrate a need for multiple root objects in counterexample inter-
pretations, with the roots themselves occurring at different levels. Our overall
strategy is to therefore reduce a logical implication problem to a negation of a
consistency problem in an alternative formulation in which objects in a satisfying
counterexample denote up to ` possible copies in a counterexample interpreta-
tion for the original problem, where ` is the number of occurrences of PFDs in
the posed question.

To encode this one-to-many mapping of objects, we require a general way
to have ` copies of concepts occurring in a given membership problem. We
therefore write Di to denote the concept description D in which all primitive
concepts C are replaced by Ci. For a simple terminology T we then define

T i = {Ndi uDi v Ei | D v E ∈ T , E a non PFD}, and

T i,j = {Ndi u Ndj uDi u Ej u (u1≤n≤k∀Pfn .Eqi,j) v ∀Pf .Eqi,j,
Ndi u Ndj uDj u Ei u (u1≤n≤k∀Pfn .Eqi,j) v ∀Pf .Eqi,j

| D v E : Pf1, . . . , Pfk → Pf ∈ T }.
For a concept description E we define

Not(E) =





¬D0 if E (= D) is free of PFDs,

Not(E1) u Not(E2) if E = E1 t E2,

Not(E1) t Not(E2) if E = E1 u E2,

∀f.Not(E1) if E = ∀f.E1,

Ndi uDi u (u1≤i≤k∀Pfi .Eq0,i) u ∀Pf .¬Eq0,i

otherwise, when E = D : Pf1, . . . , Pfk → Pf .

where i in the last equation is the index of the PFD in the original posed question.
In the above, we have introduced primitive concepts Eqi,j, 0 ≤ i 6= j ≤ `, to

express that the ith and jth object copies coincide, and Ndi, 0 ≤ i ≤ `, to assert
that the ith copy exists. The following auxiliary sets of constraints are therefore
defined to account for the axioms of equality and for the fact that features in
DLFD denote total functions.

E(l) = {Eqi,j u Eqj,k v Eqi,k | 0 ≤ i < j < k ≤ l}
∪ {Eqi,j v Eqj,i | 0 ≤ i < j ≤ l}
∪ {(Eqi,j u Ci) v Cj | 0 ≤ i 6= j ≤ l and C a primitive concept}
∪ {Eqi,j v ∀f.Eqi,j | 0 ≤ i 6= j ≤ l and f a primitive feature}

N (l) = {Ndi v ∀f.Ndi | 0 ≤ i ≤ l and f a primitive feature}

7



Theorem 10 Let T be a simple terminology and D v E an inclusion depen-
dency containing l occurrences of the PFD concept constructor. Then T |= D v
E if and only if

(
⋃

0≤i≤l

T i) ∪ (
⋃

0≤i<j≤l

T i,j) ∪ E(l) ∪N (l) |= (Nd0 uD0 u Not(E)) v ⊥.

Proof: (sketch) Given an interpretation I such that I |= T and I 6|= D v E
we construct an interpretation J as follows. First, in the construction, we use
a many-to-one map δ : ∆ → ∆J to associate objects in I with thise in J . The
range of δ serves as the domain of the interpretation J . For the counterexample
object o ∈ (Du¬E)I we set δo ∈ (Nd0)J . Then, for all o ∈ ∆ and 0 ≤ i 6= j ≤ l
we define the map δ and the interpretation I as follows:

• δo ∈ (Ndi)J ∧ (f)I(o) = o′ ⇒ δo′ ∈ (Ndi)J ∧ (f)J (δo) = δo′,

• δo ∈ (Ndi)J ∧ o ∈ (D)I ⇒ δo ∈ (D)J for D a PFD-free concept,

• δo = δo′ ∧ δo ∈ (Ndi)J ∧ δo′ ∈ (Ndj)J ∧ (Pf)I(o) = (Pf)I(o′) ⇒
δo ∈ (Eqi,j)J , and

• δo ∈ (Ndi)J ∧ o ∈ (¬D : Pf1, . . . , Pfk → Pf)I where D : Pf1, . . . , Pfk → Pf
is the i-th PFD constructor in E. Thus there must be o′ ∈ ∆ such that
o′ ∈ (D)I and the pair o, o′ agrees on all Pfi but disagrees on Pf; we set
δo = δo′ and δo′ ∈ (Ndi uDi u (u1≤i≤k∀Pfi .Eq0,i) u ∀Pf .¬Eq0,i)J .

Note that, due to the syntactic restrictions imposed on the uses of PFD con-
structors, a negation of an PFD can be enforced only in the counterexample of
the description E. Spurious occurrences of negated PFDs in the interpretation
I are therefore ignored as the interpretation itself satisfies all PFDs in T .

It is easy to verify that δo ∈ (Nd0uD0uNot(E))J for o ∈ (Du¬E)I . By inspect-
ing all inclusion dependencies in T we have J |= T i as I |= T . Furthermore,
the construction of J enforces J |= E(l) ∪N (l).

On the other hand, given an interpretation J of (Nd0uD0uNot(E)) that satisfies
all assertions in

(
⋃

0≤i≤l

T i) ∪ (
⋃

0≤i<j≤l

T i,j) ∪ E(l) ∪N (l),

we construct an interpretation I of T that falsifies D v E as follows:

• ∆I = {(o, i) : o ∈ (Ndi)J , 0 ≤ i ≤ l and o 6∈ (Eqj,i)J for any 0 ≤ j < i},

8



• (f)I((o, i)) = (o′, j) whenever (f)J (o) = o′ where j is the smallest integer
such that o ∈ (Eqj,i)J if such value exists and i otherwise; and

• (o, i) ∈ (D)I whenever (o, i) ∈ ∆J and o ∈ (Di)J .

It is easy to verify that (o, 0) falsifies D v E whenever o belongs to (Nd0 u
D0 uNot(E)), and such an object must exist by our assumptions. Also, I |= T ,
as otherwise by cases analysis we get a contradiction with J |= (

⋃
0≤i≤l T i) ∪

(
⋃

0≤i<j≤l T i,j) ∪ E(l) ∪N (l). 2

Corollary 11 The implication problem for limited DLFD is decidable and
EXPTIME-complete.

Proof: Follows immediately from Theorems 7 and 10 above. 2

5 Conclusions

We have shown that allowing PFDs to occur in the scope of negation or on the
left hand sides of inclusion dependencies in the DL DLFD leads to undecid-
ability of its logical implication problem, and therefore that a full integration
of keys and functional dependencies in expressive DLs is not in general possi-
ble. Conversely, by virtue of reductions to simpler dialects, we have shown that
the complexity of this problem remains unchanged for limited DLFD in which
PFDs are restricted to occur within the scope of monotone concept constructors
on right hand sides of inclusion dependencies.

There are several ways that limited DLFD can be extended without chang-
ing the complexity of its logical implication problem. For example, by using
reductions introduced in [16], it is straightforward to add roles, quantified num-
ber restrictions on roles and even role inversion. (Feature inversion, however, is
another matter since its addition to simple DLFD already leads to undecidabil-
ity [15, 17].)

There is also a possibility of extending limited DLFD with regular path
functional dependencies as defined in [18]. In this case, left and right-hand-
sides of PFDs are specified as regular languages that can define infinite sets of
path functions. Such constraints have applications in reasoning about equal-
ity in semistructured databases [18] and in capturing inductive data types in
information integration, thus extending the work in [11].

Another direction of future research includes studying terminologies stratified
with respect to the interactions of the PFD constructor and negation in an
attempt to extend the applicability of the proposed approach.
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