
‘Closer’ representation and reasoning

M. Sheremet,1 D. Tishkovsky,2 F. Wolter,2 and M. Zakharyaschev1

1Department of Computer Science 2Department of Computer Science
King’s College London University of Liverpool

Strand, London WC2R 2LS, U.K. Liverpool L69 3BX, U.K.
{mikhail,mz}@dcs.kcl.ac.uk {dmitry,frank}@csc.liv.ac.uk

Abstract

We argue that orthodox tools for defining concepts in the framework of
description logic should often be augmented with constructors that could
allow definitions in terms of similarity (or closeness). We present a corres-
ponding logical formalism with the binary operator ‘more similar or closer
to X than to Y ’ and investigate its computational behaviour in different
distance (or similarity) spaces. The concept satisfiability problem turns
out to be ExpTime-complete for many classes of distances spaces no mat-
ter whether they are required to be symmetric and/or satisfy the triangle
inequality. Moreover, the complexity remains the same if we extend the
language with the operators ‘somewhere in the neighbourhood of radius a’
where a is a non-negative rational number. However, for various natural
subspaces of the real line R (and Euclidean spaces of higher dimensions)
even the similarity logic with the sole ‘closer’ operator turns out to be
undecidable. This quite unexpected result is proved by reduction of the
solvability problem for Diophantine equations (Hilbert’s 10th problem).

“There is nothing more basic to thought and language than
our sense of similarity; our sorting of things into kinds.”

(Quine 1969)
1 Introduction

How do we define concepts?
In description logic, we do this by establishing relationships between con-

cepts, for example,

Mother ≡ Woman u ∃hasChild.Person

The main tool for analysing and using such definitions is reasoning.
In areas such as image processing, data mining, case-based reasoning (and

our everyday life as well) we often define concepts using various (explicit or

implicit) similarity measures: for example,

Reddish ≡ {Red} ⇔ {Green, . . . ,Black}

which reads: ‘a colour is reddish iff it is more similar (with respect to the RGB,
HSL or some other explicit or implicit colour model) to the prototypical colour
Red than to the prototypical colours Green, . . . , Black.’ The main tools for
dealing with concepts of this sort are numerical computations (say, with the
help of Voronoi tessellations, nearest neighbour or clustering algorithms).

As bioinformatics, linguistics and similar areas use both ways of concept
formation, we are facing the problem of integrating these two types of repres-
entation. Although there is a lot of research concerned with the derivation of a
similarity measure from an ontology [9, 7], an integration of similarity- and DL-
based formalisms to define concepts (or formulate constraints on their relations)
and reason about them has so far been proposed only in [8].

The main goal of our ongoing research project is to develop, investigate and
implement uniform logic-based formalisms capable of representing and reasoning
with both terminological and similarity-based knowledge in their interaction.

In [5, 14, 8, 15] we presented and investigated rudimentary DL-like formal-
isms for reasoning about concepts and similarity with concept constructors of
the form ∃<aC, that is, ‘in the a-neighbourhood of C,’ where a ∈ Q+. In par-
ticular, we showed that reasoning with such formalisms can be organised with
the help of tableaux, and that the typical worst case complexity is ExpTime.

The apparent limitation of these languages is that they can only operate with
concrete degrees of similarity a ∈ Q+. Although qualitative similarity measures
such as ‘A is very close to B’ and ‘B is far from C, and medium close to D’
can be encoded with concrete numbers, in many cases similarities can only be
defined implicitly using statements like ‘X resembles Y more than Z.’

The logic we propose in this paper extends any ‘reasonably well-behaved’
description logic with finitely many binary ‘closer’ operators ⇔i and unary dis-
tance operators ∃<a

i ,∃≤a
i , for a ∈ Q+ (to capture different similarity measures).

The applications of the logic we envisage are similar to the use of description
logic in the process of ontology formation and maintenance, which means that
reasoning with the logic is of fundamental importance (to check whether the
resulting classification is consistent, whether it reflects properly the available
knowledge, etc.). At the moment we do not assume any strong interaction
axioms between the DL constructors and the similarity operators. That is why
our primary goal in this paper is to investigate the computational properties
of the pure similarity logic SL which contains concept names, nominals, the
Booleans, and the similarity operators mentioned above. We interpret SL in
models based on (finite) metric spaces. However, as similarity measures are not
always symmetric and do not necessarily satisfy the triangle inequality (see, e.g.,
[12]), we also consider ‘distance spaces’ without one or both of these properties.

Our first main result is that the concept satisfiability problem (relative to
arbitrary knowledge bases) over such classes of finite models is decidable in
ExpTime, even if the numerical parameters are coded in binary. This upper
bound is obtained using a reduction to the emptiness problem for tree automata
with one complemented pair [2]. We show that for all these classes of models
concept satisfiability is ExpTime-hard even for the ‘qualitative’ language SLq

with the Booleans and the sole operator ⇔.
Similarity measures based on physical measurements (e.g., weight, length

or colour) often form subspaces of the Euclidean Rn for some n > 0. It was
a great surprise for us to discover that the satisfiability problem for SLq in
finite subspaces of R (or N) turns out to be undecidable. It is also undecidable
in finite subspaces of Rn for each n > 1. The proof is by reduction of the
solvability problem for Diophantine equations (Hilbert’s 10th problem).

All proofs in this paper are only sketched; for a detailed exposition the reader
is referred to [10].

2 Syntax and semantics

Language. We extend the language of the description logic we are interested
in, say, ALCQO (containing object names `1, . . . , concept names A1, . . . , and
role names R1, . . .) with the following concept formation rules, where a ∈ Q+,
i = 1, . . . , n, and D1, . . . , Dn are certain concepts (which are supposed to be
modelled by sets of objects with similarity measures):

C ::= C1 ⇔i C2 | ∃<a
i C | ∃≤a

i C

Intended models of this language are structures of the form

I =
〈
∆I, `I

1, . . . , A
I
1, . . . , R

I
1, . . . , (D

I
1 , d

I
1), . . . , (D

I
n, d

I
n)

〉
(1)

where the DI
i ⊆ ∆I are interpretations of the Di above and the dI

i are similarity
measures on DI

i , that is, the (DI
i , d

I
i) with dI

i : DI
i × DI

i → R+ are ‘distance
spaces’ of the appropriate type (a precise definition will be given below). The
interpretation of ALCQO in I is standard, while the ‘similarity’ part of the
language is interpreted as follows. For x ∈ DI

i and nonempty Y ⊆ DI
i , let

dI
i (x, Y) = inf{dI

i (x, y) | y ∈ Y }. As usual, dI
i (x, ∅) = ∞ and a < ∞ for all

a ∈ R. Given a concept C, let CI
i = CI ∩DI

i , for i = 1, . . . , n. Now we set

(C ⇔i E)I = {x ∈ DI
i | dI

i (x, CI
i) < dI

i (x, EI
i)} (2)

(∃<a
i C)I = {x ∈ DI

i | ∃y ∈ CI
i dI

i (x, y) < a} (3)

(∃≤a
i C)I = {x ∈ DI

i | ∃y ∈ CI
i dI

i (x, y) ≤ a} (4)

In other words, C ⇔i E is the concept containing those objects of Di that are
more similar to C than to E. ∃<a

i C is the (open) a-neighbourhood of C in Di.

A knowledge base consists of (finitely many) concept and role assertions C(`)
and `Rj`

′, and terminological axioms C v D. Notice that we can express
assertions like ‘the distance between `1 and `2 is a’ by {`1} v ¬∃<a{`2}u∃≤a{`2}.
Our main reasoning task is concept satisfiability with respect to knowledge bases,
or, more precisely, given a knowledge base Σ and a concept C, determine whether
there exists a model J such that J |= Σ and CJ 6= ∅.
Example. We illustrate possible applications of the resulting logic by outlining
some (raw) ideas of how a (suitable) DL extended with the similarity operators
above can be used to help building ontologies for historical linguistics. Historical
(or comparative) linguistics studies languages and their change over time with
the aim of establishing and classifying genetic relationships between the world’s
languages and reconstructing their historic development. For example, Latin
of the Roman Empire gave rise to the family of Romance languages which in-
cludes French, Spanish, Portuguese, Italian, and Romanian. Genetically related
languages are defined to be the languages with a common ancestor.

Comparative linguistics uses a number of methods to establish genetic rela-
tionships between languages and to speculate on how the genetic linguistic tree
(or forest) can look like. The methods differ in their conclusive power and accur-
acy, in how much human or computational efforts they require, in the amount
and availability of the prerequisite linguistic data, etc. For the purpose of our
presentation, we divide these methods into three groups:

1. The comparative method defines strict criteria for languages to be genetic-
ally related (regular correspondences between languages that ideally lead
to the reconstruction of the ancestor language); it is usually regarded to
be the most conclusive. The shared innovations method generally supplies
valuable additional information that might help to make the genetic tree
more accurate (see, e.g., [13]).

2. Methods based on ‘genetically relevant’ similarity measures such as lex-
icostatistics, etymostatistics, etc.

3. Less reliable statistical and alignment techniques (the method of resemb-
lances and mass comparison, etc.) can provide useful conjectures or ap-
proximations to be justified or rejected by other methods (see, e.g., [6]).

To give some hint of the scale of the problem, we remind the reader that lin-
guistics deals with about 6000 (living and dead) languages which are divided in
about 300 families. This complexity as well as the limited knowledge of certain
languages (not only ancient but also the existing ones) prevent linguists from
agreeing on a single canonical genetic tree of languages. New data and methods
cause changes, doubts and debates. For example, according to [13] the number
of families may be reduced to as low as 200.

It seems that the situation in historical linguistics is similar to that in bioin-
formatics, where the research community has recognised the need to develop

bioinformatics ontologies in order to exploit vast amount of biological inform-
ation. Moreover, the idea of using logical formalisms such as description logic
(or Prolog) as the underlying ontology languages to cope with difficulties in
consistency and maintenance is becoming more and more popular [11].

To build a formal ontology for historical linguistics, one can start with the
data provided by 1. and represent the resulting genetic forest of languages, their
properties and relations in some suitable DL. For example, we may have (in a
‘slang’ DL)

• Latin parentFrench says that Latin is an immediate predecessor of French;

• IE = ∃parent−∗.{ProtoIndoEuropean} says that the family of Indo-European
languages is the subtree with Proto-Indo-European language as the root;

• L1 ∈ C ∧L2 ∈ C → L1(parent∪parent−)∗L2 claims that languages sharing
some ‘good’ property C are connected in the genetic forest.

Methods 2. and 3. provide us with knowledge based on some similarity measures,
say, a genetically relevant g from 3. and a less accurate d from 4. In this case
we may need to represent both pure metric data (e.g., d(L1, L2) = 0.7) and our
conjectures connecting the metric with properties of languages. E.g.,

• (C1 v ¬∃<ε
g C2) → (C1 v ¬∃(parent ∪ parent−)∗C2) means that languages

from distant classes C1 and C2 cannot be genetically related (they belong
to disjoint trees in the forest);

• C v ∃<a
g L or ∃<b

g C v D say that the whole class C (containing L) should
not be too far from L, and, on the other hand, all languages sufficiently
close to C must be in some family D;

• C v {L1, . . . , Ln} ⇔d D represents the conjecture that a family C is closer
to prototypical languages L1, . . . , Ln then to some family D.

Combining description and similarity logics. We can easily reduce reas-
oning in the language above to reasoning in the fusion of the underlying de-
scription logic (say ALCQO) and the similarity logics induced by the distance
spaces [1, 4]. Therefore, as long as we have either no nominals in any of the
components or nominals in each of the components of the fusion, decidability
of the full language follows from the decidability of its components. Moreover,
we can even obtain the ExpTime upper bounds for the full logic defined above
by extending the proof sketched below for the pure similarity language. In the
remaining part of the paper we only focus on this similarity part of the language.

The logic of similarity SL is defined by taking

C ::= {`} | A | ¬C | C1 u C2 | C1 ⇔ C2 | ∃<aC | ∃≤aC

where the ` are object names and a ∈ Q+. SL is interpreted in the appropriate
reducts of the models (1), namely, in the structures of the form

I =
〈
∆I, dI, `I

1, . . . , A
I
1, . . .

〉
,

where D =
〈
∆I, dI

〉
is a distance space, i.e., dI is a map from ∆I × ∆I to R+

such that, for all x, y ∈ ∆I, dI(x, y) = 0 iff x = y. Such structures will be called
SL-models. If dI satisfies two additional properties

dI(x, y) = dI(y, x) (sym)

dI(x, z) ≤ dI(x, y) + dI(y, z) (tr)

then D is called a metric space. The interpretation of the Boolean operators in
J is as usual (we will use t as a standard abbreviation), {`}I = {`I}, and the
similarity operators ⇔, ∃<a, ∃≤a are interpreted in the same way as in (2)–(4).

Having in mind applications mentioned in the introduction, it would be nat-
ural to consider the SL-concept satisfiability problem in various classes of finite
SL-models. On the other hand, the DL component of the combined language
does not necessarily have the finite model property. That is why our inten-
ded models in this paper are based on natural generalisations of finite distance
spaces which can be defined as follows. Let D = (∆, d) be a distance space. The
distance d(X, Y) between two nonempty X,Y ⊆ ∆ is defined by taking

d(X,Y) = inf{d(x, y) | x ∈ X, y ∈ Y }.

We call D a min-space if, for all nonempty X, Y ⊆ ∆,

d(X, Y) = min{d(x, y) | x ∈ X, y ∈ Y } (min)

We will see in the next section that actually the similarity logic SL does not
feel the difference between finite and min-distance spaces. Note that this is not
the case for the class of all metric spaces where SL can express the interior
and closure operators induced by the metric: IntC ::= > ⇔ ¬C (where > is
the whole space), ClC ::= ¬(C ⇔ >) u ¬(> ⇔ C). Reasoning in the class
of arbitrary metric spaces requires a completely different approach and will be
considered elsewhere. (It is worth noting that in the literature on conditional
logic requirement (min) above is often called the limit assumption.)

3 Concept satisfiability

We investigate the SL-concept satisfiability problem in various classes of SL-
models based on min-spaces. To begin with, note that the concept satisfiability
problem with respect to knowledge bases is easily reducible to pure concept

satisfiability (with empty knowledge base). Indeed, let ∀C = ¬∃¬C, where
∃D = D ⇔ ⊥ (that is, ∀ and ∃ are the universal modalities over the space).
Then a concept C is satisfiable relative to a knowledge base Σ iff the concept
∀

d
{¬C1 t C2 | C1 v C2 ∈ Σ} u C is satisfiable. In what follows we confine

ourselves to investigating concept satisfiability with empty knowledge base.
Is easy to show that satisfiability of SL-concepts depends on whether we

assume (sym) and/or (tr). For the ‘purely qualitative’ fragment SLq of SL which
does not contain numerical operators ∃<a and ∃≤a the situation is different:

Proposition 1. SLq-concepts cannot distinguish between SLq-models with and
without (tr).

Proof. Suppose C is satisfied in a model J without (tr). Take any strictly
monotonic f : R+ → (9, 10), where (9, 10) is the open interval from 9 to 10.
Define a new distance dJ′

on ∆J by dJ′
(x, y) = f(dJ(x, y)), for x 6= y. The

remaining components of J′ coincide with those of J. Then C is satisfied in J′

and J′ satisfies (tr).

Note, however, that SLq can distinguish between models with and without
(sym). Consider the knowledge base Σ which consists of the inclusions

A v (B ⇔ C), B v (C ⇔ A), C v (A ⇔ B). (5)

Then, relative to Σ, A is satisfiable in a three-point model without (sym). How-
ever, it is not satisfiable in any model satisfying (sym).

Proposition 2 (finite model property). Let C be the class of all min-models
satisfying any combination of the properties (sym) and (tr), in particular, neither
of them. Then an SL-concept is satisfiable in C iff it is satisfiable in a finite
model from C.

Proof. This result can be proved by a (rather involved) filtration argument.

In view of this proposition, from now on we will be considering—unless
otherwise stated—only finite SL-models.

Proposition 3 (lower bound). Let C be any class of models mentioned in
Proposition 2. Then the satisfiability problem for (nominal-free) SLq-concepts
in C is ExpTime-hard.

Proof. The proof is by reduction of the following ExpTime-complete problem:
givenALC-concepts C and D with a single role R, decide whether D ≡ > follows
from the TBox {C ≡ >}. Let κ0 = B0, κ1 = ¬B0 u B1, κ2 = ¬B0 u ¬B1, for
some fresh Bi. Define inductively a translation ·# from ALC to SLq by taking:
A#

i = Ai, (¬C1)
= ¬C#

1 , (C1 u C2)
= C#

1 u C#
2 , and

(∃R.E)# =
⊔
i<3

(
κi u ∃κi⊕1 u

(
(κi⊕1 u E#) � κi⊕1

))
,

where ⊕ is addition modulo 3 and � means ‘at the same distance,’ i.e.,

C1 � C2 = ¬(C1 ⇔ C2) u ¬(C2 ⇔ C1).

One can show that D ≡ > follows from {C ≡ >} iff ∀C# → D# is valid in all
finite SL-models (with and without (sym) and/or (tr)).

Proposition 4 (upper bound). The SL-concept satisfiability in any class C
of models from Proposition 2 is decidable in ExpTime, even if the numerical
parameters are coded in binary.

Proof. We only give a brief sketch of how the proof works for finite metric
spaces. The crucial idea is that a concept C is satisfiable in a finite metric
space iff it is satisfiable in an ‘abstract tree metric space’ (where nominals can
be interpreted by non-singleton sets whose members satisfy the same concepts
from a closure cl(C) of the set of subconcepts of C under certain rules) satisfy-
ing certain properties. Namely, the abstract tree metric space has the domain
∆ = {1, . . . , k}∗ (the set of finite words over {1, . . . , k}, where k is a natural
number which is polynomial in the size of C), its distances d(α, αi), α ∈ ∆,
i = 1, . . . , k, are from a previously specified ordered set of abstract distances
(of size exponential in C) which encode constraints on proper distances, and
the abstract distance between non-successor nodes x and y in ∆ is computed as
the sum of the distances over the shortest path from x to y in ∆. (See [8] for
that part of the encoding of distances which takes care of the operators with
parameters. Additional constraints are required to deal with ⇔; consult [10]
for details.) Moreover, the abstract tree metric space is not allowed to contain
an infinite sequence d(α, αi) ≥ d(αi, αij) ≥ d(αij, αijh) ≥ · · · where infinitely
often ≥ is actually >. This condition is required to ensure that the encoded
metric space is a min-space. For example, the concept A from (5) would be
satisfiable (relative to Σ) in a space where there is an infinite sequence as above
with all ≥ replaced by >.

Now, one can prove by an unravelling argument that any concept satisfiable
in a finite metric space is also satisfiable in such an abstract tree metric space.
The converse direction can be proved by a (quite involved) filtration argument:
one can show that a concept C satisfiable in a discrete tree metric space J as
described above is satisfiable in a finite metric spaces whose domain consists
of {[α] | α ∈ ∆}, where [α] denotes the equivalence class of α relative to the
relation ∼ defined by α ∼ α′ iff for all D ∈ cl(C), α ∈ DJ iff α′ ∈ DJ. (Notice
that after the filtration nominals are interpreted by singletons.) Thus, it remains
to show that satisfiability in abstract tree metric spaces of the form above can
be decided in exponential time.

This can be done by reducing satisfiability of C to the emptiness problem
for a tree automaton AC with an acceptance condition consisting of one comple-
mented pair (red, green). (This condition means that in an accepting run every

path with infinitely many red states must have infinitely many green states.)
This problem is decidable in polynomial time; see, e.g., [2]. As the automaton
AC is exponential in the size of C, we obtain an exponential upper bound for
the satisfiability problem. The acceptance condition is used to ensure that ac-
cepted trees are represent min-spaces: roughly, a state is red if the distance is
decreasing, and green if the distance is increasing.

It turns out, however, that for SL-models based on subspaces of Rn, for each
n > 0, in particular n = 1, the satisfiability problem becomes undecidable, even
for the language without numerical operators:

Proposition 5 (undecidability). For each n > 0, the satisfiability of SLq-
concepts is undecidable in the class of finite models and the class of min-models
based on subspaces of Rn, or only Zn.

Proof. The proof proceeds by reduction of the solvability problem for Diophant-
ine equations. Here is a brief sketch; see [10] for details. Observe first that we can
always deal with models based on one-dimensional spaces. Indeed, let I be based
on Rn. Then, for nominals `0 and `1, the term ({`0} � {`1}) u ∀¬({`0}u{`1}),
if satisfiable, defines an affine subspace of dimension n − 1. By iterating this
construction we can reduce dimension to 1.

Let us now focus on the class R of min-models based on subspaces of R. The
proof involves three main steps:

(1) ensure that our model is based on a space similar to Z;

(2) define in this model sets of the form {lk + j | k ∈ Z}—they can be used
to encode the number l;

(3) encode addition and multiplication on such sets.

For (1) we take the concept

Base(A) = ∀
l

i<3

(
Ai → ¬Ai�1 u (Ai�1 � Ai�1)

)
,

where � and � denote addition and subtraction modulo 3. Then a model I ∈ R
satisfies Base(A) iff I coincides (modulo an affine transformation) with a model
Z such that ∆Z = Z and AZ

i = {3k + i | k ∈ Z}, i < 3.
The following analogues of the ‘next-time’ operator and its inverse can sim-

ulate the functions ‘+1’ and ‘−1’:fC =
⊔
i<3

(Ai u (Ai�1 � Ai�1 uC)), f−1C =
⊔
i<3

(Ai u (Ai�1 � Ai�1 uC)).

To fix an origin and an orientation for our model we take a fresh A and consider
the term ∃(A2 u ¬A u fA) u ∀(A → fA), which is satisfied in a model Z of

the above form iff AZ = {k, k + 1, . . . } for some k ∈ Z, k ≡ 0(mod 3). Assume
further that AZ = N. Then Zero = A u f−1¬A defines {0}. For (2), we define

Seq(B) = ∀
l

i<3

(
Bi → (Bi�1 � Bi�1)

)
u ∃

(
B0 u A u (B2 ⇔ B2 u A)

)
,

which is satisfied in Z iff BZ
i = {lk + j | k ≡ i(mod 3)}, i = 0, 1, 2, for some

j < l in N. Recall that a set of the form {lk + j | k ∈ Z} is used to encode the
number l. Clearly, two sets of this form encode the same number iff they either
coincide or are disjoint. Note that to encode a particular number n we can use
the term Seq(B) u ∀(Zero → (B1 � f−nZero)).

For (3), let U = {ku | k ∈ Z}, V = {kv | k ∈ Z} and W = {kw | k ∈ Z}
represent the arguments and result of an operation. To encode addition, take
an auxiliary set V ′ = {kv′ + u′ | k ∈ Z} and state that:

• the sets V and V ′ encode the same number, i.e., v = v′;

• the distances from {0} to the sets {x ∈ U | x > 0} and {x ∈ V ′ | x > 0}
coincide, i.e., u = u′;

• the distances from {0} to the sets {x ∈ W | x > 0} and {x ∈ V ′ | x > u′}
coincide, i.e., u = u′ + v′ = u + v.

To encode multiplication, we use the following fact

Fact 6. Let 0 < u < v be integer numbers. Then

(i) x = uv is the least solution of x ≡ 0(mod b) ∧ x ≡ u(mod (v−1)) ∧ x > 0.

(ii) x = v2 is the least solution of x ≡ 0(mod v) ∧ x ≡ 1(mod (v−1)) ∧ x > v.

If u < v, we take sets V ′ = {kv′ + u′ | k ∈ Z}, V ′′ = {kv′′ | k ∈ Z} and state
that:

• u = u′, v = v′, and and the distances from {0} to the sets {x ∈ V ′′ | x > 0}
and {x− 1 | x ∈ V, x > 0} coincide, i.e., v′′ = v′ = v − 1;

• the distances from {0} to {x ∈ U ∩ V ′′ | x > 0} and {x ∈ W | x > 0}
coincide, i.e., w = uv, according to Fact 6 (i).

The case u > v is dealt with by symmetry; and for the case u = v we use a
similar construction by applying Fact 6 (ii).

By iterating this constructions, we can encode any sequence of arithmetical
operations, that is, a computation of any polynomial.

In the finite case we modify the terms Base(A) and Seq(B) to take care of
the endpoints. And to ensure that two encoding sets represent the same number
we require that they either coincide or strictly alternate and are sufficiently
long.

The most surprising part of the result above is the case n = 1. For n = 2 one
can prove the result using a less ‘heavy artillery’ than Diophantine equations.
For example, one can prove undecidability of satisfiability in min-subspaces of
R2 even for nominal-free SLq-concepts by reduction of the undecidable Z × Z
tiling problem. To simulate the Z× Z grid we use the formula

∃A0 u ∃A1 u ∀
l {

Ai → (Aj � Ai⊕1) | i, j < 7, j 6= i, i⊕ 1
}
,

where ⊕ is addition modulo 7. One can show that to satisfy it,
a subspace of R2 must contain an infinite grid of the form: r r

r r r
r r

4 Conclusion

Notice that the operator ⇔ is closely related to the implication > of conditional
logic [3]. In fact, one can show (by introducing the obvious semantics for >
on distance spaces) that SLq without nominals has the same expressive power
as conditional logic. To the best of our knowledge, conditional logic over finite
metric spaces has not been investigated; however, SLq over non-symmetric dis-
tance spaces corresponds to the conditional logic with properties (N), (R), (T),
(U), (C) which is proved to be ExpTime-complete in [3]. We believe that the
additional expressive power of the logic introduced in this paper could be useful
for conditional logic as well.

Several problems remain open. We have provided an automata-based de-
cision procedure, but we have not yet turned this into an optimised tableau-based
decision procedure. Given the ‘PDL-like’ acceptance condition required in the
reduction, it is unclear whether such a tableau based algorithm can be efficient
enough for applications. For this reason we are also exploring the algorithmic
behaviour of fragments of the language introduced above.

Acknowledgements: The work on this paper was partially supported by the
U.K. EPSRC research grants GR/S61966/01 and GR/S61973/01. We are grate-
ful to Ivan Zakharyaschev for his generous help.

References

[1] F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of description logics and
abstract description systems. Journal of Artificial Intelligence Research, 16:1–58,
2002.

[2] E. Emerson and C. Jutla. The complexity of tree automata and logics of pro-
grams. Siam Journal of Computing, 29:132–158, 1999.

[3] N. Friedman and J. Halpern. On the complexity of conditional logics. In Pro-
ceedings of KR ’94, pages 202–213, 1994.

[4] S. Ghilardi and L. Santocanale. Algebraic and model theoretic techniques for
fusion decidability in modal logics. In Proceedings of LPAR 2003, volume 2850
of LNAI, pages 152–166. Springer, 2003.

[5] O. Kutz, H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev. Logics of
metric spaces. ACM Transactions on Computational Logic, 4:260–294, 2003.

[6] M. Li, X. Chen, X. Li, B. Ma, and P. Vitányi. The similarity metric. In Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 863–872. Society for Industrial and Applied Mathematics, 2003.

[7] Ph.W. Lord, R.D. Stevens, A. Brass, and C.A. Goble. Semantic similarity meas-
ures as tools for exploring the gene ontology. In Pacific Symposium on Biocom-
puting, pages 601–612, 2003.

[8] C. Lutz, F. Wolter, and M. Zakharyaschev. A tableau algorithm for reasoning
about concepts and similarity. In Proceedings of the Twelfth International Con-
ference on Automated Reasoning with Analytic Tableaux and Related Methods
TABLEAUX 2003, volume 2796 of LNCS, 2003. Springer.

[9] Ph. Resnik. Semantic similarity in a taxonomy: An information-based measure
and its application to problems of ambiguity in natural language. Journal of
Artificial Intelligence Research (JAIR), 11:95–130, 1999.

[10] M. Sheremet, D. Tishkowsky, F. Wolter, and M. Zakharyaschev. Comparative
similarity, tree automata, and Diophantine equations. Manuscript, 2005 (avail-
able at http://www.dcs.kcl.ac.uk/staff/mz).

[11] R. Stevens, I. Horrocks, C. Goble, and S. Bechhofer Building a Reason-able
Bioinformatics Ontology Using OIL. IJCAI’01 Workshop on Ontologies and In-
formation Sharing, pp.81–90, 2001.

[12] A. Tversky. Features of similarity. Psychological Review, 84:327–352, 1977.

[13] T. Warnow. Mathematical approaches to comparative linguistics. PNAS,
94(13):6585–6590, 1997.

[14] F. Wolter and M. Zakharyaschev. Reasoning about distances. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003),
pages 1275–1280. Morgan Kaufmann, 2003.

[15] F. Wolter and M. Zakharyaschev. A logic for metric and topology. Journal of
Symbolic Logic, 2005. (In print).

