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Abstract. Decision support systems can be used to manage systems. Managed 
systems are described by system specifications. System specification notations, 
such as UML, often separate in different diagrams the static specification and 
the dynamic specification of the system of interest. As a consequence, precious 
contextual information disappears, leading to misunderstandings during the 
interpretation of the specification. We claim that these problems result from a 
mechanistic view of reality. By taking a systemic view of reality, it is possible 
to develop a specification technique that integrates the static and dynamic 
aspects of the system and, hence, make the contextual information explicit. The 
benefit is the creation of more expressive system specifications that are less 
error prone when used for designing and managing systems. 

1 Introduction 

In decision-making, people have to take decisions about controlled systems. Often a 
controlled system is managed by an operator and a decision support system [1]. When 
the controlled system is not in an expected state, the operator needs to decide what 
actions to take to regulate the system. When taking its decision, the operator uses a 
model of the controlled system. Such models are often represented with a graphical 
specification. We will show in this paper that these graphical representations do not 
make explicit a lot of the contextual information (for example, what are the effects of 
the different actions of the controlled system). Our approach for system specification 
makes contextual information explicit in diagrams. Thus, the operator, who works 
with a graphical system specification to take her decisions, has less implicit 
information to include in her decision process.  

Our goal is the representation of contextual information in graphical system 
specifications. We base our work on the Merriam-Webster [2] definition of context; a 
definition which is well formed from a systemic modeling standpoint. They define the 
“context of something” as the “interrelated conditions in which something exists or 
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occurs”. Our goal with this paper is to understand both what “something” is and what 
the “interrelated conditions” are when this definition is applied to graphical system 
specifications.  

UML [3] is one of the most popular graphical notations for modeling software 
(UML takes its roots in software development), systems [4] and businesses [5]. UML 
consists of a set of diagrams that can be categorized into structure-related diagrams 
(part I of [6]) and behavior-related diagrams (part II of [6]). Examples of structure 
related diagrams are: class, object, and deployment diagrams; examples of behavior-
related diagrams are: interaction, activity, and state diagrams2. The choices made to 
classify the diagrams as either structure-related or behavior-related dramatically 
reduce the possibility to express the “interrelated conditions” in which model 
elements exist: i.e. reduce the capability to express context.  

The way UML diagrams are categorized (and the kind of elements they represent) 
can be explained by the epistemological principles that underlie mechanistic human 
thinking, and in particular scientific thinking. As claimed by Lemoigne [8], the 
universal ontology principle drives us to look for theories that are “time-invariant” 
(universal ontology epistemological principle). This leads all of us (including the 
UML language designers) to carefully separate diagrams that are time-independent 
(structure-related) from diagrams that are time-dependent (behavior-related). Quite 
often, the time-independent diagrams are considered as more general as the time-
dependent diagrams. For example, a class diagram describes the concepts known by a 
system at all times. A sequence diagram is “just” an occurrence of a behavior (among 
the many possible). To make a class diagram specific to a context (i.e. to show only 
the concepts necessary to describe a behavior) appears to reduce its generality and, 
hence, to reduce its value. So, class diagrams are usually not context-dependent. This 
example illustrates why diagrams do not represent time-dependent together with time-
independent model elements. So such diagrams cannot represent contextual 
information (i.e. the “interrelated relations” between these two kinds of model 
elements).  

This categorization of diagrams would not be so much of a problem if some 
additional graphical elements were added to represent the relations between the 
elements represented in the separate diagrams. For example, in a sequence diagram, it 
could be useful to represent the state changes of objects that result from the 
processing of messages. Unfortunately, another epistemological principle strikes here. 
It is one aspect of reductionism, called Occam’s razor [9]. This principle leads us to 
minimize the number of elements used in our theories (and in the diagrams). As a 
consequence, we do not consider useful to represent the context of what we model. 
We consider that this context is obvious, already known by the modelers, and will 
clutter the diagram with superfluous information, distracting the modeler from the 
“essential” message.  
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In summary, the categorization of the UML diagrams and the loss of contextual 
information could be explained by the implicit application to the modeling language 
of both the universal ontology and the Occam’s razor epistemological principles.  

 
We claim that we can define three modeling principles that can contribute to bring 
contextual information back into graphical modeling languages applied to system 
specifications. Based on these principles, we define the elements that need to be 
represented in a system functional specification and we propose a graphical notation 
that makes the context explicit (i.e. the modeling elements are represented with their 
“interrelated conditions”). The notation is relatively close to UML, so people with 
UML experience can understand it.  

 
The structure of the paper is as follows. In Section 2 we present an example to 
illustrate the research questions we address in this paper. This example will be used 
through the paper. In Section 3, we present the three principles underlying our 
notation and explain what needs to be made explicit in the diagrams. In Section 4, we 
present the solution we obtained for the example of Section 2. Finally, in Section 5, 
we relate our work to other research. 

2 Example and Research Questions 

We illustrate our point with the example of a video rental store. The focus of the 
analysis is the store’s IT system called the POint of Rental Terminal (PORT). We 
provide, in this Section, the UML specification of one service provided by the PORT. 

 
The PORT registers the loan of videos as well as the return of rented videos made 

by the customers. For renting videos, a customer must first log into the PORT. Then, 
she selects the videos she wants to rent. The selected videos are all put into one 
virtual basket. At the end of the selection process, the customer performs either a 
Submit or a Cancel. The Submit action confirms the rental of the videos already in the 
basket; a loan record will then be created in the PORT. If the customer cancels the 
action, no loan record will be created.  

The concepts known by the PORT in this example are: video (in states rented and 
available), customer, and loan (in states onLoad and committed). We will model the 
Submit action, when the videos are already selected and a confirmation from the 
customer is required to finalize the loan. 

 



 

Fig. 1. A simplified set of UML diagrams + OCL code for defining the service 
Submit_LoanVideo.  

 



 

Figure 1 describes the service Submit_LoanVideo. This service is represented as an 
activity executed by the PORT (Fig.1a). The PORT system has one list, which 
includes the videos that belong to the video store (Fig.1b). The states of both videos 
and loans change over time (Fig. 1c and 1d). The objects of class Video can be in 
either state: available or rented. The transitions are triggered by the messages shown 
in Fig 1c. In general, there is one state machine by object. We can also see that the 
objects dialog during the activity (Fig.1e). For instance, the PORT has videos 
Video_1, Video_2 and Video_3 before the loan (Fig. 1f); then, the customer loans 
Video_2 and Video_3. As a result, Video_2 and Video_3 become part of the loan 
Loan_1 (Fig. 1g). Video_1 is the only instance that is not rented at the end of the 
activity Submit_LoanVideo  
 
The UML system specification is made up of a set of seven diagrams and one OCL 
description.  

Each diagram represents a different concern of the system. This makes the 
individual diagrams more legible than if they would be merged together. But, as a 
consequence, the overall specification cannot be easily understood as a whole. There 
are no visible links between the elements represented in the different diagrams. In 
most cases, it is the modeler who “glues” the diagrams together within his or her 
mind [10]. The seven diagrams required to model the single, partial scenario 
Submit_LoanVideo in figure 1 illustrates this problem.  

The OCL description is used to add contextual information. OCL [11] is a textual 
language for UML. It is used as a complement to the diagrams but is not fully 
integrated with them. OCL adds one more artifact to interpret.  

 
This example raises the following questions: 
1. “Can we use fewer, more integrated, diagrams?” The principle of separation of 

concerns [12] says that each aspect of the description must be treated individually. 
However, our experience shows that the overview of the specification is lost in the 
process.  

2. “Can we represent more contextual information in diagrams?” OCL is the means 
for communicating information that binds diagrams together. We would like to 
introduce similar information as OCL but graphically.  

3. “Can we create a model that graphically shows what the services we model 
actually do?” Traditionally, the changes made by the service are made explicit by 
snapshots. However, to fully understand what happens, the modeler needs to write 
and read OCL in addition to all the diagrams. As a consequence, the task of 
understanding the goal the modeler wants to achieve with the service requires a 
large effort from the modeler [10].  

3 Systemic Modeling of Systems 

In order to make context explicit in system specification, we need to first define the 
concepts we use to specify systems. Our modeling ontology is inspired by the 



 

ISO/ITU standard RM-ODP [13] that defines how to model systems. A formal 
description of RM-ODP we have developed is available in [14].  

We define the model elements system and environment3. The “system” can be 
defined as a whole (i.e. only its externally visible functionality is described) or as a 
composite (i.e. its composition is described). One cannot design a system of interest 
(SoI) without taking into consideration the immediate “environment” that interacts 
with it. The “supra-system” of the SoI is “the next higher system in which the SoI is 
a component. The immediate environment is the supra-system minus the SoI itself.” 
[15].  

System functionality is described with “information objects” and “actions”. 
Information objects describe information that the system has about itself and about its 
environment. The system’s information is modeled with the “state” of information 
objects. Actions modify the state of information objects. Note that the information 
objects and the actions can be further considered as whole or as composite.  

In our approach, we also define two hierarchies: the organizational level hierarchy 
and the functional hierarchy[16]. If a system is represented as a whole at a given 
organizational level then it is represented, at the next organizational level, as a 
composite (i.e. showing its sub-systems). The “organizational level hierarchy” is 
useful to capture system components (e.g. an IT system made of software 
components). The “functional level hierarchy” captures different levels of detail in 
the functionality of the systems. For example, an action might be described as a 
whole in one level of functionality and as a composite in the next one. All these 
concepts are informally defined in [16] and formally in [17].  
 
The definition of context is the “interrelated conditions in which something exists or 
occurs” [2]. The term “something” can be replaced by the concepts defined in our 
modeling ontology. We therefore need to show the “interrelated conditions” (in terms 
of system, environment, information object, action, state) in which the system, 
environment, information object, action, state exist. Our main focus in this paper is 
system specification. Hence, we will mainly analyze the relationships between the 
concepts: system, information objects, states and actions. We will briefly mention the 
relation between the system and its environment but this is the topic of future work.  

The “interrelated conditions” between these key elements can be grouped to create 
a few principles that can explain how to describe context: 

• System / environment complementarity 
• Action / information object & state complementarity 
• Whole / composite complementarity 

In this Section, we present these modeling principles and their impact on the notation. 
In some cases, we illustrate the principle with illustrations taken from the PORT 
example.  

                                                           
3  In RM-ODP, the term “system” designates an entity in the universe of discourse and not a 

model element in the model. For sake of simplicity, in this paper, we consider that the term 
“system” designates the representation of a “system” in the model. So “system” is a model 
element. This paper does not address any issues related to the universe of discourse.  



 

System / environment complementarity 
The most obvious “interrelated condition”, as stated in the Merriam-Webster 
definition, is between the system and its information objects and actions. All actions 
and information objects are within a system. In the notation, the information objects 
and the actions should be surrounded by a rectangle that represents the system to 
which they belong (as shown in Figure 2 for the Information Object X of S).  

 

Fig. 2. “Interrelated condition” between a system and its environment 
 

Another “interrelated condition” that we will just mention in passing here is the 
relation between the system and its environment. A system has information about 
itself and about its environment. For example, in the video store example, the PORT 
has some information about the physical video that exists in its environment. So, one 
of the “interrelated conditions” in which an information object exists is the relation 
between the information object itself (belonging to a system of interest) and what it 
represents (in the environment of the system of interest). In Figure 2, T represents the 
supra-system of S and X shown in the left part of T is in the immediate environment 
of the system S. The information object X in S represents the knowledge of S about X 
in T. This is represented by the <<trace>> relationship. A more systematic analysis of 
the relationship between a system and its environment is part of our future research.  

We capture the necessity to relate actions, information objects and states to a 
system in which they exist and the necessity to relate a system to its environment as 
the “system / environment complementarity principle”.  

Action / information object complementarity 
An action changes the state of one or more information objects. Quite often the 
action’s identifier makes implicitly references to the information objects that change 
state. For example, the modeler can guess that an action rent in a video store refers to 
a video and a renter because she knows the meaning of the word rent. With this 
knowledge, the modeler can guess the relationship between the elements in the 
diagrams (e.g. in UML, the action rent shown in an activity diagram and the video 
concept shown in a class diagram as illustrated in Figure 1). This is not sufficient as 
the concepts used can be defined in multiple ways. For example, it is unclear if the 
rent is related to some payment or not. We can eliminate this ambiguity by making 
explicit, in one diagram, the “interrelated conditions” between the actions and the 
information objects involved in the actions. So one of the “interrelated conditions”, in 
which an action exists, is the set of information objects that are modified by the 
action.  

This relation between actions and information objects can be further developed. 
When a modeler represents an action, implicitly she is referring to a change of state 
of information objects. Vice-versa, when a modeler represents the change of state of 



 

information objects, she is referring to an action. This is known as the state/behavior 
duality. This duality leads the modeler to often consider that modeling either the 
action or the state change is sufficient to specify the system. We claim that, if we 
want to make the context explicit, we need to model both. So, the “interrelated 
conditions” in which an action exists include the states (before and after the action) of 
the information objects involved in the action. Vice-versa, the state is related to the 
actions that consumes them or modifies them. Figure 3 represents an action A that 
modifies the state of the information object X and created the object Y. The arrow 
between the states S1 and S2 illustrates the state transition resulting from the 
execution of A.  

To show the relation between the actions and their effects, we need a way to relate 
them. This is done by an identifier (eventA in Figure 3), that designates all changes. It 
is also necessary to represent what triggers the action’s execution (and how the action 
enables system exchanges with its environment). This is done by special information 
objects that act as parameters. The stereotype <<par in>> indicates that the 
information object is an input parameter for the system (<<par out>> would indicate 
an output parameter). In Figure 3, the fact that parA enters the system via Param (an 
input parameter) triggers the state change of X (rounded arrow from S1 to S2) and the 
creation of Y (shown by the multiplicity change 0  1). All the changes are marked 
by eventA. One of the labels is underlined and this highlights what triggers the 
changes. We can see in Figure 3 that a UML class diagram, a UML activity diagram 
and a UML state diagram can be merged together.  

 

Fig. 3. Action/State complementarity 
 

Information objects live in the context of actions. We call this the context of 
existence of an information object. In figure 3 we see that action A is the context of 
existence of all the information objects shown. This means that none of the 
represented information objects will out-live the action A. In Section 4, we will 
illustrate how we can represent that an information object can potentially exist during 
the whole lifecycle of a system (this will be done by relating information objects to 
the action that represents the overall system lifecycle).  
 
We capture the necessity to relate action, information objects and state as the “action / 
information object / state complementarity principle”. 

Whole / composite complementarity 
In systemic modeling, the modeling elements (e.g. system, action, information object) 
can be interpreted as whole or as composite. A modeling element as whole appears as 
monolithic and its internal structure is hidden for the modeler. A model element as 



 

composite exposes to the modeler the component elements and the way they are 
related. The whole is defined as the result of the composition of its components. The 
composition of the components can be understood as we know what the whole is. So, 
as system theory shows[18], whole and composite are both necessary as they define 
the context of each other: the whole is part of the “interrelated conditions” of 
existence of the composite (and vice-versa). It is because we can recognize the whole 
that we can see the components and vice-versa. For example, in a video store, the 
action Rent is understood because we implicitly know that such action includes 
getting information about the renter and getting information about the videos to be 
rented. Vice-versa, it is because we know the component actions GetRenter and 
GetVideos that we can imagine the existence of the composite action Rent. Even if 
this point appears to be “hair splitting”, it is actually crucial if we want to make 
explicit the implicit information that is hidden in the diagrams.  

In figure 4, we apply this principle to the action A. Action A as whole (the bubble 
on the top) is equivalent to A as composite, composed of the actions A1, A2, A3 and 
of the constraints of execution between them. The triple association between A as 
whole and A as composite makes this equivalence relation explicit. In other words, A 
as whole can be substituted by A as composite.  

 

A2A1 A3

S

A

A

Fig. 4. Action as whole and action as composite 
 

The action A as whole and the action A as composite define two functional levels in 
the functional level hierarchy. One interesting question is: what action is at the top of 
the functional hierarchy of a system of interest? In other words, what is the action in a 
system which includes all the actions the system does? This is the action that 
corresponds to the system lifecycle. This lifecycle action captures the behavioral 
context in which all other actions exist. The lifecycle action starts when the system is 
created and ends when the system is dismissed (i.e. the action lasts from system 
“cradle to grave”). The system’s lifecycle action is at the top of the functional 
hierarchy. The added-value to model the lifecycle is to force the modeler to think on 
how the system is created and how it is phased out. This can highlight critical issues 
in terms of system initialization or information retrieval at system phase-out. In figure 
5 we can see that the lifecycle of the system S is equivalent to the set of all the actions 
that the system can execute (A, B, C and their execution constraints). Each action can 
be further refined. For example, action B is decomposed into actions B1, B2, B3 
together with their execution constraints. In the figures 4 and 5 we have used the most 
simple execution constraint among the actions, but in real cases, more complex 
constraints might be used, including loops, partial order, etc. 

  



 

Fig. 5. Lifecycle composition with actions 
 

The same complementarity whole / composite of actions shown in figures 4 and 5 can 
be found on information objects. However, presenting this is out of the scope of this 
paper. 
 
We capture the necessity to relate whole and composite as the “whole / composite 
complementarity principle”. 

Summary 
In this section we have presented three principles that drive our modeling process: 

• System / environment complementarity 
• Action / information object & state complementarity 
• Whole / composite complementarity 

 
These principles permit the inclusion of contextual information in graphical system 
specification. Contextual information has to do with the “interrelated conditions” in 
which model elements exist. Through our systemic approach we have shown that any 
system has a lifecycle, made up of actions that will change the state of the 
information objects that exist in the system. These information objects represent 
information about a system of interest and about its environment. The relations 
between all these model elements need to be explicit if we want to model explicitly 
the context 

To accept adding the additional contextual information we propose, requires 
abandoning the two epistemological principles we have presented in the Introduction.  

The universal ontology epistemological principle states that we can have 
“universal models”. We have shown in our discussion that the actions and the 
information objects are bound to the lifecycle of the object in which they exists. So, 
instead of a universal ontology principle we rely on the “lifecycle epistemological 
principle” that we define as “all actions and information objects exist in specific 
lifecycles (of systems and actions/information objects)”.  

To accept to contextual relations between the model elements requires being less 
strict in applying the Occam’s razor. We still wish to limit the number of concepts we 
use in the theory (for example in our method, we have 6 main concepts: system, 
environment, action, information object and state). However, we should not limit the 
analysis of the relationships between them to only relations between information 
objects or relations between actions (as, for example, normally done in UML). We 



 

should keep the possibility to represent all relationships between actions, information 
objects and state. In other words: we claim that the Occam’s razor should not be 
applied to eliminate the contextual information.  

4 Application 

Systemic Enterprise Architecture Methodology (SEAM) models complex systems by 
applying systemic principles [16]. SEAM is based on explicit epistemological 
principles (such as the “lifecycle principle”) and on the three complementarity 
principles we just presented. SEAM aims at a holistic and hierarchical representation 
of the systems. Its main application is enterprise architecture and service modeling.  

 

Fig. 6. SEAM diagram for service Submit_LoanVideo.. Whenever the input 
parameter Confirm arrives, the OK event is enabled in all transitions. 

 
Figure 6 illustrate our technique to represent contextual information. Figure 6 

represents, in one diagram, the Submit_LoanVideo action that was modeled with the 7 
UML diagrams and the OCL code in Figure 1. We can interpret the diagram in Figure 
6 as follows:  

 
The PORT system manages: 

− Video which represents the PORT information about the physical video in the 
VideoStore. The Video can be either rented or available. The system keeps the 
knowledge of which Video is available (through the lifecycle association called 
PORT_Available_Video_List).  

− Loan which represents the fact that a video is rented. The Loan can be either 
committed or onLoad (when prepared). The system keeps the knowledge of 



 

which Loan exists (through the lifecycle association called 
PORTcommitted_Loan_List).  

All these represent what we would call the “invariant” information in the system. 
This information will exist during the whole lifecycle of the system (but will not 
be universal!).  
 
We need now to represent the action Submit_LoanVideo.  
− Actions have parameters. The parameter information objects are special cases of 

information objects that enable communication with the environment of the 
system. Submit and Response (in gray in Figure 6) are parameters. Parameters 
exist only during the execution of the action and they are not known to other 
actions.  

− Actions have pre and post conditions. These are visible in Figure 6 (beginning 
and end of the rounded arrows). The action takes as pre-condition a Loan in the 
onLoad state and the parameter Submit in the state Confirm. The parameter is 
coming from the system’s environment. As a post-condition, the action creates a 
Loan in the committed state and outputs a message to the environment (via the 
parameter Response).  

− Actions are triggered. In Figure 6, event [OK] that corresponds to the fact that 
the Submit input parameter is in the state Confirm, triggers the action. As a 
result, all transitions marked by [OK] (e.g. Loan from onLoad to committed, 
rented; Video referenced by Loan/committed and not by Loan/onLoad and 
output parameter Response generated) are executed.  

− Actions work on specific information objects. This is represented by the relation 
current that goes from the action towards the information object Loan. The 
relation current exists only in the context of the action Submit_LoanVideo. It is 
not known by any other actions in the lifecycle of the PORT system. On the 
other hand, the information objects PORT_available_Video_List and 
PORT_committed_Loan_List exist in the context of the lifecycle of the PORT 
system; thus, they exist for all actions. Information can be exchanged between 
actions with the interplay between information objects that exist at different 
levels of action (e.g. information exchanged between actions using information 
objects that exist in the system lifecycle). The detailed presentation of this 
aspect is out of the scope of this paper.  

 
If wished, it is also possible to represent the action with two diagrams: one showing 
the state of the system before the action (Figure 7a) and one after the action (Figure 
7b). These two diagrams explain the meaning of Figure 6 but provide less 
information as the relation between both diagrams is not made explicit. The effect of 
the action can be understood by the fact that the cardinality of the association 
between Loan in state committed and Video in state rented changes from 0 to 2 while 
the other one changes from 2 to 0.  

 



 

Fig.7. Describing behavior of action Submit_LoanVideo in two diagrams. (a) is the 
state of the system before the action, (b) the state of the system after the action.  

 
In summary, Figure 6 is a general purpose dynamic diagram that integrates the pre- 
and post-conditions shown in Figure 7 into a single diagrammatic context. Its purpose 
is to make explicit the changes caused by the action Submit_LoanVideo; these 
changes are not evident in figures 7a and 7b (as no relations are shown between the 
two diagrams). We can say that change is a property that emerges to the modeler 
whenever he compares two diagrams of system state as the ones in Figure 7. With our 
notation, as shown in Figure 6, we make such changes apparent to the modeler.  
 
Now, we can show how the contextual information we propose to add can address the 
problems identified in Section 2. Let us discuss each problem:  

• “Can we use fewer, more integrated, diagrams?” We have shown that the 
diagrams can provide more contextual information if “structure-related” 

(a) 

(b) 



 

and “behavior-related” elements can appear in the same diagram. It could 
even be conceived that one diagram can represent all information (about a 
simple situation). This shows that the definition of what should be in the 
diagram does not need to be enforced by the modeling language but 
should only be the result of modeler’s taste and needs.  

• “Can we represent more contextual information in diagrams?” With the 
definition of context we have selected, it is possible to make all 
contextual information explicit. There is only a limit dictated by the 
legibility of the diagram.  

• “Can we create a model that graphically shows what the services we 
model actually do?” With our notation we have shown that we could 
show pre and post conditions for actions. They are represented by the 
“change” relationship.  

5 State of the art 

UML [5] is the de facto standard of the software industry for object-oriented analysis 
and design.. Studies on usability of UML, such as [10, 19], focus only on single 
diagrams, avoiding the problems caused by the heterogeneous notations. However, 
some authors consider the UML richness as notation has negative effects since 
dealing with many items require more analytic effort from the designer[20]. It is clear 
that UML can be improved to show more contextual information as we define it in 
this paper. 

Reasoning with Diagrams (RwD) is an initiative where two sets of graphical 
formal specifications have been created, namely Spider and Constraint diagrams. 
Such diagrams are used for reasoning about properties of the resulting object’s 
instances after an action. The first ones describe sets and constraints between sets 
[21]. The latter ones extend spider diagrams to show relations between sets and their 
elements [22]. The specification of behavior can be done via 3-D contract boxes [23]. 
RwD specifications are similar to ours. However, their scope is limited to expressing 
constraints, and their notation is incompatible with UML (they use 3-D layouts for 
contracts, and special notation for expressing constraints).  

Object-Process Method (OPM) is Dori’s work on system modeling [24]. As 
SEAM, it is a holistic approach. Dori has created a graphical and a textual notation 
(OPD and OPL, respectively), that are exchangeable at any moment of the 
development. This notation is incompatible with UML but the OPM tool supports the 
translation of OP models to UML. 

Brézillon proposes the use of Contextual Graphs [25]. They distinguish different 
viewpoints (contexts from observers) on a process or situation, and inherently the 
roles of the agents that participate in the system. They facilitate reasoning for decision 
making but they are not designed to represent behavior as presented in this paper. Our 
approach complements the one of Brézillon as our goal is to support precise system 
specification.  



 

6 Conclusions and Future Work 

This paper addresses the graphical representation of contexts in visual system 
specification. We show that the two epistemological principles (universal ontology 
and Occam’s razor) can explain the way we currently structure graphical 
specifications. We claim that, if we adopt the lifecycle epistemological principle 
(instead of the universal ontology principle) and if we do not eliminate the contextual 
relationships, we can get system specifications that exhibit the “interrelated 
conditions in which the model elements exist”. In other words: we can have system 
specifications that make the contextual information explicit. It is worth highlighting 
that the Merriam-Webster context definition is very well written from a systemic 
standpoint.  

Practically, we identified three modeling principles that need to be adopted to 
model the contexts: 

• System / environment complementarity 
• Action / information object & state complementarity 
• Whole / composite complementarity 

With these principles, we have shown how an action (Submit_LoanVideo) can be 
graphically specified in its in context if we make explicit its relations to the 
information objects it modifies (Video and Loan) and its relations to the parameters 
that enter and leave the system (Submit and Response).  
       The proposal made in this paper has been validated in software engineering 
courses and by making an explicit mapping between the proposed notation and the Z 
specification language [26]. Future work includes: modeling of relations between 
system and environment, modeling of relations between whole / composite, 
scalability of the notation, tool support.  
 
In the context of decision support system, our proposal can bring benefits when it is 
necessary to document the systems that need to be controlled with a decision support 
system. This is necessary if we expect that the operators, that will use the decision 
support system, should have an explicit understanding of the controlled system they 
will have to regulate. Further work includes the validation of the notation in relation 
with an existing decision support system.  
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