
An Experimental Study of Search Strategies and
Heuristics in Answer Set Programming

Enrico Giunchiglia and Marco Maratea

STAR-Lab, DIST, University of Genova
viale Francesco Causa, 13 — 16145 Genova (Italy)

{enrico,marco }@dist.unige.it

Abstract. Answer Set Programming (ASP) and propositional satisfiability (SAT)
are closely related. In some recent work we have shown that, on a wide set of logic
programs called “tight”, the main search procedures used by ASP and SAT sys-
tems are equivalent, i.e., that they explore search trees with the same branching
nodes. In this paper, we focus on the experimental evaluation of different search
strategies, heuristics and their combinations that have been shown to be effec-
tive in the SAT community, in ASP systems. Our results show that, despite the
strong link between ASP and SAT, it is not always the case that search strate-
gies, heuristics and/or their combinations that currently dominate in SAT are also
bound to dominate in ASP. We provide a detailed experimental evaluation for
this phenomenon and we shed light on future development of efficient Answer
Set solvers.

1 Introduction

Answer Set Programming [15, 17] (ASP) and propositional satisfiability (SAT) are closely
related. If a logic programΠ is “tight”[6] there exists a 1 to 1 correspondence between
the solutions (Answer Sets) of the logic program (under the answer set semantics [8])
and the propositional formula given by its Clarke’s completion [2]Comp(Π). In some
recent work [9], we have shown that, on the wide set of tight logic programs, the rela-
tion goes up to the point that the main search ASP and SAT procedures are equivalent,
i.e., that they explore search trees with the same branching nodes, when running onΠ
andComp(Π) respectively. Given the above result, state-of-the-art ASP systems like
SMODELS,1 CMODELS22 andASSAT3 are equivalent because they are based on the main
search procedures for ASP and SAT:SMODELS is a native procedure working directly
on a logic program, whileCMODELS2 andASSAT are based on the Davis-Logemann-
Loveland (DLL) procedure.

In this paper we focus on the experimental evaluation of different search strate-
gies, heuristics and their combinations that have been shown to be effective in the SAT
community, in ASP systems. The analysis is performed usingCMODELS2 as a com-
mon platform:CMODELS2 is an AS solver based on SAT, strengthening in this way the

1 http://www.tcs.hut.fi/Software/smodels
2 http://www.cs.utexas.edu/users/tag/cmodels.html
3 http://assat.cs.ust.hk



An Experimental Study of Search Strategies and Heuristics for ASP 179

relationship, and already incorporates most state-of-the-art SAT techniques and heuris-
tics. Given the equivalence on search procedures, the results obtained forCMODELS2
extend toASSAT and SMODELS if enhanced with corresponding techniques. For the
search strategies, we evaluate both look-ahead strategies (used while descending the
search tree) and look-back strategies (used for recovering from a failure in the search
tree). In particular we analyze

– Look-ahead: basic unit-propagation, based on lazy data structures;
– Look-ahead: unit-propagation+failed-literal detection.
– Look-back: basic backtracking;
– Look-back: backtracking+backjumping+learning.

In SAT, failed-literal detection [7] has been shown to be effective on randomly gen-
erated benchmarks, while optimized look-back techniques like backjumping [18] and
learning [19, 1] have been shown to be effective on propositional formulas arising from
real-world applications (such as planning and model checking). Among the SAT heuris-
tics, we analyze

– Static: based on the order induced by the appearance in the SAT formula.
– VSIDS (Variable State Independent Decaying Sum): based on the information ex-

tracted from the optimized look-back phase of the search.
– Unit: based on the information extracted from the failed-literal detection technique.
– Unit with pool: Unit heuristic restricted to a subset of the open (not yet assigned)

atoms.

The static heuristic is used for evaluating the contribution of individual look-ahead
and look-back strategiesindependentlyfrom the heuristic. VSIDS [16] heuristic has
been shown to be very effective on real-world benchmarks, while unit and unit with
pool heuristics [13] have been shown effective on randomly generated benchmarks.

Finally, we also evaluate several combinations of look-head, look-back strategies
and heuristics. There are 16 (2x2x4 for look-ahead, look-back and heuristics respec-
tively) possible combinations of techniques we have presented, but only 10 among them
make sense. This is because

– VSIDS heuristic makes sense only if learning is enabled
– Unit-based heuristics make sense only if failed-literal is enabled

The analysis has been performed by means of the following methodology: First, we
fixed the heuristic (static) and analyzed the 4 remaining possible combinations (all the
combinations between look-ahead and look-back strategies). The goal here is to under-
stand the impact of each single strategy independently from (the interaction with) the
heuristics. Second, we added the remaining heuristics where possible. The goal here
is to evaluate how “real” ASP solvers (the results of the combinations of look-ahead,
look-back strategies and heuristics) perform on different benchmarks. We have used
both randomly generated logic programs and logic programs arising from real-world
applications. Besides tight logic programs, we have taken into account also non-tight
logic programs. They are interesting because most of the state-of-the-art ASP systems,



180 Enrico Giunchiglia and Marco Maratea

such asCMODELS2, ASSAT, SMODELS andDLV 4, can also solve non-tight logic pro-
grams.

The results of our experimental analysis point out that

1. on “small but relatively hard”, randomly generated logic programs, failed-literal
detection is very effective, especially in conjunction with unit-based heuristics. This
result reflects what happens in SAT.

2. on “big but relatively easy”, real-world logic programs of “medium” size (in the
number of atoms in the logic programs), learning is very effective. A combination
of learning, failed-literal and unit (with pool) heuristic is the best combination on
these benchmarks. This is very different to what happens in SAT.

3. on real-world logic programs of large size, e.g. with more than about 15000 atoms,
learning is again very effective, but now it leads to the best results in combination
with simple unit-propagation and VSIDS heuristic, reflecting the results in the SAT
community.

The division in two categories, random and real-world, follow from the literature, in
particular from SAT [12]. Here we have introduced a further division in the real-world
category, related to the size, i.e. the number of atoms, of the logic programs. This further
(sub)division is useful for isolating and underlying different behaviors in the real-world
benchmarks.

This is the first paper that we know of, in which a variety of look-ahead, look-
ahead strategies and heuristics are evaluated and combined in the ASP community.
Previous works (such as [5]) mostly considered and evaluated only one technique (the
heuristic in the paper cited). The evaluation of a single technique is often not sufficient,
because it is well-known that for the performances of systems what is crucial is the
combinationof techniques: For example, VSIDS heuristic is effective on real-world
problems in conjunction with unit-propagation and learning, but becomes ineffective
when failed-literal is added and does not make even sense with basic backtracking.
Moreover, it is important to remark that a significant analysis ought to be performed on
a uniqueplatform, otherwise the results can be biased by implementation issues. The
same results extend toASSAT andSMODELSif enhanced with corresponding techniques
(at least on tight programs), given the strong link between ASP and SAT procedures
outlined in this paper.

2 Answer Set Programming

A rule is an expression of the form

A0 ← A1, . . . , Am, not Am+1, . . . , not An (1)

whereA0 is an atom or the symbol⊥ (standing for false), andA1, . . . , An are atoms
(0 ≤ m ≤ n). A0 is thehead of the rule,A1, . . . , Am, not Am+1, . . . , not An is the
body. A (non disjunctive) logic program is a finite set of rules.

4 http://www.dbai.tuwien.ac.at/proj/dlv



An Experimental Study of Search Strategies and Heuristics for ASP 181

CMODELS2(Γ, S)
if Γ = ∅ then return test(S, Π);
if ∅ ∈ Γ then return False;
if {l} ∈ Γ then return CMODELS2(assign(l, Γ ), S ∪ {l});
A := an atom occurring inΓ ;
CMODELS2(assign(A, Γ ), S ∪ {A});
CMODELS2(assign(¬A, Γ ), S ∪ {¬A}).

Fig. 1.TheCMODELS2 procedure

In order to give the definition of an answer set, we consider first the special case
in which the programΠ does not contain negation as failure (not) (i.e., such that for
each rule (1) inΠ, n = m). Let Π be such a program, and letX be a consistent set of
atoms. We say thatX is closed underΠ if, for every rule (1) inΠ, A0 ∈ X whenever
{A1, . . . , Am} ⊆ X. We say thatX is ananswer set for Π if X is the smallest set
closed underΠ.

To extend this definition to programs with negation as failure, take any programΠ,
and letX be a consistent set of atoms. Thereduct ΠX of Π relative toX is the set of
rules

A0 ← A1, . . . , Am

for all rules (1) inΠ such thatX does not contain any ofAm+1, . . . , An. ThusΠX is
a program without negation as failure. We say thatX is ananswer set for Π if X is an
answer set forΠX .

Now we want to introduce the relation between the answer sets of a programΠ and
the models of the completion ofΠ. In the following, we represent an interpretation (in
the sense of propositional logic) as the set of atoms true in it. With this convention, a set
of atomsX can denote both an answer set and an interpretation. Consider a program
Π.

If A0 is an atom or the symbol⊥, thecompletion of Π relative to A0 is the formula

A0 ≡
∨

(A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An)

where the disjunction extends over all rules (1) inΠ with headA0. The completion
Comp(Π) of Π consists of one formulaComp(Π,A0) for each atomA0 and the symbol
⊥.

For the wide set of tight logic programs, ifX is an answer set ofΠ, thenX satisfies
Comp(Π), and the converse is also true. In the following, we say that a programΠ is
tight if there exists a functionλ from atoms to ordinals such that, for every rule (1) in
Π whose head is not⊥, λ(A0) > λ(Ai) for eachi = 1, . . . ,m.

2.1 CMODELS 2 and ASSAT: SAT-based Answer Set Programming

In this section we review the SAT-based approach to ASP. We presentCMODELS2’s
algorithm, and then we say how it extends to the algorithm ofASSAT. There are various
versions ofCMODELS, all of them with the same behavior on tight programs. Here we



182 Enrico Giunchiglia and Marco Maratea

SMODELS(Π,S)
〈Π, S〉 := simplify(Π, S);
if ({l, not l} ⊆ S) return False;
if ({A : A ∈ AΠ , {A, not A} ∩ S 6= ∅} = AΠ ) exit with True;
A := an atom occurring inΓ ;
SMODELS(A-assign(A, Π)), S ∪ {A});
SMODELS(A-assign(not A, Π)), S ∪ {not A});

Fig. 2.A recursive version of the algorithm ofSMODELS.

consider the one proposed in [10], represented in Figure 1, in whichl denotes a literal (a
literal is an atom or its negation);Γ a set of clauses (each clause defined as a set of liter-
als);S anassignment, i.e., a consistent set of literals. Given an atomA, assign(A,Γ )
is the set of clauses obtained fromΓ by removing the clauses to whichA belongs, and
by removing¬A from the other clauses inΓ . assign(¬A,Γ ) is defined similarly. In
the initial call,Γ = Comp(Π) andS is the empty set. Here we considerComp(Π)
after clausification. We assume that(i) Comp(Π) signature extends the signatureAΠ

of Π, and(ii) for each set X of atoms inComp(Π) signature, X satisfiesComp(Π)
iff X ∩ AΠ satisfiesComp(Π) before clausification. Standard clausification methods
satisfy such conditions.

The algorithm ofCMODELS2 is very similar to the well-known DLL decision pro-
cedure for SAT [3]. The only difference is in the basic case whenΓ = ∅, where “exit
with True” is substituted with “returntest(S, Π)”, a new function which has to return

– True, and exit the procedure, if the set of atoms inS is an answer set ofΠ, and
– False, otherwise.

CMODELS2(Comp(Π), ∅) returnsTrue if and only if Π has an answer set.
ASSAT has the same behavior on tight logic programs, while on non-tight logic pro-

grams the approaches are different. Moreover,CMODELS2 has a number of advantages
in comparison withASSAT. For more details, see [10].

2.2 Relation with SMODELS

Consider now Fig. 2. This is a recursive version of the algorithm ofSMODELS. In the
Figure,Π is a program, initially set to the program of which we want to determine the
existence of answer sets;S is an assignment, initially set to{>}; A denotes an atom,r a
rule, andl a literal.A-assign(l,Π) returns the program obtained fromΠ by (i) deleting
the rulesr such thatnot l ∈ body(r); and(ii) deletingl from the body of the other
rules inΠ.

In the paper [9], has been formally proved that, for tight logic programs, the al-
gorithm of CMODELS2 andSMODELS are equivalent: They explore search trees with
the same branching nodes (considering the heuristics return the same atom). What it
is interesting to say, is that in the mentioned paper the rules considered in Fig. 2 to
extend the assignmentS in functionsimplify are exactly the same used inSMODELS

(procedureexpand, see [20] pagg. 17, 32-37).



An Experimental Study of Search Strategies and Heuristics for ASP 183

3 Experimental analysis

Due to the strong link between the solving procedures of state-of-the-art ASP solvers,
the experimental results are independent from the chosen solver (at least on tight pro-
grams). We have used our solver,CMODELS2, also because

– its front-end isLPARSE [20], a widely used grounder for logic programs;
– its back-end solver already incorporates lazy data structures for fast unit propaga-

tion as well as some state-of-the-art strategies and heuristics evaluated in the paper;
and

– can be also run on non-tight programs.

Moreover, it is based on SAT, strengthening in this way the relation between ASP and
SAT.

There is no other publicly available AS system having the above features, and that
we know of.SMODELSdoes not contain lazy data structures, and adding them toSMOD-
ELS would basically boil down to re-implement the entire solver.

The experimental results we present (at least the ones on tight programs) extend to
ASSAT andSMODELS if enhanced with reasoning strategies corresponding to the ones
that we considered.

The analysis is focused on tight logic programs, but we also run non-tight logic
programs in order to understand (at least on the experimental side) if the results on
the tight domain can be extended to the non-tight domain. We considered several do-
mains of publicly available, currently challenges for ASP solvers, benchmarks for our
investigation; in particular

– Randomly generated logic programs: The tight programs are (modular) translation
from classical random 3SAT instances; the non-tight are randomly generated ac-
cording to the methodology proposed in [14].

– tight blocks-worlds, queens and 4-coloring problems;5 tight bounded model check-
ing (BMC) problems.6

– non-tight blocks-world problems and non-tight Hamiltonian Circuit on complete
graphs.7

In the introduction, we already introduced the various strategies and heuristics used
in the experimental evaluation. In more details

– “ U” (unit-propagation), assigns repeatedly open literals in unit clauses until either
(i) there are no more unit clauses, or(ii) a contradiction is found. It is based on
two-literal watching, an efficient lazy data structure for propagate unit clauses [16];

– “ F” (unit-propagation+failed-literal detection), failed-literal detection is applied if
unit-propagation has not reached a contradiction. For each unassigned atomA, A
is assigned toTrueand then unit-propagation is called again: If a contradiction is
found (andA is said to be afailed literal), ¬A can be safely assigned. Otherwise,
¬A is checked. If both branches fail, backtracking occurs;

5 Publicly available athttp://www.tcs.hut.fi/Software/smodels/tests/.
6 Available athttp://www.tcs.hut.fi/˜kepa/tools/boundsmodels/.
7 Encoding due to Esra Erdem [4] and Ilkka Niemela [17] respectively.



184 Enrico Giunchiglia and Marco Maratea

– “ B” (basic backtracking), performs chronological backtracking;
– “ L” backtracking+backjumping+learning, when a contradiction is found, a clause

(calledreason) is created. The reason is a clause, unsatisfied under the current as-
signment, that contains only literals “responsible” for the conflict. Instead of just
backtrack chronologically, the atoms not in the reason are skipped until we en-
counter an atom in the reason that was chosen by the heuristic. Reasons are up-
dated during backtracking via resolution with the clauses that caused the atoms to
be assigned. The idea here is to avoid the visit of useless parts of the search tree.
Learning adds,8 under given conditions, some of the reasons in order to avoid the
repetition of the same mistakes in other parts of the search tree. CMODELS2 imple-
ments 1-UIP learning [21].

For the heuristics

– “ S” (static), is based on the order induced by the appearance in the SAT formula:
The first an atom is in the formula, the sooner is selected;

– “ V” (VSIDS), is the acronym for Variable State Independent Decaying Sum. It
is based on the information extracted from learning. Each literals has a weight
associated with it. The weight is initialized with the occurrences of the literal in the
formula and incremented if the literal appears in a learned clause. Periodically the
score is divided by a constant (2 in our case). The atom associated to the literal with
maximum weight is chosen. The rational here is to put focus on atoms involved in
recent conflicts;

– “ U” (Unit), is based on the failed-literal detection technique. Given an unassigned
atomA, while doing failed-literal onA we count the numberu(A) of unit-propagation
caused, and then we select the atom with maximum1024×u(A)×u(¬A)+u(A)+
u(¬A);

– “ P” (Unit with pool), unit heuristic restricted to a subset of the unassigned atoms. It
is similar to “U” except that(i) we first select a pool of 10 “most watched” atoms,
and(ii) we perform failed-literal and score accordingly only with the atoms in the
pool. Our simple pooling criteria is motivated by the fact that we are using a solver
with lazy data structures. State of the art SAT solvers (e.g.SATZ) that implements
failed-literal detection use much more sophisticated criteria. Because of this, results
using the pool should be considered significant only if they are positive: Negative
results could be biased by the simplicity of our criteria.

The chosen atom is assigned toTrueby default in the “S”, “ U” and “P” heuristics,
while for “V” the value depends on which literal built on the chosen atom has higher
weight with ties broken withFalse.
We will refer to the actual combination of search strategies and heuristics using an
acronym where the first, second and third letter denote the look-ahead, look-back and
heuristic respectively, used in the combination. For example,ulv is a standard look-
back, “CHAFF”-like, solver similar toCMODELS2. fbu is a standard look-ahead solver.
flv andflu have both a powerful look-ahead and look-back but different heuristic. All

8 A policy to delete reasons when they became useless is also needed in order to maintain in
polynomial space the procedure.



An Experimental Study of Search Strategies and Heuristics for ASP 185

PB # VAR uls ubs fls fbs

1 4 300 TIME TIME 230.86 338.05
2 5.5 300 TIME TIME 478.46 TIME
3 6 300 371.28 TIME 120.02 84.16

4 bw-large.d9 9956 0.9 2497.02 2.68 2.62
5 bw-large.e9 12260 1.11 1928.43 1.95 1.9
6 bw-large.e10 13482 1.61 TIME 5.28 19.52

7 queens21 925 0.20 0.23 0.36 0.38
8 queens24 1201 0.46 1.14 0.67 0.74
9 queens50 5101 3.67 TIME 12.41 TIME

10 dp-12.fsa-i-b9 1186 12.51 2651.28 20.30 TIME
11 key-2-i-b29 3199 157.29 TIME 111.61 293.37
12 mmgt-3.fsa-i-b10 1933 TIME TIME 1570.273241.45
13 mmgt-4.fsa-s-b8 1586 1004.36 TIME 1054.06 TIME
14 q-1.fsa-i-b17 2201 165.07 TIME 301.16 TIME

15 p1000 14955 7.69 TIME 377.02 TIME
16 p3000 44961 178.26 TIME TIME TIME
17 p6000 89951 1275.62 TIME TIME TIME

Table 1.Performances foruls, ubs, fls andfbs on tight programs. Problems (1-3), are randomly
generated; (4-6) are blocks-world; (7-9) are queens; (10-14) are bounded model checking; (15-
17) are 4-colorability.

the tests were run on a Pentium IV PC, with 2.8GHz processor, 1024MB RAM, running
Linux. The timeout has been set to 600 seconds of CPU time for random problems, and
3600 for real-world problems.

We present results using CPU time (remember that we performed the experiments
on a unique platform: Our results are not biased by implementation issues). For ran-
domly generated problems the result in the Tables is the median time over 10 runs.

We have considered far more benchmarks for each category than the ones we show.
In the Tables are only shown the bigger benchmarks we run for each category when
significant (i.e., when at least one of the combinations in each table does not reach the
time limit, denoted with TIME). In the Tables, the second column is the ratio between
number of rules and number of atoms for random problems, and the name of the bench-
marks for real-world problems. The third column contains the number of atoms after
grounding.

3.1 Tight logic programs

In Table 1 the results about theCMODELS2’s versions with plain heuristic “S” on tight
programs are shown. Randomly generated tight programs are modular translation of
classical random 3SAT benchmarks with 300 atoms, 10 instances per point. Here we
have not taken into account ratios4.5 and5 because all the medians are in timeout.
For these problems (1-3), we immediately see that failed-literal is very effective, being



186 Enrico Giunchiglia and Marco Maratea

PB # VAR ulv flv flu fbu ulp ubp

18 4 300 0.41 0.52 0.85 0.66 21.79 3.01
19 4.5 300 TIME TIME 81.92 22.53 TIME 54.7
20 5 300 448.21 485.36 8.27 4.72 452.75 14.35

21 bw-large.d9 9956 1.02 5.84 2.69 2.75 1.01 TIME
22 bw-large.e9 12260 0.98 1.91 1.92 1.93 1.03 1.54
23 bw-large.e10 13482 1.29 7.51 5.03 4.95 1.55 TIME

24 queens21 925 786.14 1864.49384.87 47.33 0.24 0.24
25 queens24 1201 TIME TIME TIME 368.76 0.28 0.29
26 queens50 5101 TIME TIME TIME TIME 347.98 43.16

27 dp-12.fsa-i-b9 1186 223.93 383.66 353.53 TIME 2910.961051.17
28 key-2-i-b29 3199 415.54 204.87 44.14 589.451329.53 TIME
29 mmgt-3.fsa-i-b10 1933 16.23 32.23 26.71 16.55 6.19 372.54
30 mmgt-4.fsa-s-b8 1586 17.02 27.59 421.30327.55 13.79 2492.62
31 q-1.fsa-i-b17 2201 1539.96 505.15 259.05816.26 TIME TIME

32 p1000 14955 0.48 37.86 15.41 15.23 3.69 TIME
33 p3000 44961 8.86 369.27 144.12142.83 223.62 TIME
34 p6000 89951 99.50 TIME 583.55578.982549.50 TIME

Table 2. Performances forulv, flv, flu, fbu, ulp andubp on tight programs. The problems pre-
sented are the same as in Table 1.

much faster than the versions using only unit-propagation.fls is slightly better thanfbs
because, with a static heuristic, “L” can help to escape from unsatisfied portion of the
search tree where the uninformed static heuristic could be trapped. These results are in
accordance to those from the SAT community. Lines (4-17) show the results for real-
world problems. From the comparison between the 4th and 5th columns, and the 6th
and 7th columns, we can conclude that “L” is of fundamental importance on real-world
problems, being often faster by orders of magnitude w.r.t. the same combination but
using “B”. Also this result reflects what happens in the SAT community. The effects
of adding failed-literal follow from the comparison between 4th and 6th, and 5th and
7th columns. When “L” is enabled, adding failed-literal does not help (except for two
BMC problems) in improving the performances. This phenomenon was already partly
encountered in the SAT community in [11]. Otherwise, when using simple backtracking
failed-literal helps in general in improving performances, avoiding (with a forward rea-
soning) the visit of useless parts of the search tree that otherwise (due to the absence of
“ L”) the solver would explore (the results are confirmed by some smaller experiments
on 4-coloring problems not shown here).

In Table 2, there are the results on tight programs when usingCMODELS2 with
a non-static heuristic. For randomly generated logic programs (18-20), using a non-
static heuristic in general helps for increasing the performances. It is also clear that
using failed-literal in combination with a look-head based heuristic is the best choice.
In particularfbu is the best, butflu andubp are not far. Here, using “L” is not effective
in conjunction with failed-literal: The positive effects it had with the static heuristic



An Experimental Study of Search Strategies and Heuristics for ASP 187

are shadowed by the unit-based heuristics. Even more, now it leads to negative results,
with a huge difference when using heuristic “P”. Rows (21-34) in Table 2 are results
for tight real-world logic programs. The situation here is far less similar w.r.t. the SAT
case. Indeed, combinations based on look-back (in particularulv) perform quite well
on a wide variety of benchmarks, but not as well as one would expect. In particular,
the performances on the BMC instances (problems (27-31)) ofulv (resp. the version
using failed-literal) are worse (resp. better) than expected: In SAT, BMC instances are
the benchmarks where look-back solvers (resp. solvers with powerful look-ahead) give
their best (resp. their worst).ulp is often very competitive withulv. This is indeed
explained if we look at the number of variables “# VAR” of these instances, which
is in the order of a few thousands. Indeed, for such “# VAR” it still makes sense to
perform an aggressive look-ahead at each branching node. On the other hand, as “#
VAR” increases this is no longer the case, as the results on the 4 colorability instances
(lines 32-34) show.

Summing up about the experimental analysis for tight programs

– on randomly generated logic programs, failed-literal is very effective, especially in
conjunction with unit-based heuristics;

– on real-world logic programs, learning is usually very effective;
– on real-world logic programs of “medium” size, a combination of powerful look-

ahead and powerful look-back likeulp is very competitive even if not the overall
most effective alternative;

– on real-world logic programs of “large” size, e.g. with more than 15000 atoms, a
look-back based solver likeulv becomes the most effective combination.

3.2 Non-tight logic programs

Besides the analysis on tight logic programs, we also analyzed non-tight logic pro-
grams. The analysis is motivated by trying to understand if the results obtained on the
tight domain can be extended to the non-tight domain (at least from the experimental
point of view).

In Table 3 and 4 the results for non-tight logic programs using plain heuristic “s” and
non-static heuristics respectively. Problems (35-37) and (44-46) are randomly generated
logic programs with 300 atoms, 10 instances per point. The instances were generated
using the method proposed in [14]. The ratios from3.5 to 7 have not been shown in
Table 3 because all the medians are in timeout. Lines (38-43) and (47-52) contain the
results for blocks-world and complete graphs problems.

Summing up, on the non-tight domain

– results obtained in the tight domain extend to the non-tight forCMODELS2; but
– it can be the case that results on non-tight benchmarks do not extend to other solvers

given that the strong theoretical link has been established on tight programs.

4 Conclusions

In this paper, motivated by the strong existing link between ASP and SAT, we have
investigated several search strategies, heuristics and their combinations that have been



188 Enrico Giunchiglia and Marco Maratea

PB # VAR uls ubs fls fbs

35 3 300 9.75 31.63 4.69 4.4
36 7.5 300 TIME TIME TIME 567.78
37 8 300 544.83TIME 199.05178.98

38 bw-basic-P4-i 5301 2.08 43.19 4.07 6.91
39 bw-basic-P4-i-1 4760 1.73 15.55 2.54 2.57
40 bw-basic-P4-i+1 5842 2.29 47.09 5.04 8.17

41 np60c 10742 6.8 TIME 125.83 TIME
42 np70c 14632 12.34 TIME 326.34 TIME
43 np80c 19122 19.89 TIME 745.26 TIME

Table 3.Performances foruls, ubs, fls andfbs on non-tight programs. Problems (35-37), are ran-
domly generated; (38-40) are blocks-world; (41-43) are Hamiltonian Circuit on complete graphs.

PB # VAR ulv flv flu fbu ulp ubp

44 4 300 265.43 218.48 41.97 31.05 77.41 123.31
45 5 300 TIME TIME 136.67 99.75 439.71323.15
46 6 300 TIME TIME 107.34 65.83 591.3 337.45

47 bw-basic-P4-i 5301 2.16 15.54 6.07 5.79 2.54 79.64
48 bw-basic-P4-i-1 4760 1.64 4.92 2.47 2.44 1.86 13.44
49 bw-basic-P4-i+1 5842 2.49 24.27 22.01 19.71 2.41 11.60

50 np60c 10742 2.83 1611.32 44.12 44.12 4.77 597.82
51 np70c 14632 4.69 TIME 97.44 97.89 5.91 TIME
52 np80c 19122 6.91 TIME 192.29196.32 12.88 TIME

Table 4. Performances forulv, flv, flu, fbu, ulp andubp on non-tight programs. The problems
presented are the same as in Table 3.

shown to be effective for SAT, in ASP systems. Our results have shown that on randomly
generated problems look-ahead solvers dominate, like in SAT, while on logic programs
arising from real-world applications, despite the strong link, a combination of powerful
look-ahead and look-back is currently what dominate in ASP systems.

Given the relatively low number of variables in most currently challenging instances
in ASP, we believe that if the goal is to develop a general purpose ASP solver, an
ulp-based solver is, at the moment, the way to go. We have also shed light on future
development: As soon as the number of variables in the challenges benchmarks will
increase, for real-world problems we expect thatulv-based solvers, leaders in the SAT
community, become leaders also in ASP.

As a future work, we are planning to investigate the interplay between grounding
techniques and the SAT strategies and heuristics presented in this paper.

Finally, we believe that this paper is a major step in the direction of closing the gap
between ASP and SAT.



An Experimental Study of Search Strategies and Heuristics for ASP 189

References

1. Roberto J. Bayardo, Jr. and Robert C. Schrag. Using CSP look-back techniques to solve
real-world SAT instances. InProceedings of AAAI-97, pages 203–208, Menlo Park, July
27–31 1997. AAAI Press.

2. Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors,Logic and Data
Bases, pages 293–322. Plenum Press, 1978.

3. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Journal
of the ACM, 5(7), 1962.

4. Erdem Esra.Theory and applications of answer set programming. PhD thesis, University of
Texas at Austin, 2002. PhD thesis.

5. W. Faber, N. Leone, and G. Pfeifer. Experimenting with heuristics for asp. InProc. IJCAI,
2001.

6. François Fages. Consistency of Clark’s completion and existence of stable models.Journal
of Methods of Logic in Computer Science, 1:51–60, 1994.

7. Jon W. Freeman.Improvements to propositional satisfiability search algorithms. PhD thesis,
University of Pennsylvania, 1995.

8. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Robert Kowalski and Kenneth Bowen, editors,Logic Programming: Proc. Fifth
Int’l Conf. and Symp., pages 1070–1080, 1988.

9. E. Giunchiglia and M. Maratea. On the relation between sat and asp procedures. Submitted
to ICLP 2005, 2005.

10. E. Giunchiglia, M. Maratea, and Y. Lierler. SAT-based answer set programming. InAmeri-
can Association for Artificial Intelligence, 2004.

11. E. Giunchiglia, M. Maratea, and A. Tacchella. (In)Effectiveness of look-ahead techniques
in a modern SAT solver. In9th International Conference on Principles and Practice of
Constraint Programming (CP-03), pages 842–846, 2003.

12. D. LeBerre and L. Simon. Fifty-five solvers in vancouver: The sat 2004 competition. In
8th International Conference on Theory an Applications of Satisfiability Testing. Selected
Revised Papers., Lecture Notes in Computer Science. Springer Verlag, 2005. To appear.

13. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems.
In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-
97), pages 366–371, San Francisco, August 23–29 1997. Morgan Kaufmann Publishers.

14. F. Lin and Y. Zhao. Asp phase transition: A study on randomly generated programs. In
Proc. ICLP-03, 2003.

15. Victor Marek and Miroslaw Truszczynski. Stable models as an alternative programming
paradigm. InThe Logic Programming Paradigm: a 25.Years perspective, Lecture Notes in
Computer Science. Springer Verlag, 1999.

16. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. InProceedings of the 38th Design Automation
Conference (DAC’01), June 2001.

17. I. Niemel̈a. Logic programs with stable model semantics as a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

18. Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem.Computational
Intelligence, 9(3):268–299, 1993.

19. Jõao P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for satisfi-
ability. Technical report, University of Michigan, 1996.

20. Patrick Simons. Extending and implementing the stable model semantics. PhD thesis,
Helsinky University, 2000. PhD thesis.

21. L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning
in a boolean satisfiability solver. InICCAD, 2001.


