
Deductive Synthesis of Workflows for e-Science

Bin Yang, Alan Bundy, Alan Smaill, Lucas Dixon
�

School of Informatics, The University of Edinburgh
Appleton Tower, Crichton Street, Edinburgh EH8 9LE, UK

b.yang@ed.ac.uk,
�
bundy, smaill, ldixon � @inf.ed.ac.uk

Abstract

In this paper we show that the automated reasoning
technique of deductive synthesis can be applied to address
the problem of machine-assisted composition of e-Science
workflows according to users’ specifications. We encode
formal specifications of e-Science data, services and work-
flows, constructed from their descriptions, in the generic
theorem prover Isabelle. Workflows meeting this specifi-
cation are then synthesised as a side-effect of proving that
these specifications can be met.

1 Introduction

Data-intensive scientific computing usually involves
very complicated processes that are normally composed
of many steps, each involving significant computation. e-
Science provides a distributed problem solving environment
for many scientific projects and researchers, in which Grid
computing is the key enabling infrastructure. Grid services
are composed into workflows to build composite e-Science
applications to achieve complex user tasks. Recent imple-
mentations of Grid computing environments [6, 16, 17, 18]
provide workflow interfaces for users to construct compos-
ite Grid applications more efficiently, by either coding in
particular workflow languages, manual composition in the
provided GUI, or re-using expert-built templates.

Workflow-level access to Grid resources is a substan-
tial step toward the realisation of the vision of e-Science.
However, the e-Science Grid will keep expanding as more
resources are incorporated into the e-Science community;
the scale and complexity of such distributed and heteroge-
neous systems would make any level of assistance desirable
to even experienced users. Several projects have addressed
the problem and provided different levels of automation in�

This work was funded by EPSRC grant GR/S25388. We would also
like to thank Ewen Maclean, Carole Goble, Jim Blyth and John Darlington
for their helpful comments.

helping users compose, validate and execute their work-
flows, such as [1, 11].

Our project focuses on the machine-assisted synthesis of
workflows to meet users’ specifications. In this paper, we
describe a novel approach of modelling Grid data and ser-
vices, in which they are extracted from their semantic de-
scriptions in a formal system that is a further abstraction
of the Virtual Data Language (VDL) [1]. We also demon-
strate how we implement the formal system in the generic
theorem prover Isabelle [14] to verify and synthesise ab-
stract workflows that can be later translated for middleware
through their workflow interfaces. Currently, our system
can automatically verify that workflows meet their speci-
fication, but synthesising workflows from specification re-
quires interactive guidance. We are working towards the
automation of synthesis too.

2 Our Approach to Workflow Synthesis

Current workflow environments are still far from the
reach of real scientists who are working with real scientific
problems. To use a Grid through its workflow interface,
many users have to struggle with the following obstacles:� Considerable Expertise is required for scientists to

effectively design their workflows using interfaces to
script-based language [16, 18].� Service Look-up is difficult for users as there are
many service instances published by different service
providers, intended for different disciplines, imple-
mented over different platforms and with different lev-
els of encapsulation.� Resource Deployment is a prohibitive task for users
due to its complexity. The abstract workflow has to
be deployed onto a network of concrete Grid resources
connected and configured accordingly.

In addition to the problems described above, there are
two further difficulties that often arise in the manual com-
position approaches:

1

� Service instances have Contextual Properties which
may need to be considered. For example, it may be
preferable to incorporate services from a certain set of
affiliated providers, or produce the computing result
in a particular format depending on the local comput-
ing architecture. However, users are usually provided
with limited information about the contextual proper-
ties of service instances. This is mainly due to the inad-
equate expressiveness of service description languages
and the heterogeneity of the Grid environment and e-
Science application domains.� The complexity involved in the manual composition
of workflows makes them likely to fail. The Execu-
tion Failure of composed workflow can be very hard
to detect and avoid manually, as even advanced users
cannot easily deal with all the issues stated above.

To address these problems, first, we adopt a semantic
description of Grid resources. In our approach, Grid ser-
vices, data and other Grid resources are declared as objects
formally specified with their properties. Extra application-
specific replicas of Grid services and data can be imple-
mented for different computing architectures or stored in
different locations, and they will have different physical
properties, location, local name, run-time parameter, etc.
However, the replicas remain logically equivalent in term
of the metadata specifying their logical properties: onto-
logical types and so on. We reason at this abstract log-
ical level. Abstract workflows then need to be compiled
into concrete ones, augmenting them with the details of ac-
tual Grid services. The compilation process is addressed by
other projects [1], and we have put hooks into our represen-
tation to support its solution in the future.

Logic descriptions of Grid resources can be obtained
through the Metadata Catalog Service (MCS) that responds
to queries of domain-specific metadata and returns the
logical names of matching Grid services or data [5, 15].
The physical locations and names can be retrieved by the
Replica Location Service (RLS) [2] and Monitoring and
Discovery Service (MDS) [3].

Second, Grid services and data are modelled as logical
formulae. Our formalisation in Isabelle is rather straightfor-
ward, as all the property fields of Grid resource declarations
are mapped into the Isabelle record datatype. We extract the
ontology of data from the metadata used in existing Grid
applications. For example, in the application domain of
the Laser Interferonmeter Gravitational Wave Observatory
(LIGO) [4], the data files recording a long sequential out-
put of gravitational wave strain channels observed by LIGO
instruments have the ontological type of ���	��

�����
������� .
There are other logical properties of ���	��

������������� data,
for example, the start, end positions, and the sample rate of
the observation, as well as physical properties of concrete

replicas, such as the URL to the server where the data file is
stored and the local file name. This physical property infor-
mation is stored in order to support subsequent compilation
into a concrete workflow, even though we do not address
the compilation process in our project.

In the data-centric e-Science environment, Grid services
can be modelled as transformations on data. Therefore, the
service metadata can be simply designed to include only the
input and output data of the Grid service. Again, physical
properties are used to declare the concrete details, including
the location, the UNIX script and the arguments to access
or invoke the service instance.

By allowing the declaration of pre-conditions, which
can be the evaluations of the properties of the service and
its in/output data, as well as the relationships between
them. This allows the representation of knowledge about
the contextual properties of Grid services, for example, how
the service interacts with others, and other service-specific
characteristics, requirements and capabilities.

With the application-specific knowledge of Grid services
encapsulated in their independent specifications, we imple-
mented generic workflow operators that depict the data-flow
nature of e-Science Grid applications and are no longer spe-
cific to particular e-Science knowledge domains or applica-
tions.

The Isabelle theorem prover is used to prove that the
specifications of the abstract workflow can be met, and the
synthesised workflow is extracted from the proved theorem,
cf. [12]. We use Isabelle to apply backwards search with
unification to synthesise the structure of the workflow and
lookup matching services. The workflow is specified by the
accumulated instantiations of meta variables in the work-
flow. These instantiations bridge the gap between the source
data and the desired data product. The proof both synthe-
sises the workflow and verifies that this specification is met.

3 Modelling Grid Services and Data

Scientific experiments are data-centric: data are col-
lected by measurement instruments, stored, processed and
analysed; later it may be retrieved, compared and derived;
or used by other researchers. e-Science is therefore data-
centric as well. It is crucial to model the data objects, as
well as the processes that transforms the data.

In a data-centric Grid, services can be modelled by the
application of computational procedures that derive and
transform data. Explicit representation of these procedures,
so-called “virtual data”, enables the recording of data prove-
nance, discovery of matching services and on-demand data
generation.

2

3.1 Semantical Description of Data

An extracted specification from an example Grid data file
annotated with domain-specific knowledge from the LIGO
application1 [4] is shown below:

{ LIGO-pulsar;
714265040 ; low boundary
714265294 ; high boundary
LSC-AS_Q H1 ILWD
50.5 ; fcenter
0.004 ; fband
3 ; fderv1
3 ;fderv2
3 ; fderv3
3 ; fderv4
3 ; fderv5
3 ; right ascension
3 ; declination
4096 ; sample rate }

where ���	��

������������� is the ontological type and other
fields describe the logical properties of the abstract data
stored in the data file. The ontology is extracted from the
LIGO domain knowledge.

We now define the abstract logical representation of a
data replica that store the pulsar data in the LIGO knowl-
edge domain:������ �!" $#%# ������������&���'���(*),+ !.-0/1��2�34���� �!" �576 ���	��

�8���
�������

(1)
The generic type of Pulsar data is defined as an exten-

sible record type [13] consisting of the following property
fields:

���
��������&���'��:9<;=),+ !.-=/>��2 #?#
A@�'�B���B�C�D
EFHG>I #?# �1@�'�J�C�J���EK
LNM�K #?# �1@�'�J�C�J���E �OPM�Q #?#SR '��UT1@�C
E
...Q1 �VW��FX2 � O	 �!"2 #?# �1@�'�J�C�J��ZY (2)

),+ !.-0/1��2�3�5 in (1) is a Selector function [13] that returns
the value of the corresponding field of the data, which is
“ ���	��

������������� ” in this case.

As shown above, we model the ontological knowledge
of data using a record field of the more general record type,
instead of a type in Type Theory. Our purpose in regarding
the ontological type of data as one of the semantic proper-
ties is to (1) provide flexible access to the data ontology; (2)

1This uses the framework of Chimera and Pegasus. Thanks to Jim Blyth
for providing the LIGO application example.

bridge the gap between the logical data discovery, by unifi-
cation over the ontological type, and the instantiation of log-
ical data to data instances, that can be regarded as extending
the logical data with the instance-specific properties.

Unification is provided by Isabelle’s implementation of
Huet’s higher order algorithm [8], and supports type as
well as term variable instantiation. Unification is used to
select applicable data and services which are represented
using Isabelle’s extensible record datatype [13]. We de-
fine the base record type [
�
�AJ�&���'�� that contains only the),+ !.-=/>��2 field, and then introduce sub-types (sub-classes)
of Grid data, such as �������A����&���'�� , by extending the base
type [
�
��J�&���'�� (super-class) with extra fields.

This representation allows unification to supports users
querying e-Science data using domain knowledge and se-
mantic descriptions expressed, such as:\]���� �!" ^#?# [
����J�&���'���� R
_>` J>a�J�(3),+ !.-0/1��2�34���� �!" �576 ���	��

�8���
������� 5b 3HFXG>Ic3d���� �!" �5�6fe>5b 3NK�LNM�Kg3d���� �!" �5h6ji�i�i�5 (3)

The query can be read as: “Is there a data replica that
is of the ontological type ���	��

������������� and describes the
LIGO sequence of the range k%l�E
m�m�m	n ?”. Note that

���� �!"
is existentially quantified. The proof of (3) will instantiate���� �!"

. This instantiation will represent the desired abstract
workflow. In this way, the proof synthesises the workflow.���� �!"

can be instantiated to any data instance whose),+ !.-=/>��2 field is ���	��

���������A��� , as the data instances
are partially evaluated solely by the),+ !.-=/>��2 field. The
data instances are either manually declared or provided by
RLS, and then translated to logical formulae as in (2). If
there is such a logical representation of a data instance of���>��

�8����������� that stores the LIGO sequence of the first
1000 samples, then we are able to prove the formula (3)
directly and thus

���� �!"
is synthesised to be that data in-

stance; otherwise, search is needed to find a combination
of data instances that together satisfy the conditions in the
conjunction. We employ backward search using unification
with heuristics and tactics to guiding the proofs automation.

3.2 Specifying Grid Service with Data

To implement our more flexible and generic workflow
synthesis system, we started by extending VDL to support
types of data. The simple DAG shown in Figure 1 is an ab-
stract LIGO workflow example. Below, we discuss how our
system can synthesise this workflow from its specification.

We need to declare the new LIGO logical data and ser-
vices that are specified as transformations of data:O	�� �!" l�E O	�� �!" �o #%#qp ��r�&���'��

3

Figure 1. A Simple LIGO Workflow

���� �!" l�E ���� �!" �o E ���� �!" �s #%# ������������&���'��
21t
!.O	 �u*! l�E 2Pt�!.O	 �uv!wo #%#yx�z '���� _ 'uvG + uv �!{#%#q| B�@ _ ��'

where the data type
p ��r�&���'�� is defined in a way similar

to ������������&���'�� ; the),+ !.-=/>��2 fields of
O	�� �!" l , O	�� �!" �o

are both ���	��

� p ��r which is the type of raw LIGO data
to be extracted.

���� �!" l , ���� �!" �o and
���� �!" �s

have the
same ontological type ���	��

�8���
������� . Both ���	��

� p ��r and������������&���'�� are the sub-types of [
�
��J�&���'�� .

We now show how the two service types are defined by
extending the base transformation type } p :

} p 9~; L + ����!^#?# [
�
�AJ�&���'��
� R�_>` J>aUJ��
T��	'�EG>��!��
��!^#?# [��
��J�&���'���� R
_>` J1aUJ��
T��	'
Yx�z '���� _ 'j9 } p��; �O1M�Q�#%#�R '��UTP@�CcY| B�@ _ ��'j9 } p��; �O1M�Q�#%#�R '��UTP@�CcY (4)

where we currently model Grid services with multiple in-
puts/outputs as having ��T��	'�� of input/output data. The rea-
son is that, during the synthesis of workflows, we need to
analyse each logical datum of the input/output fields. The
datatype of lists has built-in recursively-defined construc-
tors that are convenient for peeling off the elements of a list

The physical properties of Grid services are simply mod-
elled as a string containing the arguments. Currently they
are not taken into consideration during the verification and
synthesis procedures. We plan to incorporate more logi-

cal and physical properties that will be extracted from var-
ious application examples, and support pre-conditions that
depict the service requirement, local access policy, perfor-
mance model and economics model, etc.

Below we show
21t
!.O	 �u*! l as an illustration of service

instance declaration:21t�!.O> �u*! l #?#�x�z '���� _ 'j9~;L + �
��!W6 k�;]),+ !.-0/1��2�6 ���>��

� p ��rUEFHG>I�6�e E K
LHM�K:6�i�i�i Y�n�EG>��!�����!�6 k�;]),+ !.-=/>��2�6 ���	��

���������A����EFHG>I�6�e E K
LHM�K:6�i�i�i Y�n�E �O1M�Q�6����P���v�P����� Y
The

L + �
��! and
G>��!��
��!

fields, inherited from the base
type } p , semantically describe the abstract data the service
instance would require and the data that is produced as a
result of the computation performed. In this style, we have
the specifications of

21t
!.O	 �u*!wo
and

uvG + u� �! :
21t
!.O	 �u*!wo�#%#�x�z '���� _ 'j9~;L + �
��!�6 k�;7),+ !.-=/>��2�6 ���	��
�� p �ArUEFXG>Iy6�e>����� E K
LNM�K:6�e>i�i�i Y�nNEG>��!��
��!�6 k�;]),+ !.-=/>��2�6 ���	��

��������������EFXG>Iy6�e>����� E K
LNM�K:6�e>i�i�i Y�nNE �O1M�Q�6��g������������� YuvG + uv �!�#?#�| B�@ _ ��'j9~;L + �
��!�6 k�;7),+ !.-=/>��2�6 ���	��
������
�������
EFXG>Iy6�e E K
LNM�K:6yi�i�i Y�E;]),+ !.-=/>��2�6 ���	��

��������������EFXG>Iy6�e>����� E K
LNM�K:6�e>i�i�i Y�nNEG>��!��
��!�6 k�;]),+ !.-=/>��2�6 ���	��

��������������EFXG>Iy6�e E K
LNM�K:6�e>i�i�i Y�n�E �O1M�Q�6��g������������� Y

4 Grid Workflow Composition

4.1 Formal Specification of Grid Workflow

A workflow, which is a network composed of a number
of Grid services, can be modelled as the accumulated data
transformation. In this fashion, a Grid service is then a sin-
gular workflow that consists of only one high-level service
component.

Abstract workflows have only workflow-level properties
instead of concrete runtime parameters, such as the execu-
tion arguments and physical locations. Therefore we model
workflows as generic processes that are of the type of } p .

4

In our implementation, we enrich the } p to have more qual-
ity of service (QoS) properties, including provenance, run-
time and reliability, which is the probability that the pro-
cess will execute successfully. QoS information is included
for the benefit further work, such as the recently started
project “Inferring Quality of Service Properties for Grid
Applications”, which aims to develop compositional calculi
for propagating QoS properties around workflows. } p , the
common base type of workflows and processes, is now de-
fined as:

} p 9<; L + �
��!�#%# [
�
��J�&���'����
T��	'
EG>��!�����!�#?# [
�
�AJ�&���'����
T��	'�E�
O	G>�:#?#�R '��UT1@�C��
T��>'�EO>� + !.L�V�2�#%# �1@�'�J�C�J���EO	21FXL. ���#%#hp J���� Y (5)

The
�
O	G>�

field is designed to record the provenance,
which, in the current implementation, is simply constructed
by appending together the

�
O	G>�
fields of the workflow’s

components. The runtime field is the sum of the execution
times.

4.2 Workflow Verification

So far, we have provided the sequential “ � ” and paral-
lel “ � ” workflow combination operators. So the grammar
describing our workflows is defined as:��� 9�} p¡ ��� � ��� ��� � ��� (6)

The workflow example as shown in Figure 1 can then be
formalised using these two operators:

��T>C�B�r�¢£9 3H21t
!.O	 �u*! lc� 21t
!.O	 �u*!wo�5 � uvG + uv �! (7)

Recall workflows are composite processes that accumu-
late data transformations. By observing the overall data
transformation, we specify the above workflow as a generic
process of type } p . Assuming the provenance fields for2Pt�!.O	 �uv! l , 21t
!.O	 �u*!wo and

u�G + uv �! are defined as “VO1”,
“VO1” and “VO2”; the runtimes are 20, 30 and 20; and
the reliabilities are 0.80, 0.60 and 0.70, respectively2, then
the resulting combined workflow is:¤P¥�¦�§ 9<; L + ����!¨6 k O>�� �!" l�E O>�� �!" �o nNEG>��!�����!©6 k ���� �!" �s n�E��O>G>� 6 k ��ª) o�� E ��ª)�l � E �«ª)�l � nNEO1� + !.L�V¬2­6 ®�¯ EO>2>FXL� ��°6 ¯ (s�s�± Y (8)

2The workflow runtime is obtained by summing the runtime fields on
sequentially executed processes and enumerating the maximum runtime of
processes executed in parallel.

Succeed?

Instantiated all
current variables?

Find an service (Si) with output
data that unifies with the goal
output data of some variable

Succeed?

Si has Multiple
Input Data?

introducing
(?v2 || ... || ?v3) -> Si

introducing
?v2 -> Si

Y

N

N

Synthesis Succeed!

Synthesis Failed!

Y

Y
N

Figure 2. Tactic Control Flow.

We can prove that the workflow ��B�C�B�r�¢ satisfies the
specification ¤P¥�¦�§ , by proving:²�³A´Hµ¶²¸·�¹v² 3 ��T>C�B�r�¢cE ¤�¥�¦�§ 5 (9)

or in detail, we prove:3 ��T>C�B�r�¢�(?T1@�����' 6 k O	�� �!" l�E O	�� �!" �o n 5b 3 �
T>C�B�r�¢�(B���'�����' 6 k ���� �!" �s n 5b 3 �
T>C�B�r�¢�(����B�º 6 k ��ª) oA� E ��ª)�l � E ��ª)�l � n 5b 3 �
T>C�B�r�¢�(����@�'UT*aUJ�» ®A¯�5b 3 �
T>C�B�r�¢�(��J��
TA�A¼¾½ ¯ (s�s�±�5
4.3 Workflow Synthesis

Equipped with the formal specifications of the service
instances and workflow, we are able to generate the desired
workflow from its specification using deductive synthesis.

When a workflow specification is given, such as ¤P¥�¦�§
defined as in (8), the goal we need to prove is defined in
Isabelle notation as:²�³	´Nµ¶²�·8¹*² 3H¿�À�Á E ¤P¥�¦�§ 5 (10)

where a variable starting with
¿

is a schematic variable,
which can be instantiated to be any term of the correct type,
i.e.
¿�À�Á

is implicitly existentially quantified. The goal can
be read as “What kind of workflow can satisfy the specifi-
cation ¤P¥�¦�§ ?”

The synthesis of this simple workflow is performed by
repeatedly applying to the goal the set of tactics given in
Figure 2:

5

The deductive synthesis of
¿�À�Á

from equation (10) can
be achieved as follows:

1. Trying to instantiate “
¿�À�Á

” directly with criteria:3	L + �
��!v3H¿�À�ÁU5�6 k O	�� �!" l�E O	�� �!" �o n 5b 3�G>��!�����!v3N¿�À�ÁU5�6 k ���� �!" �s n 5
fails, as there is no service that directly matching these
inputs and outputs.

2. Unifying only the output of “
¿�À�Á

”,
G>��!��
��!v3H¿�À�Á�5Â6k ���� �!" �s n , succeeds with the service
uvG + uv �! .

3. This introduces the sequential operator, “ � ”, and the
a goal: ²�³A´Hµ¶²¸·�¹v² 3U¿�À�ÁvÃ � uvG + uv �! E ¤P¥�¦�§ 5 (11)

(a)
uvG + uv �! has multiple inputs? Yes.

(b) The parallel operator, “ � ” is introduced which re-
sults in the new goal:²�³	´Nµ¶²¸·�¹v² 3]3H¿�À�Á«Ä � ¿�À�Á*Å�5 � u�G + uv �! E ¤P¥�¦�§ 5

(12)

i. The meta variable “
¿�À�Á«Ä

” can now be in-
stantiated with either

21t
!.O	 �u*! l or
21t
!.O	 �u*!wo

.
ii. The meta variable “

¿�À�Á*Å
” can then be in-

stantiated with the other one.
iii. All schematic variables instantiated, the syn-

thesis succeed.

The tactics are currently applied interactively, but a fully
automated version is being developed. Equipped with ad-
ditional tactics and heuristics, we have successfully synthe-
sised more complex workflows with nested operators, such
as the one shown in Figure 3. To synthesise this complex
workflow, we just need to build the goal as following:²�³	´Nµ¶²�·8¹*² 3H¿�À�Á Ev; L + �
��!Æ6 k �� �!" l�E �� �!" l�l�E �� �!" �oA¯ n�EG>��!��
��!Ç6 k �� �!" �o�o nNE�
O	G>� 6 ¿w��O	G>� EO>� + !.LNV�2È6 ¿�!.L�V�2 EO	2>F¸L. ��{6 ¿�O Y 5

The synthesis proof produces the following synthesised
workflow:

r�¢ 6­É8Ê"� l�� 3d��o � ��s � ��Ë � ��®�5 � ��±�Ì �Ê1Í lÎ� Í o � 3 Í s � Í Ë � Í ®�5 � Í ± Ì � O l�Ï�� OAo
The workflow properties of provenance, runtime and re-

liability do not contribute to the composition of the work-
flow, so that their values for the synthesised workflow can

be left unknown in the query and can be instantiated during
the synthesis by calculation from the corresponding QoS
properties of the atomic Grid services from which the work-
flow is composed.

5 Related Work

Chimera [1] is a virtual data system that can be coupled
with distributed “Data Grid” services[7] and the resource-
mapping sub-system Pegasus [1] to enable on-demand ex-
ecution of computation from data queries. The Chimera
Virtual Data System models the Data Grid environment us-
ing the abstraction of Virtual Data Language (VDL) [1], in
which Grid services are modelled as data transformations
that are specified only by the file names of in/output data.

Pegasus is a planning system to reason about the run-
time properties of Grid service instances, map the abstract
workflow components to physical resources according to
users’ and resource providers’ preference and generate exe-
cutable workflows to the Condor workflow interface, DAG-
Man [17]. Pegasus models Grid services as application-
specific planner operators with which it reasons about phys-
ical resources to construct a plan of deployment.

The Chimera approach to workflow generation is restric-
tive in terms of the workflow constructs it is capable of sup-
porting. In contrast, our approach supports a richer lan-
guage and uses deductive synthesis to incrementally syn-
thesise a workflow that has been proved to meet the spec-
ification. Regarding the workflow synthesis as a theorem
proving problem offers us a rich set of well-studied con-
structs, including conditional branching, iteration and re-
cursion, greater expressiveness of preconditions and effects,
and many powerful techniques that help us in automating
the synthesis. Representing the Grid services and data using
an extensible record datatype in Isabelle, we intend to ad-
dress resource deployment as an integrated procedure dur-
ing the workflow synthesis. Our research group has pre-
viously contributed to the deductive synthesis of programs
with several successful projects [9, 10]. Because of the
more complex representation used, and the extra work in-
volved in proving that the specification is met, we expect
the automated workflow synthesis to be slower than plan-
ning based approached.

6 Discussion and Future Work

Alternative approaches to automated workflow synthesis
use AI plan formation rather than deductive synthesis, [1].
Our future work will focus on those areas where deductive
synthesis has potential advantages over plan formation. In
particular, planners are restricted in both the language used
to describe the preconditions and effects of operators and in

6

Figure 3. A more complex workflow.

the kinds of workflows they can synthesise. We will inves-
tigate whether e-Science requires this greater expressivity
and if so demonstrate that deductive synthesis can supply it.
We also intend to complete the automation of synthesis.

6.1 Representation of Pre-conditions

Deductive synthesis in Isabelle allows the use of arbi-
trary, higher-order logical formulae to describe Grid ser-
vices. In contrast, planners are typically restricted to con-
junctions of propositions in describing the pre-conditions
and effects of services. We are investigating whether this
greater expressivity is of practical use in describing ser-
vices. For instance, disjunction might be used in pre-
conditions to specify that a service can deal with data of
several different kinds, but not all kinds; it might be used
in effects to explain that a service can have more than one
kind of output, perhaps depending on the input. Universal
quantification might be used in pre-conditions to ensure that
each of a large and varying number of tasks must have cer-
tain properties. Existential quantification might be used in
service effects to introduce a new object into the ontology,
e.g. a new data item. We will both invent services with such
properties and search the e-Science literature to find natu-
rally occurring exemplars. We then plan to examine how
deductive synthesis can represent and use these services in
a natural way, i.e. without the use of kludges to shoe-horn

the representation into a conjunction of propositions.

6.2 Synthesis Meeting QoS Requirements

As mentioned earlier, further work also includes trying
to infer QoS properties of a compound workflow from its
components. For instance, the representation and calcula-
tion of QoS properties holds out the prospect of synthesis-
ing workflows to meet various QoS properties, e.g. a high
reliability or accuracy, or a low runtime. For instance, let us
assume there is a “creditability” property of data that indi-
cates how reliable the data replica is. The pre-condition can
be specified as follows:�ÐO	�� �!" Ñ#%# [
�
��J�&���'���� R
_>` J>aUJ�(\]���� �!" Ñ#%# [
�
��J�&���'���� R
_>` J>aUJ�(3XuvO>2>��L�!v3¸O	�� �!" �5 ½Òm ¯�Ó�5 b 3¸L + �
��!v3X21t�!.O> �u*! l 5Ô6ÕO	�� �!" �56�Ö G>��!�����!v3H2Pt�!.O	 �uv! l 5Ô6Î���� �!"
where

21t
!.O	 �u*! l requires the input data to have a creditabil-
ity better than 90%.

6.3 More Workflow Operators

We plan to implement more workflow operators in our
framework for better representation of the real Grid envi-
ronment and more practically useful features. For instance,

7

the workflow interface of the Unicore system [6] provides
supports for conditional branching and iteration constructs.
Standard planners support neither conditional branching nor
iteration, but deductive synthesis does. Conditional branch-
ing is introduced by case splits in the synthesis proof and
iteration is introduced by mathematical induction. We in-
tend to investigate whether practical examples of e-Science
applications require these constructs. For instance, con-
ditional branching might arise where redundancy is intro-
duced into a workflow by trying first one Grid service and
then a mirror service if the first one fails. Thus, the provi-
sion of conditional branching in workflows is also required
in our synthesis with respect to QoS properties, such as
reliability. Iteration might arise where a large and vari-
able number of tasks is to be assigned to a large and vari-
able number of Grid services. The workflow might iter-
ate through lists of tasks and services, making the assign-
ments dynamically. This would enable workflow synthesis
to scale-up to applications such as SETI@home. Note that
universal quantification might be required to reason about a
large and varying number of tasks.

7 Conclusions

In this paper, we present the current progress of our
project aiming at the automatic synthesis of e-Science
workflows. Our approach, compared with other rival ap-
proaches:� provides richer abstraction of Grid data and services,

which will enable on-demand query and computing of
complex e-Science data,� implements a deductive synthesis system in which e-
Science workflows are formalised and can be verified
against their specification,� has the potential to provide more expressive descrip-
tions of Grid services and to synthesise more expres-
sive workflows,� has the potential to represent and reason about QoS
properties,� and is notable as the first attempt, to the authors’
knowledge, to apply deductive synthesis technique to
synthesise e-Science workflow interactively on users’
demand.

We are working to fully automate the synthesis process, to
explore the potential for greater expressivity in service de-
scriptions and workflows, and to synthesise workflows with
respect to QoS properties. These further work plans dove-
tail together in that greater expressivity is required for QoS
synthesis, and greater expressivity in workflows requires
greater expressivity in service descriptions.

References

[1] J. Blythe, E. Deelman, and Y. Gil. Automatically Com-
posed Workflows for Grid Environments. Intelligent Sys-
tems, IEEE, 2004.

[2] A. Chervenak. Giggle: A Framework for Constructing Scal-
able Replica Location Services, 2002.

[3] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid Information Services for Distributed Resource Sharing,
2001.

[4] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, S. Koranda, A. Lazzarini, and M. A. Papa. From
Metadata to Execution on the Grid Pegasus and the Pulsar
Search. GriPhyN Technical Report 2003-15, 2003.

[5] E. Deelman, G. Singh, M. P. Atkinson, A. Chervenak,
N. P. C. Hong, C. Kesselman, S. Patil, L. Pearlman, and M.-
H. Su. Grid-Based Metadata Services. Proc. SSDBM 2004,
2004.

[6] D. W. Erwin and D. F. Snelling. UNICORE: A Grid com-
puting environment. Lecture Notes in Computer Science,
2150:825, 2001.

[7] A. Ghiselli. DataGrid Prototype 1. TERENA Networking
Conference, 3-6 June, 2002.

[8] G. Huet. A unification algorithm for typed lambda-calculus.
Journal of Theoretical Computer Science, 1(1):27–57, 1975.

[9] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for
logic program synthesis. In Proc. 10th Intern. Conference on
Logic Programing (ICLP ’93) (Budapest, Hungary), pages
441–455, Cambridge, MA, 1993. MIT Press.

[10] D. Lacey, J. Richardson, and A. Smaill. Logic Program Syn-
thesis in a Higher-Order Setting. Lecture Notes in Computer
Science, 1861:87, 2000.

[11] S. Majithia, D. W.Walker, and W.A.Gray. Automated Com-
position of Semantic Grid Services. UK e-Science All Hands
Meeting, 2004.

[12] Z. Manna and R. Waldinger. A Deductive Approach to Pro-
gram Synthesis. Journal of Transactions on Programming
Languages and Systems, 2(1):90–121, 1980.

[13] W. Naraschewski and M. Wenzel. Object-Oriented Verifica-
tion Based on Record Subtyping in Higher-Order Logic. In
Theorem Proving in Higher Order Logics, pages 349–366,
1998.

[14] L. C. Paulson. Isabelle: A Generic Theorem Prover. Lecture
Notes in Computer Science, 828, 1994.

[15] G. Singh, S. Bharathi, A. Chervenak, E. Deelman,
C. Kesselman, M. Manohar, S. Patil, and L. Pearlman. A
Metadata Catalog Service for Data Intensive Applications.
Proc. ACM/IEEE Supercomputing 2003 Conf. (SC 2003),
2003.

[16] R. D. Stevens, A. J. Robinson, and C. A. Goble. myGrid:
personalised bioinformatics on the information grid. Bioin-
formatics, 19, 2003.

[17] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Con-
dor – A Distributed Job Scheduler. In T. Sterling, editor,
Beowulf Cluster Computing with Linux. MIT Press, October
2001.

[18] I. Taylor, M. Shields, I. Wang, and R. Philp. Distributed
P2P Computing within Triana: A Galaxy Visualization Test
Case. To be published in the IPDPS 2003 Conference, April
2003.

8

