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Abstract. In this paper, we give an overview of our current work on introduc-
ing context as first-class objects in Lucid. It allows us to write programs in Lucx
(Lucid enriched with context) in a high level of abstraction which is closer to
the problem domain. We include a discussion on context theory, representation
of context aggregations, and the syntax and semantic rules of Lucx. The imple-
mentation of Lucx in GIPSY, a platform under development for compiling Lucid
family of languages, is also discussed.
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1 Introduction

Contextis a rich concept and is hard to define. The meaning of “context” is tacitly un-
derstood and used by researchers in diverse disciplines. In modelling human-computer
interaction [5], context includes thephysical placeof the user, thetime constraints, and
the system’s assumption about users interests. In Ubiquitous computing [3], context
is understood as bothsituatedandenvironmental. In natural language processing, con-
texts arise assituationsfor interpreting natural language constructs. In imperative pro-
gramming languages, context introduces index, constants, and pointers. In functional
languages,static context introduces definitions and constraints, anddynamiccontext
processes the executable information for evaluating expressions. In Artificial Intelli-
gence(AI), the notion ofcontextwas introduced by McCarthy and later used by Guha [4]
as a means of expressing assumptions made by natural language expressions. Hence, a
formula, which is an expression combining a sentence in AI with contexts, can express
the exact meaning of the natural language expression. Intensional logic [7] is a branch
of mathematical logic which is used to describe precisely context-dependent entities. In
Intensional Programming(IP) paradigm, which has its foundations in Intensional Logic,
the real meaning of an expression, calledintension, is a function from contexts to val-
ues, and the value of the intension at any particular context, called theextension, is
obtained by applying context operators to the intension. Although the notion of context
was implicit in Lucid, an Intensional Programming Language, context cannot be explic-
itly declared and manipulated in Lucid. By introducing context as a first class object in
Lucid, we remove this limitation. The language, thus extended, is calledLucx(Lucid
extended withcontexts).
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The goal of this paper is to illustrate how context is formally defined and introduced
as first class objects in Lucx and as a result, how Lucx can be used for programming
diverse application domains. The context theory that we are developing provides a se-
mantic basis for context manipulation in Lucx. The paper is organized as follows: In
Section 2 we review briefly contexts in Intensional Programming Paradigm. Section 3
discusses the context theory applied in Lucx. In Section 4 we discuss the syntax and
semantics of Lucx. An example of Lucx programming and implementing Lucx are also
illustrated. We conclude our work in Section 5.

2 Context in Intensional Programming Paradigm

Intensional Logic, a family of mathematical formal systems that permits expressions
whose value depends onhidden context, came into being from research in natural lan-
guage understanding. Basically, intensional logics adddimensionsto logical expres-
sions, and non-intensional logics can be viewed asconstantin all possible dimensions,
i.e. their valuation does not vary according to their context of utterance.Intensional
operatorsare defined tonavigatein the context space. In order to navigate, some di-
mensiontags(or indexes) are required to provide place holders along dimensions. These
dimension tags, along with the dimension names they belong to, are used to define the
context for evaluating intensional expressions. For example, we can have an expression:

E: the average temperature this month here is greater than0◦C.

This expression is intensional because the truth value of this expression depends on
the context in which it is evaluated. The two intensional natural language operators in
this expression arethis monthandhere, which refer respectively to the time and space
dimension. If we evaluate the expression in different cities in Canada and in the months
of a particular year, the extension of the expression varies. Hence, we have the following
valuation for the expression:

E′ =

Ja Fe Mr Ap Ma Jn Jl Au Se Oc No De
Montreal F F F F T T T T T F F F

Ottawa F F F T T T T T T F F F
Toronto F F T T T T T T T T F F

VancouverF T T T T T T T T T T T
The intension of the expression is the above whole table; and the extension of the

expression in the time pointApand in the space pointOttowais T.
Intensional programming paradigm has its foundations on intensional logic. It re-

tains two aspects from intensional logic: first, at the syntactic level, are context-switching
operators, calledintensional operators; second, at the semantic level, is the use ofpos-
sible worlds semantics[7].

Lucid was a data-flow language and evolved into a Multidimensional Intensional
Programming Language [1]. In extending Lucid with contexts we preserve the inten-
sionality in Lucx. Moreover, contexts exist independent of any objects in the system.
That is, one context may be used to evaluate different expressions, at the same time
expressions can also be evaluated at different contexts. This feature distinguishes the
language Lucx from other imperative languages or functional languages, where index



(for imperative languages) or evaluation environment(for functional language) are al-
ways bound to statements or expressions. Because of the separation of the definition of
expressions from contexts, Lucx has provided more power of representing problems in
different application domains and given more flexibility of programming.

3 Context Theory in Lucx

Context theory provides a semantic basis for Lucx programs. A context in the theory
need not be finite. However, context in Lucx has afinite number of dimensions and
along each dimension is associated a tag set, which is enumerable. This is in contrast
to Guha’s notion, wherein contexts areinfinite, rich, andgeneralizedobjects. We are
motivated by Guha’s work. However not all contexts studied by Guha can be dealt
within our language. On the other hand, every context that we can define in Lucx is
indeed a context in Guha’s sense, but restricted to well-formed Lucx expressions.

3.1 Context Definition

In Intensional Programming context is a reference to the representation of the “pos-
sible worlds” relevant to the current discussion. The “possible world” is a multidi-
mensional space enclosing all possible information pertaining to the discussion. Mo-
tivated by this, we formalize contexts asa subset of a finite union of relations. The
relations are defined overdimensionandtagsets. LetDIM = {d1, d2, . . . , dn} denote a
finite set of dimension names. We associate with eachdi ∈ DIM a unique enumerable
tag setXi . Let TAG = {X1, . . . , Xr} denote the set of tag sets. There exists functions
fdimtotag : DIM → TAG, such that the functionfdimtotagassociates with everydi ∈ DIM
exactly one tagXj in TAG.

Definition 1 Consider the relations

Pi = {di} × fdimtotag(di) 1 ≤ i ≤ n

A context C, given(DIM , fdimtotag), is a finite subset of
⋃n

i=1 Pi . Thedegreeof the context
C is | ∆ |, where∆ ⊂ DIM includes the dimensions that appear in C.

A context is written usingenumerationsyntax, as[d1 : x1, . . . , dn : xn], whered1, . . . , dn

are dimension names, andxi is the tag for dimensiondi . We say a contextC is sim-
ple (s context), if(di , xi), (dj , xj) ∈ C ⇒ di 6= dj . A simple contextC of degree 1 is
called amicro (m context) context.

Example 1 As an example consider a system in which computations involve pressure,
volume, and time, where pressure is observed by different sensors, volume is mea-
sured by different devices, and the sampling frequencies are different. The three dis-
tinguished dimensions are: (1).Sampling Time STwith index N; (2). Pressure Pwith
index set{s1, . . . , sk}, wheres1, . . . , sk are named sensory devices; and (3).Volume V
with index set{m1, . . . , mq}, wherem1, . . . , mq are named measuring devices. A con-
text c = [ST : 1, P : s2, V : m3] for one streamσ may be interpreted as a reference



to the tuple〈t1, p2, v3〉, where at the first sampling timet1 the value of volume mea-
sured bym3 is v3 and the value of pressure observed by the sensors2 is p2. Supposing
t1, p2, v3 ∈ R, the domain for the entities in the streamσ is R × R × R. The same
context may also be used as a reference to another possible world containing the ex-
pressionσ′ = p?v

t . Such a reference will produce the resultp2?v3
t1

, which is the result of
evaluating the expressionσ′ with the substitution[t 7→ t1; p 7→ p2; v 7→ v3]. In this
case, the domain for the entities in the streamσ′ is R.

Several functions on contexts are predefined in [2]. The basic functionsdim and tag
are to extract the set of dimensions and their associate tag values from a set of con-
texts. Since we are still developing the Lucx language, the set of predefined functions
is not exhaustive. Functions on contexts using functions already defined in Lucx can be
introduced.

3.2 Context Operators

In [9], we have formally defined the following context operators: theoverride⊕ is sim-
ilar to function override;difference	, comparison=, conjunctionu , anddisjunction
t are similar to set operators;projection↓ andhiding ↑ are selection operators;con-
structor[ : ] is used to construct an atomic context;substitution / is used to substitute
values for selected tags in a context;choice| accepts a finite number of contexts and
nondeterministically returns one of them;undirected range
 anddirected range⇀
produce a set of contexts.

Example 2 illustrates an overall example for some of those operators.

Example 2 :
Let c1 = [X : 2, X : 3, Y : 4],c2 = [X : 2, Y : 4, Z : 5], c3 = [Y : 2], D = {Y, Z},
Then c1 ⊕ c2 = [X : 2, Y : 4, Z : 5], c1 	 c2 = [X : 3], c1 ↓ D = [Y : 4],

c1 u c2 = [X : 2, Y : 4], c1 t c2 = [X : 2, X : 3, Y : 4, Z : 5], c2 ↑ D = [X : 2],
c2 
 c3 = {[X : 2, Y : 2, Z : 5], [X : 2, Y : 3, Z : 5], [X : 2, Y : 4, Z : 5]},
c3 ⇀ c2 = {[X : 2, Y : 2, Z : 5], [X : 2, Y : 3, Z : 5], [X : 2, Y : 4, Z : 5]},
c2/〈Y, 3〉 = [X : 2, Y : 3, Z : 5], c2 ⇀ c3 = ∅

In order to provide a precise meaning for a context expression, we have defined the
precedence rules for all the operators in Figure 1[a] (right column) (from the highest
precedence to the lowest) and described a set of evaluation rules for context expressions
in [9]. Parentheses will be used to override this precedence when needed. Operators
having the same precedence will be applied from left to right. The formal syntax of
context expressions is shown in Figure 1[a](left column).

3.3 Box and Box Operators

A context which is not a micro context or a simple context is called a non-simple con-
text. For example, contextc4 = [X : 3, X : 4, Y : 3, Y : 2, U : blue] is a non-simple
context. In general, a non-simple context is equivalent to a set of simple contexts [2]. In
several applications we deal with contexts that have the same dimension set∆ ⊆ DIM
and the tags satisfy a predicate formulap. The short hand notation for such a set is
Box[∆ | p].



syntax precedence

C ::= c | C = C
| C ⊇ C | C ⊆ C
| C | C | C/C
| C⊕ C | C	 C
| Cu C | Ct C
| C 
 C | C ⇀ C
| C ↓ D | C ↑ D

1. ↓, ↑, /
2. |
3.u, t
4.⊕,	
5. 
, ⇀
6. =,⊆,⊇

(a) Rules for Context Expression

syntax precedence

B ::= b | B | B
| B � B | B � B
| B � B | B ↓ D
| B ↑ D | B/〈d, t〉

1. ↓, ↑, /
2. |
3. �, �, �

(b) Rules for Box Expression

Fig. 1.Rules for Contex and Box Expressions

Definition 2 Let ∆ = {d1, . . . , dk}, where di ∈ DIM i = 1, . . . , k, and p is a
predicate formula defined on the tuples of the relationΠd ∈∆ fdimtotag(d). The syntax

Box[∆ | p] = {s | s = [di1 : xi1 , . . . , dik : xik]},

where the tuple(x1, . . . , xk), xi ∈ fdimtotag(di), i = 1, . . . k satisfy the predicate formula
p, introduces a set S of contexts of degree k. For each context s∈ S the values in tag(s)
satisfy the predicate formula p.

The context operators projection (↓), hiding (↑), choice (|), and substitution (/) intro-
duced in Section 3.2 can be naturally lifted to sets of contexts, in particular forBoxes.
As an example :↑ and ↓ can be lifted for BoxB: B ↑ D = {c ↑ D | c ∈ B},
B ↓ D = {c ↓ D | c ∈ B}. However not all context operators have natural exten-
sions. Instead, the following three operations� (join), � (intersection), and� (union)
are defined [2] for sets of contexts introduced byBox.

Example 3 :
Let DIM = {X, Y, Z}, fdimtotag(X) = fdimtotag(Y) = fdimtotag(Z) = N,

B1 = Box[X, Y | x, y ∈ N ∧ x + y = 5], B2 = Box[Y, Z | y, z∈ N ∧ y = z2 ∧ z≤ 3].
Then B1 = {[X : 1, Y : 4], [X : 2, Y : 3], [X : 3, Y : 2], [X : 4, Y : 1]}

B2 = {[Y : 1, Z : 1], [Y : 4, Z : 2], [Y : 9, Z : 3]}.
Hence B1 � B2 = Box[X, Y, Z | x + y = 5 ∧ (y = z2 ∧ z≤ 3)]

= {[X : 1, Y : 4, Z : 2], [X : 4, Y : 1, Z : 1]}
B1 � B2 = Box[Y | x + y = 5 ∧ (y = z2 ∧ z≤ 3)] = {[Y : 1], [Y : 4]}
B1 � B2 = Box[X, Y, Z | x + y = 5 ∨ (y = z2 ∧ z≤ 3)] = {[X : 1, Y : 4, Z : 1..3],

[X : 2, Y : 3, Z : 1..3], [X : 3, Y : 2, Z : 1..3], [X : 4, Y : 1, Z : 1..3],
[X : 1..3, Y : 1, Z : 1], [X : 2..4, Y : 4, Z : 2], [X : 1..4, Y : 9, Z : 3]}

We define these three operators (�, �, and�) have equal precedence and have seman-
tics analogous to relational algebra operators.

Let B be a box expression and D be a dimension set. A formal syntax for box
expression B is defined in Figure 1[b] (left column) and the precedence rules for box
operators are defined in Figure 1[b] right column.



3.4 Context Category

Context Regions A context regionis a finite subset of a multidimensional space gen-
erated by a set of dimensions. Boxes can be used to represent different context regions.
For example, Figure 2[a] shows two different context regions, which can be repre-
sented as follows:B1 = Box[X, Y, Z | x2 + z2 ≤ 16 ∧ x = 1

2z ∧ z ≥ 0],
B2 = Box[X, Y, Z | x2 + y2 + z2 ≤ 9 ∧ z ≥ 0]. Box B1 defines a cone, and Box
B2 defines the upper half of hemisphere with the radius 3. If we restrict to integer in-
dices, then the set of contexts defined by BoxB1 consists of all the points with integer
coordinates within the cone, and the set of contexts defined by BoxB2 consists of all
the points with integer coordinates within the hemisphere.
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(b) Clock Regions

Fig. 2.Context Category

In timed systems having continuous time model,clock regionswhich are equiva-
lence classes of clock valuations arise when several clocks are used. These clock re-
gions are treated as context regions, and can be represented as boxes [8]. As an ex-
ample, consider clocksc1 andc2 when the maximum duration that can elapse in the
clocks arem1 = 4, andm2 = 6. This gives rise to 59 clock regions, as shown in Fig-
ure 2[b]. The clock regions corresponding to a set of clocks is represented as a set
of Boxes. EachBox is defined by the dimension set∆ = {c1, . . . , ck}, and a con-
straint on the clock valuations. For example,Box[∆ | p1], where∆ = {c1, c2} and
p1 = (0 < v(c1)(x) < 1)∧ (0 < v(c2)(y) < v(c1)(x)) refers to the regionα1. The tag
sets for clocks are reals. For discrete time modelled by multiple clocks the tag sets are
integers, and regions become lattice points, vertices of convex regions.

Nested ContextsNested contexts define themeta relationbetween different contexts.
This is similar to Guha’s definition of nested context [4]. In his definitions, nested con-
text enables to nestist(f , c) formulas, which define that formulaf is true in contextc,
andist(ci ist(cj , α)), ist(ck ist(cl . . . ist(cj α) . . .)) are all valid. In the former example
ist(ci ist(cj , α)), contextci is outeror meta tocontextcj . Guha also providesentering
andexiting actions to migrate the interpretation of formulas from contexts. Similarly,
we provide@∗ operator to navigate the evaluation of expressions between nested con-
texts.



Definition 3 Let p(x, y) and q(x, y, z) be two predicate formulas. If∀a, b for which
p(a, b) is true, and if∃ c such that q(a, b, c) is true, then we call p(x, y) as aprojection
of the predicate formula q(x, y, z) and write p(x, y) =↓z q(x, y, z). Conversely, we say
q(x, y, z) is a simple extension of p(x, y) and write p(x, y) z→ q(x, y, z). In general, a
predicate formula extended with s> 1 arguments can be inductively defined as follows:

1. p(x1, . . . , xr)
xr+1→ q(x1, . . . , xr , xr+1)

2. p(x1, . . . , xr)
xr+1,...,xr+s−→ q(x1, . . . , xr , . . . , xr+s)

∆= p0(x1, . . . , xr)
xr+1→ p1(x1, . . . , xr , xr+1)

xr+2→ p2(x1, . . . , xr+2) . . .
xr+s→ ps(x1, . . . , xr+s), where p0 ≡ p, ps ≡ q.

Definition 4 We define a relation@ on a set of boxesB as follows: for b1, b2 ∈ B,
b1 = Box[∆1 | p1], b2 = Box[∆2 | p2], b1 @ b2 iff ∆1 ⊂ ∆2 and p2 is an extension of
the logic expression p1. It is easy to see that@ is an irreflexive partial order onB. We
define a partially order chain b1 @ b2 . . . @ bk to benested, and refer to the boxes in
the chain asnested contexts.

We want to study the relationship between nested contexts and sets of expressions
obtained by evaluating a given expressionE at the boxes in the nested chain.

Definition 5 Let B= {b1, b2, . . .} be a finite set of boxes, bi = Box[∆i | pi ], and E be
an expression. Define the relation� on the set{E@∗b1, E@∗b2, . . .} as follows:

E@∗bi � E@∗bk

iff for Eij ′ = E@cij ′ , cij ′ ∈ bi , there exists Ekj = E@ckj, ckj ∈ bk, such that ckj ↑ {∆k −
∆i} = cij ′ , and Ekj = Eij ′@(ckj 	 cij ′).

Theorem If b1 @ b2 thenE@∗b1 � E@∗b2.
Proof Let b1 = Box[∆1 | p1], b2 = Box[∆2 | p2], ∆1 = {X1, X2, . . . , Xk}, and
∆2 = {X1, X2, . . . , Xk, Xk+1, . . . , Xm}, ∃(a1, . . . , ak), p1(a1, . . . , ak) is true,
thenc1j′ = [X1 : a1, . . . , Xk : ak] ∈ b1.
By propertyb1 @ b2,∃ak+1, . . . , am such thatp2(a1, . . . , ak, ak+1, . . . , am) is true.
Hencec2j = [X1 : a1, . . . , Xk : ak, Xk+1 : ak+1, . . . , Xm : am] ∈ b2.
It is easy to verify thatc1j′ andc2j satisfyc2j ↑ {∆2 −∆1} = c1j′

andE1j′ = E@c1j′ , E2j = E@c2j satisfyE2j = E1j′@(c2j 	 c1j′).
Hence it follows thatE@∗b1 � E@∗b2.
In general ifb1 @ b2 . . . @ bk is a chain of nested contexts, we get a corresponding
chain ofcascading expressions:

E@∗b1 � E@∗b2 . . . � E@∗bk.

This rule gives the base for the reasoning and reducing rules for constraint programming
solver mentioned in [9].



Context Dependent ExpressionsContexts can be passed as parameters to functions.

Definition 6 Let B1 = Box[∆1 | p1], and B2 = Box[∆2 | p2] define the context
regions in the space generated by the dimensions∆1 ∪ ∆2. Thecontext-dependent
expression Eis defined differently in different regions:

λ ·E =

E1 in B1 	 B2

E2 in B2 	 B1

E3 in B1 u B2

µ ·E is defined to indicate corresponding context regions, namely,
µ ·E = {B1 	 B2, B2 	 B1, B1 u B2}

An application of Definition 6 is to use contexts as parameters in a function defini-
tion. Let f : X × Y× Z × C → W, whereC is a set of contexts; andf (x, y, z, c), x ∈
X, y ∈ Y, z∈ Z, c ∈ C, be defined such that for different context values, the function’s
definitions are different. For example, functionf (x, y, z, c) is defined according to dif-
ferent context regions shown in Figure 2[a]. Henceµ ·f = {B1	B2, B2	B1, B1uB2},
andλ ·f = {2x3 + y− 6, x+ y2, z3 + y}. The evaluation of functionsf varies depending
on the actual context value given as input whenf is called.

Given contexts as input, context-dependent functions can be used to produce a new
context as a result to achieve adaptation in context-aware system [9].

Dependent ContextWe define context dependency analogous to the functional depen-
dency in relational data models.

Definition 7 Let ∆ = {X1, . . . , Xk} be a dimension set. If there exists a functionφij :
fdimtotag(Xi) → fdimtotag(Xj), we sayφij is a functional dependency in the set∆.
In general, a functional dependency exists in∆, if A ⊂ ∆, B ⊂ ∆, A∩ B = ∅, and
there exists a function :

φAB : ΠXi∈Afdimtotag(Xi) → ΠXj∈Bfdimtotag(Xj).
For a given functional dependencyφij in ∆, we define dependent contexts as the set of
contexts:

S∆ = {c | dim(c) = ∆′ ∧ ({Xi , Xj} ⊆ ∆′ ⊆ ∆)}

As an example,c = [Xi : a, Xj : φij (a)] ∈ S∆, a ∈ fdimtotag(Xi). This definition is easy to
generalize for the general functional dependencyφAB.

Dependent context effectively reduces the possible worlds that are relevant to eval-
uate expressions. As an example, let a functionφ: V → ST be defined as follows:
φ(m1) = φ(m2) = 1; φ(m3) = φ(m4) = 2. Hence context of this form[P : s1, V :
m3, ST : 1] need not be considered for evaluating expressions in the example.

Moreover, dependent contexts also help to represent context sets compactly. In [9],
we proved the following: starting with a setS∆ of contexts, whose dimensions are
subsets of∆ and a finite set of functional dependencies on∆, we can representS∆

as an expressionS∆ = S∆k � S′∆k
, where there is no dependency inS∆k andS′∆k

=
b1 � b2 . . . � bk, eachbi is a Box representing one dependency. Since a box has a
compact representation, the representation forS∆ given above is a compact way to



manage the contexts in thisS∆. The substitutions for tags inb1, . . . , bk are subject
to dependencies. However, those tags corresponding to dimension inS∆k can be done
freely. This is analogous tosubstitution principlein functional languages.

4 Intensional Language Lucx

Lucx is a conservative extension of Lucid, with context becoming a first-class object
in the language. This way, contexts can be manipulated, assigned values and passed as
parameters dynamically.

Syntax and Semantics of LucxThe syntax of Lucx is shown below.
E ::= id

| E(E1, . . . , En)
| if E then E′ else E′′

| #
| E @E′

| [E1 : E′
1, . . . , En : E′

n]
| 〈E1, . . . , En〉E
| select(E, E′)
| E @∗ S
| E where Q

S ::= {E1, . . . , Em}
| Box[E | E′]

Q ::= dimension id
| id = E
| id(id1, . . . , idn) = E
| Q Q

The difference between Lucx and original Lucid is highlighted in bold in the above
syntax rules. The symbols@and # are context navigation and query operators. The
non-terminalsE andQ respectively refer toexpressionsanddefinitions. The abstract
semantics of evaluation in Lucx isD,P ′ ` E : v, which means that in the definition
environmentD, and in the evaluation contextP ′ , expressionE evaluates tov. The
definition environmentD retains the definitions of all of the identifiers that appear in
a Lucid program. Formally,D is a partial functionD : Id → IdEntry , whereId is
the set of all possible identifiers andIdEntry has five possible kinds of value such as:
Dimensions, Constants, Data Operators, Variables, andFunctions[7]. The evaluation
contextP ′, is the result ofP†c, whereP is the initial evaluating context,c is the defined
context expression, and the symbol†denotes the overriding function.

A complete operational semantics for Lucid is defined in [7]. The new semantic
rules for Lucx are given below.

Eat(c) :
D,P ` E′ : P ′ D,P ′ ` E : v

D,P ` E @E′ : v

E# : D,P ` # : P

E. :
D,P ` E2 : id2 D(id2) = (dim )

D,P ` E1.E2 : tag(E1 ↓ {id2})

Etuple :
D,P ` E : id D†[id 7→ (dim )] P†[id 7→ 0] D,P ` Ei : vi

D,P ` 〈E1, E2, . . . , En〉E : v1 fby.id v2 fby.id . . . vn fby.id eod

Eselect :
E = [d : v′] E′ = 〈E1, . . . , En〉d P ′ = P † [d 7→ v′] D,P ′ ` E′:v

D,P ` select(E, E′) : v



Eat(s) :
D,P ` S : {P1, . . . ,Pm} D,Pi:1..m ` E : vi

D,P ` E @∗S : {v1, . . . , vm}

Eset :
D,P ` Ew:1..m : Pm

D,P ` {E1, . . . , Em} : {P1, . . . ,Pw}

Ebox :
D,P ` E : ∆ ∆ = {v′1, . . . , v′n} = dim(P1) = . . . = dim(Pm)
D(v′k:1..n) = (dim ) D,P ` E′ : fp(tag(Pi:1..m)) = true

D,P ` Box[E | E′] : {P1, . . . ,Pm}

Econtext :
D,P ` Edj : idj D(idj) = (dim )
D,P ` Ei j : vj P ′ = P0 † [id1 7→ v1] † . . . † [idn 7→ vn]

D,P ` [Ed1 : Ei1 , Ed2 : Ei2 , . . . , Edn : Ein] : P ′

The evaluation rule for the navigation operator,Eatc, which corresponds to the syn-
tactic expressionE @E′, evaluatesE in contextE′, whereE′ is a context defined in
Section 3.1. The evaluation rule for the set navigation operatorEats, which corresponds
to the syntactic expressionE @∗ S, evaluatesE in a set of contextsS. Hence, the eval-
uation result should be a collection of results of evaluatingE at each element ofS.
Semantically speaking, the symbol# is a nullary operator, which evaluates to the cur-
rent evaluation contextP. And the symbol. is a binary operator, whose left operand
is an expression and the right operand is a single dimension. The semantic ruleEtupid

evaluates a tuple as a finite stream whose dimension is explicitly indicated asE in the
corresponding syntax rule〈E1, . . . , En〉E. Accordingly, the semantic ruleEselect picks
up one element indexed byE from the tupleE′. The semantic ruleEbox evaluates a
Box to a set of contexts according to the definition in Section 3.3.fp(tag(Pi)i=1..m) is a
boolean function. The ruleEset evaluates{E1, . . . , Em} to a set of contexts.

Examples of Lucx Programs We give two examples.
1. The example models the problem of heat transfer in a solid. There is a metal rod

which initially has temperature 0 and whose left-hand end touches a heat source with
temperature 100. As the heat is transfered, the temperature at the various points of the
rod changes. That is, the temperature depends on the time point and the spatial position
on the rod. The following equations illustrate the temperature of the rod as a function
of time and space (wherek is a small constant related to the physical properties of the
rod):

Tempt+1,s+1 = k × Tempt,s − (1− 2× k) × Tempt,s+1 + k × Tempt,s+2

Tempt,0 = 100
Temp0,s+1 = 0

The Lucx program that models the above equations and queries the temperature at the
space 10 at time 10 is the following:

Temp @[Time : 10, Space : 10]
where
Temp @[Time : t + 1, Space : s + 1] = k × Temp @[Time : t, Space : s]

−(1− 2× k)× Temp @[Time : t, Space : s + 1]
+k × Temp @[Time : t, Space : s + 2]



Temp@[Time : t, Space : 0] = 100
Temp@[Time : 0, Space : s + 1] = 0

end

2. Consider the problem of finding the solution in positive integers that satisfy the
following constraints:

x3 + y3 + z3 + u3 = 100
x < u
x + y = z

The Lucx program is given below:
Eval.B1, B2, B3 (x′, y′, z′, u′) = N
where
N = merge ( merge( merge(x, y), z), u)

@B1 � B2 � B3;
where
merge(x, y) = if (x <= y) then x else y;
B1 = Box [ X, Y, Z, U | x3 + y3 + z3 + u3 = 100,

x ∈ X, y ∈ Y , z ∈ Z , u ∈ U ];
B2 = Box [ X, U | x < u, x ∈ X , u ∈ U ];
B3 = Box [ X, Y, Z | x + y = z, x ∈ X ,

y ∈ Y , z ∈ Z ];
end

end

Implementing Lucx in GIPSY The GIPSY is an Intensional Programming investiga-
tion platform under development which allows the automated generation of compiler
components for the different variants of the Lucid family of languages [6]. Currently,
the compiler for Indexical Lucid, a variant of Lucid, has been implemented success-
fully in the GIPSY. Lucx is a conservative extension of Lucid. We will provide the Lucx
parser and Lucx AST(Abstract Syntax Tree) translator as a Lucx front end to GIPSY.
Lucx parser can be automatically generated using theJavaCCtool as the Indexical Lu-
cid parser being obtained. In [9], we provide the translation rules for translating Lucx
operators into Indexical Lucid operators. Combined with the translation rules for In-
dexical Lucid operators provided in [7], we achieve a two-pass Lucx AST translator.
Once these two models are integrated into GIPSY, the programs written in Lucx will be
compiled and run in GIPSY.

5 Conclusion

The notion of context is the cornerstone of the intensional programming paradigm. The
previous versions of Lucid were merely using the notion of context of evaluation. They
provided a single operator for the navigation in the context of evaluation, but did not
provide a mechanism to represent and manipulate contexts as first class values.

The use of contexts as first class values increases the expressive power of the lan-
guage by an order of magnitude. It allows the definition of aggregate contexts, which



are a key feature to achieve efficiency of evaluation through granularization of the ma-
nipulated data. It also allows us to use the paradigm for agent communication by allow-
ing the sharing and manipulation of multidimensional contextual information among
agents [2]. In addition, the use of the paradigm for real-time reactive programming is
shown in [8]. We are developing larger application programs that arise in constraint
programming and in context-aware systems [9].
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