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Abstract. This note describes possible world semantics for a constructive modal
logic CK. The systemCK is weaker than other constructive modal logicsK as
it does not satisfy distribution of possibility over disjunctions, neither binary
(3(A ∨ B) → 3A ∨ 3B) nor nullary (3⊥ → ⊥). We are interested in this
version of constructiveK for its application to contexts in AI [dP03]. However,
our previous work onCK described only a categorical semantics [BdPR01] for
the system, while most logicians interested in contexts prefer their semantics pos-
sible worlds style. This note fills the gap by providing the possible worlds model
theory for the constructive modal systemCK, showing soundness and complete-
ness of the proposed semantics, as well as the finite model property and (hence)
decidability of the system. Wijesekera [Wij90] investigated possible worlds se-
mantics of a system similar toCK, without the binary distribution, but satisfying
the nullary one. The semantics presented here forCK is new and considerably
simpler than the one of Wijesekera.

1 Introduction

There are many varieties of constructive modal logics in the literature. Several of these
were arrived at as solutions to the problem of deciding which is the most elegant way of
combining the accessibility relations usually associated with the modal operators (ne-
cessity2 and possibility3) to the accessibility relation usually associated with (propo-
sitional) intuitionistic implication.

This note describes the possible world semantics for one constructive modal logic,
the systemCK, which is unusual in that it first had a proof-theory and a categorical
semantics[BdPR01], before we decided to investigate its possible-worlds semantics.

One reason why we are interested in this, rather weak version of constructiveK, is
its possible application to the notion of contexts in AI[dP03]. This we discuss briefly in
the next section. Moreover, the systemCK can also be seen as a natural generalization
of our previous work on a constructive version of the modal logic S4,CS4, described
in [AMdPR01,BdP00].

? Partially funded by the TYPES network IST 510996.
?? Partially funded by the Advanced Research and Development Activity NIMD program

(MDA904-03-C-0404).



2 Contexts as Constructive Modalities

In this section we discuss our motivation to study the logicCK. The main reason is
the suggestion that this constructive logic may be an adequate basis for dealing with
notions of context in logic-based knowledge representation.

Notions of context abound in artificial intelligence and computational linguistics, to
mention only two of the several fields that use more or less formalized notions of con-
text. The number of existing logical systems dedicated to formally modeling contexts,
in several disciplines, is quite staggering.

In previous work ([dP03]) we surveyed several of the logical systems that arose
out of McCarthy’s original intuitions [McC93] that context ought to be a first-class
object in a logical system devised to reason using common sense. Using purely proof-
theoretical criteria we concluded in [dP03] that it would be worth investigating a con-
structive multi-modal version ofK, which is the essential core of several context logics.
The previous work did not discuss semantics much, simply citingcategorical seman-
tics for the unimodal case in the companion paper [BdPR01]. This note fills part of the
gap between motivation and application by providing possible worlds semantics for the
unimodal systemCK. An adequate Kripke semantics for the multi-modal system (as-
suming the modalities to be independent) should be easy to design as a generalization
of the structures presented here.

To set the scene, in the long term, our research project is to devise a system of logic,
which is appropriate to produce logical representations of sentences in natural language.
There is very little need to explain how ubiquitous natural language documents are and
how useful it would be to automatically produce logical representations from simple
text. Clearly if representations that are faithful to what humans mean can be constructed
automatically, they can be used in several applications, such as information retrieval,
information extraction, dialogue systems, question answering, etc.

It also seems clear that when creating logical formulae from sentences, a notion of
context would be very convenient. For example, when confronted with a paragraph like

“Gulf ImpEx imported five shipments of medical goods in 1999. Their shipping
records claim that none of the shipments contained any dual use materials. We
have learned that at least one shipment contained two tons of fissile material.
Most of this was of such low radioactivity as to prevent its dual use. We do not
know whether the remainder of the fissile material could have been dual use.”

one’s first reaction is to try to separate the information into classes or contexts: what is
claimed, what is learned, what is known, what is declared, what is prevented, etc.. It is
clear that on an individual basis these classes are easy to deal with: if some sourceX
claimed some assertionY , it is not necessarily the case thatY is true, while if a reliable
source tells us that it has learned thatY , at least as far as that source is concerned,Y
is true. But when so many different kinds of context interact, in nested ways, things
become less clear and help from a formal system might start to pay for its up-keeping.

A logic where contexts are first-class objects, as suggested by McCarthy, might be
able to help when reasoning with representations that model these kinds of concepts.
Some discussion, from a systems building perspective, of how these notions of context



could and would be useful can be found in [CCS+01,CCS+03]. Some discussion on
how we are already implementing some version of contexts using a rewriting system
can be found in [Cro05]. A preliminary logical discussion of what kinds of inferences
this desired system of contexts needs to perform is presented in [BCC+05]. But the
mathematical connection betweenCK and the ideas and implementations on the papers
just mentioned is not direct. Rather, the mathematics explained in this paper provides
a safety net for the other work, in the sense that it gives a precise logical basis1 for the
work discussed in the systems’ papers.

A common denominator of several logics of context is the notion of a modality, writ-
ten asistrue(c, p). The idea of using syntactic modalities to model contexts is appealing
as modalities allow some control over the way in which expressions are evaluated in
the logic. In other words, modalities act as syntactic “boxes” that contain the reason-
ing/evaluation process. Another point in favor of modalities (as opposed to first-order
predicates) is that modalities avoid problems with self-referential paradoxes. But most
modal logics are not very well-behaved proof-theoretically: providing natural deduction
and/or sequent calculus formalizations for most modal logics is hard, which implies
complicated implementations and a hard time translating between systems. Summing
up we want to design ourselves a system that is as well-behaved proof-theoretically as
we can get it, given that it has simple modalities. By ‘simple’ we mean that we do not
prejudge the interpretation of these modalities and leave the question of which prop-
erties they satisfy as open as possible. Lastly we insist on a constructive logic, as a
constructive system can be easily adapted to yield a classical one by adding the ex-
cluded middle or a double negation axiom, while the converse process of extracting the
constructive fragment of a classical system is much more complicated. It seems to us
that for most of the applications we have in mind a constructive setting is more appropri-
ate. For example, if one thinks about contexts as (a collection of) alternative knowledge
bases then the reasoning we do ought to be constructive by definition, since this rea-
soning is about the information already present in the individual knowledge bases, not
about some platonic world of non-decidable truths. If the collection of knowledge bases
provides us with a logical disjunctionA ∨ B we expect that for some context it is true
thatA holds or for some context it is true thatB holds, a version of the disjunction
property, which is true constructively, but not classically. Thus some form of the dis-
junction property is an intuitive requirement of the system that is easily met by having
a constructive basis of the logic. Working on these principles we arrived at the system
CK.

Wijesekera [Wij90] investigated a constructive system similar toCK and provided
possible-worlds semantics for it. We hoped that a direct adaptation of Wisejekera’s re-
sults would work for us. The adaptation chosen meant that the proof of completeness
could be streamlined and made similar to our previous work ([AMdPR01]) on a con-
structive and categorical version of modal S4, known asCS4, which is just a special
axiomatic theory ofCK. The work onCS4 has had many applications within computer
science (for examples see [DP01,SDP01,dPGM04]), which thus are also applications

1 Other kinds of logical foundations are reasonable too and are also being investi-
gated [BdP03,SG02].



of CK. SinceCK is a more general system thenCS4 it should support an even wider
range of concrete interpretations.

3 CK and its Model Theory

The logical system we callCK is given by the Hilbert system of intuitionistic proposi-
tional logicIPL extended by the following axioms and rule

2K : 2(A → B)→ (2A → 2B) 3K : 2(A → B)→ (3A → 3B)
Nec : If A is a theorem then2A is a theorem.

Fig. 1.Hilbert-style system forCK

This system could be called the ‘non-normal’ version of Wijesekera’s system[Wij90],
because it is the system we obtain if we consider only the propositional fragment of Wi-
jesekera’s system and drop from it the axiom¬3⊥. But care must be taken as different
authors use “normal” for different properties of modal systems.

The symbol`CK denotes deduction in theCK Hilbert system. For instance, the
formula2A ∧3B → 3(A ∧B) is derivable by the following deduction:

1.A→ (B → (A ∧B)) axiom ofIPL
2. 2(A→ (B → (A ∧B))) from 1. byNec
3. 2A→ 2(B → (A ∧B)) from 2.,2K by MP
4. 2(B → (A ∧B)) → (3B → 3(A ∧B)) by 3K
5. (2A→ 2(B → (A ∧B))) → (2A→ (3B → 3(A ∧B))) from 4. byIPL
6. 2A→ (3B → 3(A ∧B)) from 3.,5. by MP
7. (2A ∧3B) → 3(A ∧B) from 6. byIPL

In a very similar way one can derive the formula(2A ∧ 3(A → B)) → 3B
which is listed by Wijesekera [Wij90] as an axiom. Generally, the above derivation
shows that if(A ∧ B) → C is a theorem ofCK (in particular, a theorem ofIPL), then
(2A ∧3B) → 3C is a theorem ofCK, too.

Wijesekera seems to be one of the first authors to point out that, unlike distribu-
tion of necessity over conjunctions, which seems accepted by all intuitionistic modal
logicians, the distribution of possibility over disjunctions, both binary (3(A ∨ B) →
3A ∨3B) and nullary (¬3⊥ or 3⊥ → ⊥) is much more debatable. If the operator3

models a constructive notion of possibility or satisfiability-in-context then it is natural
to expect that, in general, these distributions fail. The fact that a disjunctionA ∨ B is
satisfiable in a context does not warrant the conclusion that one of the disjuncts is sat-
isfiable, e.g., if satisfiability-in-context involves a non-deterministic process. Similarly,
in a constructive reading of possibility3 we do not expect that possibly false (3⊥)
implies false (⊥). Thus we need to allow some contexts to be inconsistent and we drop
the distribution axioms.



We introduce the notion of a Kripke-style model for CK, simply calledCK-model
in the sequel:

Definition 1. A Kripke model ofCK is a structureM = (W,≤, R, |=), whereW is
a non-empty set,≤ is a reflexive and transitive binary relation onW , R is any binary
relation onW , and|= a relation between elementsw ∈W and propositionsA, written
w |= A (“A is satisfied atw in M ”) such that:

– ≤ is hereditary with respect to propositional variables, that is, for every variablep
and worldsw, w′, if w ≤ w′ andw |= p, thenw′ |= p.

– The relation|= has the following properties:
w |= >;
w |= A ∧B iff w |= A andw |= B;
w |= A ∨B iff w |= A or w |= B;
w |= A→ B iff ∀w′(w ≤ w′ ⇒ (w′ |= A⇒ w′ |= B))
w |= 2A iff ∀w′(w ≤ w′ ⇒ ∀u(w′Ru⇒ u |= A))
w |= 3A iff ∀w′(w ≤ w′ ⇒ ∃u(w′Ru ∧ u |= A))

Notice that we do not have the clausew 6|= ⊥, i.e. we allow inconsistent worlds.
Instead, we have

– if w |= ⊥ andw ≤ w′ or wRw′, thenw′ |= ⊥ and
– if w |= ⊥, then for every propositional variablep,w |= p (to make sure that⊥ → A

is valid).

We sometimes writeM,w |= A instead of justw |= A when we want to make the
model explicit. As usual, a formulaA is true in a modelM , writtenM |= A, if for
everyw ∈ W , M,w |= A. A formulaA is valid (|= A) if it is true in all models. All
notions are extended to sets of formulae as usual in the universal way.

The fact that our models do not satisfy¬3⊥ or more intuitively that3⊥ → ⊥
is not provable comes from the possibility that fallible worlds, i.e. those satisfying⊥,
could be reached via anR-step from non-fallible worlds.

In [AMdPR01] is was shown that the systemCS4 coincides with the theory ofCS4
models, which are like theCK models but whereR is a preordering relation. Here we
want to verify thatCK coincides with the theory ofCK models.

Local and Global AssumptionsThe purpose of Hilbert deduction is to derive necessary
truths, hence the Necessitation Rule. Semantically, a deductionΓ `CK B of B from
assumptionsΓ says that if allA ∈ Γ are true in some modelM , thenB, too, is true
in M . It does not claim that if allA ∈ Γ are true in some modelat a given world
then at that worldB must be true. Indeed, if this local, world-wise notion of semantic
consequence were valid, Hilbert deduction`CK would enjoy the Deduction Theorem.
But it does not. For we haveA `CK 2A by Nec, while from soundness of̀CK it will
follow that 6`CK A→ 2A.

As pointed out by Fitting [Fit94] and Simmons [Pop94] it is useful in modal logics
to distinguish between local and global notions of validity, and local and global assump-
tions. We use the following terminology to make this precise: LetΓ1 andΓ2 be sets of



formulae. A formulaB is asemantic consequenceof global assumptionsΓ1 andlocal
assumptionsΓ2, writtenΓ1;Γ2 |= B, if for every modelM such thatM |= Γ1 and each
worldw in M with M,w |= Γ2, we haveM,w |= B. A formulaB is adeductive con-
sequenceof global assumptionsΓ1 and local assumptionsΓ2, writtenΓ1;Γ2 `CK B, if
there exists a finite setΓ ′2 ⊆ Γ2 such thatΓ1 `CK

∧
Γ ′2 → A, where

∧
Γ for a finite set

Γ = {A1, A2, . . . , An} abbreviatesA1 ∧A2 ∧ · · · ∧An. The degenerate case
∧
∅ = >

is included.

We can now state our main theorem.

Theorem 1. The systemCK is sound and strongly complete with respect to the class of
models defined above, that is, for all sets of formulaeΓ1, Γ2 and formulaA, we have
Γ1;Γ2 |= A iff Γ1;Γ2 `CK A.

Observe that soundness is equivalent to the condition thatΓ ; ∅ `CK A implies
Γ ; ∅ |= A, or in standard terminology thatΓ `CK A impliesΓ |= A. This is not difficult
to prove by induction on derivations.2 All axioms are necessary truths onCK-models,
and the rules of Modus Ponens and Necessitation preserve necessary truths.

Completeness can be reduced to the special case of empty global assumptions,
viz.,that∅;Γ |= A implies∅;Γ `CK A. The key is the following lemma:

Lemma 1. For any set of formulaeΓ let 2∗Γ be the set
⋃

n≥0 2nΓ , where20Γ
def= Γ

and2n+1Γ
def= {2φ | φ ∈ Γ}.

(i) If Γ1;Γ2 |= A, then∅;2∗Γ1 ∪ Γ2 |= A
(ii) If ∅;2∗Γ1 ∪ Γ2 `CK A thenΓ1;Γ2 `CK A

Proof. (i) Assume thatΓ1;Γ2 |= A. Given a modelM and a worldw in M with
M,w |=

⋃
n≥0 2nΓ1 as well asM,w |= Γ2, we must show thatM,w |= A. To this

end construct thegenerated sub-modelMw of M with rootw, i.e.the least sub-model
of M that containsw and is closed under the condition that ifx ∈ Mw andx ≤ y
or xRy, theny ∈ Mw too. One can show that all worlds in this sub-model have the
same truths as in the original larger modelM . Hence, in particular,Mw, w |= Γ2.
Moreover, we haveMw, u |= Γ1 for all worldsu ∈ Mw. This follows from the fact
thatM,w |=

⋃
n≥0 2nΓ1 and that each worldu in Mw is reachable by finite sequence

of ≤ or R steps from the rootw. Thus, overall,Mw |= Γ1. But then the assumption
Γ1;Γ2 |= A impliesA, henceMw |= A.

(ii) Suppose∅;2∗Γ1 ∪ Γ2 `CK A. Then, there are finite subsetsΓ ′1 ⊆ 2∗Γ1 and
Γ ′2 ⊆ Γ2 such that̀ CK

∧
(Γ ′1 ∧

∧
Γ ′2) → A. Since eachφ ∈ Γ ′1 is of the form

22 · · ·2ψ for someψ ∈ Γ1 we haveΓ1 `CK φ by repeated applications of Necessi-
tation. But this means, using Modus Ponens andIPL, thatΓ1 `CK

∧
Γ ′2 → A, which

impliesΓ1;Γ2 `CK A.

2 Wijesekera [Wij90] derives soundness forCK plus the axiom¬3⊥ (for infallible models) by
reducing the Hilbert system to a sequent calculus. However, the relevant equivalence in his
Lemma 1.5.1 assumes the Deduction Theorem for the Hilbert system, which is wrong. As a
consequence Wijesekera’s proof remains inconclusive in establishing soundness ofCK.



With Lemma 1 the completeness direction of Theorem 1 reduces to the following
Model Existence Theorem:

Theorem 2. If ∅;Γ `CK A is not true then there exists a modelM = (W,≤, R, |=)
and a worldw0 such thatM,w0 |= Γ but it is not the case thatM,w0 |= A.

The counter-model construction establishing Theorem 2 employs a suitable gener-
alization of the Lindenbaum construction, in which worlds are triples(Γ,∆,Θ) of sets
of formulae, calledtheories. The intuition is that at a worldw = (Γ,∆,Θ) the formu-
lae inΓ are validated atw, the formulae in∆ are falsified atw and the formulae inΘ
are falsified at every worldR-reachable fromw. This representation of worlds has been
introduced originally for propositional lax logicPLL [FM97].3

Definition 2. A theory(Γ,∆,Θ) isconsistentif for every choice of formulaeN1, N2, . . . , Nn

in ∆ andK1,K2, . . .Kk in Θ such thatn+ k ≥ 1 it is not the case that

∅;Γ `CK N1 ∨N2 . . . ∨Nn ∨3(K1 ∨ . . . ∨Kk).

A theory ismaximally consistent if it is consistent and for every formulaM either
M ∈ Γ or M ∈ ∆.

We have the following central “Saturation” lemma whose proof is standard and is
hence omitted.

Lemma 2. Every consistent theory(Γ,∆,Θ) has a maximally consistent extension(Γ ∗,∆∗, Θ).
Furthermore, every maximally consistent theory satisfies:

– Γ ∗ is deductively closed, i.e. if∅;Γ ∗ `CK A thenA ∈ Γ ∗;
– If A ∨B is in Γ ∗ then eitherA is in Γ ∗ or B is in Γ ∗.

Note, if ∅;Γ `CK ⊥, then by consistency of(Γ,∆,Θ) we must have∆ = Θ = ∅,
in which case the above construction will produce the maximally consistent extension
(U, ∅, ∅), whereU stands for the set of all formulae.

We now proceed to define the genericCK-Kripke modelM = (W,≤, R, |=) that
falsifies the formulaA.

Definition 3. Our canonical model consists of maximally consistent theories(Γ,∆,Θ).
The accessibility relations are

(Γ,∆,Θ) ≤ (Γ ′,∆′, Θ′) iff Γ ⊆ Γ ′ (1)

(Γ,∆,Θ) R (Γ ′,∆′, Θ′) iff 2−1Γ ⊆ Γ ′ & Θ ⊆ ∆′, (2)

where2−1Γ = {φ | 2φ ∈ Γ}. We say(Γ,∆,Θ) |= A iff A ∈ Γ .

Note that the relation≤ is a preordering and not antisymmetric in general, whileR
can be arbitrary.

3 The sets∆ are actually redundant in the world structure but technically convenient for phrasing
the saturation conditions in a simple form.



Lemma 3. The canonical structure is a Kripke model ofCK.

Proof. Clearly,≤ is hereditary. For every pair of worlds(Γ,∆,Θ) ≤ (Γ ′,∆′, Θ′) we
haveΓ ⊆ Γ ′ and thus for all formulaeA, if (Γ,∆,Θ) |= A then(Γ ′,∆′, Θ′) |= A.

Let us consider inconsistent, i.e., fallible worlds. If(Γ,∆,Θ) |= ⊥, i.e.,⊥ ∈ Γ
then by deductive closureΓ is the set of all formulae (and∆ = Θ = ∅ by consistency).
Thus, the first componentΓ ′ of every accessible world(Γ,∆,Θ) ≤ (Γ ′,∆′, Θ′) or
(Γ,∆,Θ) R (Γ ′,∆′, Θ′) must be the set ofall formulae, too. In other words, once a
theory is fallible it remains fallible along all≤ andR steps. Needless to point out, in a
fallible (Γ,∆,Θ) all formulae are true.

Also, obviously,(Γ,∆,Θ) |= >. The other clauses of Definition 1 are proved by
induction of the structure of formulae. The following conditions follow easily from
Lemma 2:

(Γ,∆,Θ) |= A ∧B iff (Γ,∆,Θ) |= A and(Γ,∆,Θ) |= B;
(Γ,∆,Θ) |= A ∨B iff (Γ,∆,Θ) |= A or (Γ,∆,Θ) |= B;

Suppose(Γ,∆,Θ) |= A → B and (Γ,∆,Θ) ≤ (Γ ′,∆′, Θ′) |= A. Then, both
A → B ∈ Γ ⊆ Γ ′ andA ∈ Γ ′, so that by deductive closure ofΓ ′ we haveB ∈ Γ ′.
Conversely, supposeA→ B 6∈ Γ . Then consider the theory(Γ ∪{A}, {B}, ∅). It must
be consistent, for otherwise, we would have∅;Γ,A `CK B which implies∅;Γ `CK

A→ B by definition of`CK and the properties of IPL. We can thus pick any maximally
consistent extension(Γ ∗,∆∗, Θ∗) of (Γ ∪{A}, {B}, ∅). For such a theory it holds that
(Γ,∆,Θ) ≤ (Γ ∗,∆∗, Θ∗) and(Γ ∗,∆∗, Θ∗) |= A as well as(Γ ∗,∆∗, Θ∗) 6|= B.

It remains to tackle the two clauses of Definition 1 concerning the modal operators.
Assume2A ∈ Γ . Then in all situations(Γ,∆,Θ) ≤ (Γ ′,∆′, Θ′) R (Γ ′′,∆′′, Θ′′) it
holds thatA ∈ 2−1Γ ⊆ 2−1Γ ′ ⊆ Γ ′′. By induction hypothesis,(Γ ′′,∆′′, Θ′′) |= A.

To take the other direction, let us suppose that2A 6∈ Γ , i.e., 2A ∈ ∆. Obvi-
ously,(Γ,∆, ∅) is maximally consistent and(Γ,∆,Θ) ≤ (Γ,∆, ∅). Consider the the-
ory (2−1Γ, {A}, ∅) which is trivially consistent. For if there existM1,M2, . . . ,Mm ∈
2−1Γ such that∅;M1,M2, . . . ,Mm `CK A, then the rules ofCK yield

∅;2M1,2M2, . . . ,2Mm `CK 2A

from which it follows that∅;Γ `CK 2A in contradiction to our assumption (deductive
closure ofΓ ). Take any maximally consistent extension(Γ ∗,∆∗, Θ∗) of (2−1Γ, {A}, ∅).
It satisfiesA 6∈ Γ ∗, sinceA ∈ ∆∗, as well as(Γ,∆, ∅) R (Γ ∗,∆∗, Θ∗). Our induction
hypothesis gives us(Γ ∗,∆∗, Θ∗) 6|= A together with(Γ,∆,Θ) ≤ (Γ,∆, ∅) R (Γ ∗,∆∗, Θ∗).

Assume3A ∈ Γ . Then, for all(Γ ′,∆′, Θ′) such that(Γ,∆,Θ) ≤ (Γ ′,∆′, Θ′)
we have3A ∈ Γ ′. We claim that(2−1Γ ′ ∪ {A}, Θ′, ∅) must be consistent. For oth-
erwise, if there existM1,M2, . . . ,Mm ∈ 2−1Γ ′ andN1, N2, . . . , Nn ∈ Θ′ such that
∅;M1,M2, . . . ,Mm, A `CK N1 ∨ N2 ∨ · · · ∨ Nn, then by the rules ofCK we could
derive∅;2M1,2M2, . . . ,2Mm,3A `CK 3(N1 ∨N2 ∨ · · · ∨Nn), and consequently
∅;Γ ′ `CK 3(N1 ∨ N2 ∨ · · · ∨ Nn) contradicting consistency of theory(Γ ′,∆′, Θ′).
Since(2−1Γ ′ ∪{A}, Θ′, ∅) is consistent we can let(Γ ∗,∆∗, Θ∗) be a maximally con-
sistent extension of(2−1Γ ′ ∪ {A}, Θ′, ∅). We have(Γ ′,∆′, Θ′) R (Γ ∗,∆∗, Θ∗) and
A ∈ Γ ∗. By induction hypothesis,(Γ ∗,∆∗, Θ∗) |= A which proves(Γ,∆,Θ) |= 3A.



Assume3A 6∈ Γ . Then, (Γ, ∅, {A}) is consistent, since∅;Γ `CK 3A under
deductive closure ofΓ would imply 3A ∈ Γ contradicting the assumption. So, by
Lemma 2 there is a maximally consistent extension(Γ ∗,∆∗, Θ∗) of (Γ, ∅, {A}), with
Γ ⊆ Γ ∗ andA ∈ Θ∗. Moreover,(Γ,∆,Θ) ≤ (Γ ∗,∆∗, Θ∗). Now let anyR-successor
(Γ ′,∆′, Θ′) of (Γ ∗,∆∗, Θ∗) be given. By definition ofR we haveA ∈ Θ∗ ⊆ ∆′,
which impliesA 6∈ Γ ′. Hence, by induction hypothesis,(Γ ′,∆′, Θ′) 6|= A as desired.

It is worthwhile to point out that our proof in fact simplifies4 considerably Wijesek-
era’s model representation ofCK. Wijesekera’s models use sets of sets (second order),
calledsegments, where we have simple setsΘ.

Finally we complete the story, proving our main theorem:

Proof (Theorem1).SupposeΓ1;Γ2 6`CK A. Then, by (ii) of Lemma 1 we have∅;2∗Γ1∪
Γ2 6`CK A. The Model Existence Theorem 2 yields a counter modelM and a worldw0

for whichM,w0 |= 2∗Γ1 ∪ Γ2 butM,w0 6|= A. Thus,2∗Γ1 ∪ Γ2 6|= A, which finally
impliesΓ1;Γ2 6|= A by (i) of Lemma 1.

4 Finite Model Property and Decidability

We now show thatCK has the finite model property, which implies decidability. Both re-
sults can be obtained also from general work on many-dimensional modal logics [GKWZ03]
by encodingCK into a classical bi-modal (S4,K) system, thus making the underlying
intuitionistic accessibility explicit. We find it instructive, nevertheless, to give a direct
proof in order to shed more light on the structure of the canonical models. Also, from
our concrete construction it can be shown that if we require≤ to be antisymmetric, then
the finite model property is lost.

Theorem 3 (Finite Model Property). |= A iff M |= A for all finite CK-modelsM .

Proof. (Sketch) LetM = (W,≤, R, |=) be a fixed but arbitraryCK-model andA a
proposition. To preserve the forcing ofA on M two flavors of local information are
relevant at any given worldw. Firstly, there is the setT (w) of all sub-formulae that are
validated atw, i.e.the set

T (w) def= {N | N ∈ Sf(A) & w |= N},

whereSf(A) refers to the set of sub-formulae ofA, including⊥,T, which we consider
sub-formulae of every formula. Secondly, we need to preserve the set of sub-formulae
of A that are refuted on allR-reachable successors ofw, i.e.

Fm(w) def= {N | N ∈ Sf(A) & ∀v. wRv ⇒ v 6|= N}.

Note that ifw ≤ v then bothT (w) ⊆ T (v) and ifwRv then2−1T (w) ⊆ T (v) as
well asFm(w) ∩ T (v) = ∅.

4 This is not a consequence of our dropping of axiom¬3⊥ but seems applicable also for Wije-
sekera’s (normal) system.



The two sets(T (w), Fm(w)) characterize the behavior ofw inside modelM with
respect to the sub-formulaeSf(A).5 These pairs are finite theories, calledA-theories.
More generally, anA-theoryin M is a pair(X,Z) of subsetsX,Z ⊆ Sf(A) such that
there exists a worldw inM withX = T (w) andZ ⊆ Fm(w). Let the (finite!) set of all
A-theories inM be denoted byThM (A). Note that for any worldw in anyCK-model
M , the pairw≡ = (T (w), Fm(w)) is anA-theory, whenceThM (A) is non-empty
whatever theA andM .

The filtration model now is

M |A = (ThM (A),≤|A, R |A, |= |A)

such that
(X,Z) ≤|A (X ′, Z ′) iff X ⊆ X ′

(X,Z) R |A (X ′, Z ′) iff 2−1X ⊆ X ′ & Z ∩X ′ = ∅

and forcing such that(X,Z) |= |AK if K ∈ X or ⊥ ∈ X, for both propositional
constantsK = p and falsityK = ⊥. For all other propositionsN we define(X,Z) |=
|AN according to the inductive conditions stated in Def. 1. Note thatw ≤ v implies
w≡ ≤ |Av≡ andwRv impliesw≡R |Av≡. It is easy to verify thatM |A indeed is a
well-defined finiteCK-model.

Finally, we show that for allN ∈ Sf(A) andZ ⊆ Fm(w),

w |= N iff (T (w), Z) |= |AN. (3)

by induction on the structure ofN , which completes the proof of Theorem 3.
We can now prove the completeness direction of Theorem 3. Suppose6|= A for

some formulaA. Then there exists a counter modelM and a worldw in M such that
w 6|= A. Construct the finite filtration modelM |A as above relative toA. Since trivially
A ∈ Sf(A), (3) gives usw≡ 6|= |AA. Thus, we have found a finite counter model forA.

As a corollary to the soundness and completeness (Thm 1) and finite model property
(Thm 3) we obtain decidability ofCK:

Theorem 4. The theoryCK is decidable.

5 Conclusions

This fairly technical note shows thatCK can be given a sensible possible worlds seman-
tics, under which the system is sound and complete, has the finite model property and
hence is decidable. The proof considerably simplifies the canonical model construction
of Wijesekera’s in the propositional case and it also accommodates fallible worlds. We
hope to extend this semantics to the first-order case in the future.

The existence of these proofs vindicates our belief that “whenever we can get a cat-
egorical semantics, we can get a possible worlds one”. The work here is inspired by
the need to provide formal proof theory and semantics for the system that we started

5 The standard filtration would only considerT (w), so we are somewhat finer here.



describing in [BCC+05]. Further research will have to substantiate the claims that the
system is adequate for the application at hand, contexts in AI. Observe that the sys-
temCK does satisfy our requirement of imposing only minimal constraints on abstract
modalities. Thus it provides a convenient playground to investigate various special con-
text modalities in the way of correspondence theory, linking different proof-theoretic
extensions with particular classes of Kripke models. While it is clear that many trade-
offs between expressivity and simplicity/efficiency of use will have to be adressed to
adequately model contexts in AI, the discussion of these trade-offs needs a solid math-
ematical basis to build on. It is the mathematical basis that we have addressed in this
note.
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