
An Execution Semantics for Mediation Patterns?

Michael Altenhofen1, Egon Börger2, and Jens Lemcke1

1 SAP Research, Karlsruhe, Germany
{michael.altenhofen, jens.lemcke}@sap.com

2 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

On sabbatical leave at SAP Research, Karlsruhe, Germany
egon.boerger@sap.com

Abstract. This paper utilizes the abstract, formal specification of me-
diators as described by the Virtual Provider approach for an explicit
specification of the execution semantics of workflow interaction patterns.

1 Introduction

Current process specification approaches like BPEL3, WS-CDL4, and Roset-
taNet5 describe processes using different vocabularies. However, common inter-
action patterns can be identified throughout different languages [1,2]. We see
these patterns as an abstraction from the underlying real workflow languages.
But still, even using the same process language, a workflow can be expressed in
different ways, i.e. by using different workflow pattern combinations performing
an equivalent task.

To overcome the heterogeneity of interaction descriptions different applica-
tions use to specify their interfaces, process mediation is required. The goal of
this paper is to prepare the ground for using the strategy pattern for the run-time
selection of mediators, where any suitable provider interface is viewed as one of
the implementations (“mediator orchestration”) of a strategy pattern assigned
to a requestor interface (see Fig. 1). Thus, one has to investigate the following
questions:

How to assure that a provider interface matches the strategy pattern of the
requestor?
How and starting from which information can one build automatically the
strategy pattern implementations?

We first define an abstract, high-level execution semantics of process mediation.
For that, we use the ASM6 specification of “Virtual Providers” (VP) as defined
? Work and research on this paper were partly funded by the EU-project DIP.
3 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel
4 http://www.w3.org/TR/ws-cdl-10/
5 http://www.rosettanet.org/
6 Abstract State Machines (ASM): An introduction into the ASM method for high-

level system design and analysis is available in textbook form in [3], but most of
what we use below to model VP constructs is self-explanatory.

2 M. Altenhofen, E. Börger, and J. Lemcke

Strategy PatternRequestor Interface Provider Interface

Mediator

connected to
n

1
n

Mediator
orchestration

Fig. 1. Strategy Pattern

in [4]. To simplify understanding, Sect. 2 contains a condensed overview of the
VP concepts. In Sect. 3, we provide some sample refinements of the abstract VP
covering the interaction patterns addressed in [5].

2 Virtual Providers

We see a Virtual Provider (VP) or mediator as an interface (technically speaking
as an ASM module), which is defined by the following five methods (technically
speaking ASMs):

MODULE VirtualProvider =
ReceiveReq SendAnsw Process SendReq ReceiveAnsw

This view of a VirtualProvider as a module (i.e. a collection of defined and
callable machines, without a main machine that controls the execution flow)
results from the decision to separate the scheduling of these components from
their execution. The underlying architecture is illustrated in Fig. 2.

2.1 The Send/Receive Submachines of VirtualProviders

The interaction between a client and a VirtualProvider, which is triggered
by the arrival of a client’s request message via the message passing system, is
characterized by creating at the VP a request object (a request ID, say element r
of a set ReqObj of currently alive request objects), which is appropriately ini-
tialized by recording in an internal representation the relevant data, which are
encoded in the received request message. This includes decorating that object
by an appropriate status, say status(r) := started , to signal to (the scheduler
for) Process its readiness for being processed, and by other useful information.

The predicate NewRequest checks, when an inReqMsg is received, whether
that message contains a new request, or whether it is about an already previ-
ously received request. In the first case, CreateNewReqObj as defined below
is called. In the second case, instead of creating a new request object, the al-
ready previously created request object corresponding to the incoming request

An Execution Semantics for Mediation Patterns 3

VIRTUALPROVIDER

PROCESS

Scheduler

InReqMssg

OutAnswMssg InAnswMssg

OutReqMssg
SENDREQ

SENDANSW

RECEIVEREQ

RECEIVEANSW

Fig. 2. Architecture

message has to be retrieved, using some function prevReqObj (inReqMsg), to
RefreshReqObj by the additional information on the newly arriving further
service request. In particular, a decision has to be taken upon how to update the
status(prevReqObj (inReqMsg)), which depends on how one wants the process-
ing status of the original request to be influenced by the additional request or
information presented through inReqMsg . Since we want to keep the scheme
general, we assume that an external scheduling function refreshStatus is used
in an update status(r) := refreshStatus(r , inReqMsg). This leads to the follow-
ing definition of ReceiveReq, where we skip notationally the set and function
parameters ReqObj , prevReqObj :

ReceiveReq(inReqMsg) =
if ReceivedReq(inReqMsg) then

if NewRequest(inReqMsg) then
CreateNewReqObj(inReqMsg ,ReqObj)

else let r = prevReqObj (inReqMsg) in
RefreshReqObj(r , inReqMsg)

where
CreateNewReqObj(m,R) =

let r = New(R) in
Initialize(r ,m)

2.2 The Processing Submachine of VirtualProviders

In our definition we want to abstract from the scheduling mechanism which
calls Process for a particular current request object currReqObj . We therefore
describe the machine as parameterized by such a currReqObj ∈ ReqObj , which
plays the role of a global instance variable. The definition is given in terms of

4 M. Altenhofen, E. Börger, and J. Lemcke

started INITIALIZE(seqSubReq) subReqProcessg

ITERATE-
SUBREQ-

PROCESSG

Finished-
SubReqProcessg

COMPILEOUTANSWMSG
from

AnswerSet(currReqObj)
deliver

NoYes

Fig. 3. Processing(currReqObj)

control state ASMs in Fig. 3, using the standard graphical representation of
finite automata or flowcharts.

The definition in Fig. 3 expresses that each Processing call for a started re-
quest object currReqObj triggers to Initialize an iterative sequential subrequest
processing, namely of the immediate subrequests of this currReqObj , in the order
defined by an iterator over a set SeqSubReq(currReqObj). This reflects the first
part of the hierarchical view underlying our specification of VP request process-
ing, namely that each incoming (top level) request object currReqObj triggers
the sequential elaboration of a finite number of immediate subrequests, mem-
bers of a set SeqSubReq(currReqObj), called for short sequential subrequests.
We view each such sequential subrequest to trigger a finite number of further
subsubrequests, which are sent to external providers where they are elaborated
independently of each other, so that we call them parallel subrequests of the
sequential subrequest. Process uses for the elaboration of the sequential subre-
quests of currReqObj a submachine IterateSubReqProcessg specified below.

Process(currReqObj) =
if status(currReqObj) = started then

Initialize(seqSubReq(currReqObj))
status(currReqObj) := subReqProcessg

if status(currReqObj) = subReqProcessg then
if FinishedSubReqProcessg then

CompileOutAnswMsg from currReqObj
status(currReqObj) := deliver

else
StartNextRound(IterateSubReqProcessg)

The submachine to IterateSubReqProcessg is an iterator machine
defined in Fig. 4. FeedSendReq elaborates simultaneously for each ele-
ment of ParSubReq(seqSubReq(currReqObj)) an outReqMsg . As long as during
waitingForAnswers, AllAnswersReceived is not yet true, ReceiveAnsw inserts
for every ReceivedAnsw(inAnswMsg) the retrieved internal answer(inAnswMsg)

An Execution Semantics for Mediation Patterns 5

representation into AnswerSet(seqSubReq) of the currently processed sequential
subrequest seqSubReq , which is supposed to be retrievable as requestor of the
incoming answer message.

AllAnswers-
Received

FEEDSENDREQ with
ParSubReq(seqSubReq(currReqObj))

INITIALIZE(AnswerSet(seqSubReq(currReqObj)))

waitingForAnswers

PROCEEDTONEXTSUBREQ

Fig. 4. IterateSubReqProcessg

IterateSubReqProcessg =
if status(currReqObj) = initStatus(IterateSubReqProcessg) then

FeedSendReq with ParSubReq(seqSubReq(currReqObj))
Initialize(AnswerSet(seqSubReq(currReqObj)))
status(currReqObj) := waitingForAnswers

if status(currReqObj) = waitingForAnswers then
if AllAnswersReceived then

ProceedToNextSubReq
status(currReqObj) := subReqProcessg

2.3 Composing VirtualProviders

We have formulated VirtualProvider in such a way that different instances
VP1, . . . ,VPn of it can be configured into say a sequence, leading to a vir-
tual provider VP1, which involves a subprovider VP2, which involves its own
subprovider VP3 etc. For such a composition it suffices to connect the commu-
nication interfaces in the appropriate way, in the case of a sequence as follows:

SendReq of VPi with the ReceiveReq of VPi+1, which implies that in
the message passing environment, the types of the sets OutReqMssg of VPi

and InReqMssg of VPi+1 match (via some data mediation).
SendAnsw of VPi+1 with the ReceiveAnsw of VPi , which implies that
in the message passing environment, the types of the sets OutAnswMssg of
VPi+1 and InAnswMssg of VPi match (via some data mediation).
Such a sequential composition allows one to configure VP (mediator) schemes

where each element seq1 of a sequential subrequest set SeqSubReq1 of an initial

6 M. Altenhofen, E. Börger, and J. Lemcke

request can trigger a set ParSubReq(seq1) of parallel subrequests par1, each of
which can trigger a set SeqSubReq2 of further sequential subrequests seq2 of
par1, each of which again can trigger a set ParSubReq(seq2) of further parallel
subrequests, etc. This provides the possibility of unfolding arbitrary alternating
seq/par trees, where at each level one has sequential subrequests each of which
branches into a subtree of parallel subsubrequests, each of which may have a
subtree of other sequential subrequests, etc.

Obviously for VirtualProvider even more complex composition schemes
can be defined, if one wants to do this.

2.4 Defining Equivalence Notions for VirtualProviders

To be able to speak about the relation between incoming requests and out-
going answers, one has to relate the elements of the corresponding sets In-
ReqMssg and OutAnswMssg . Formally, this comes up to unfold the func-
tion originator , which for an outAnswerMsg yields the inReqMsg to which
outAnswerMsg represents the answer. In fact this information is retrievable
by CompileOutAnswMsg from the currReqObj , if it was recorded there by
CreateNewReqObj(inReqMsg ,ReqObj) as part of Initialize.

One can then define the ServiceBehavior(VP) of a virtual provider VP =
VirtualProvider as the correspondence between any inReqMsg and the
outAnswerMsg related to it by the originator function:

originator(outAnswerMsg) = inReqMsg

Two virtual providers VP ,VP ′ can be considered equivalent if an equivalence
relation ServiceBehavior(VP) ≡ ServiceBehavior(VP ′) holds between their ser-
vice behavior. To concretely define such an equivalence involves detailing of the
meaning of service ‘requests’ and provided ‘answers’, which comes up to fur-
ther detail the abstract VP model in such a way that the intended ‘service’
features and how they are ‘provided’ by VP become visible. On the basis of such
definitions one can then formally define different VPs to be alternatives for a
strategy pattern for providing requested services. Similar definitions can be used
to characterize mismatches between requestor and provider interfaces as well as
ServiceBehaviors.

Another interesting class of relations becomes rigorously analysable if we
consider the pair OutReqMssg and InAnswMssg on the requestor side of a VP .

3 Mediation Patterns

In this section, we will describe how different interaction patterns can be realized
by specializing the presented VP concept. In [5], the authors announce to support
the basic pattern set a) to e) depicted in Fig. 5 by their Process Mediator (PM).
We would like to demonstrate certain specializations of the abstract VP into
some more concrete implementations that are able to handle these patterns. We

An Execution Semantics for Mediation Patterns 7

thus create a set of new ASM MODULEs VPa, . . . ,VPe, each handling a single
one of the interaction patterns. In the given patterns, data sets are depicted by
capital letters (“A” and “B”), messages by arrows.

In the VP, the whole de-compilation of incoming messages into sequential
and parallel subrequest messages is carried out by the sets

SeqSubReq(currReqObj) and
ParSubReq(seqSubReq)

for each value of the global Process variable currReqObj and each value
seqSubReq of the set SeqSubReq(currReqObj). Thus, one needs to define these
sets SeqSubReq7 and ParSubReq in order to realize specific pattern mappings.
This is done for the five interaction patterns shown in Fig. 5 by defining these
sets and related functions through a refinement of the Initialize submachine of
CreateNewReqObj and the machine RefreshReqObj as follows.

Fig. 5. Resolving Interaction Missmatches

Pattern a). Here, the data set “A” transported by the first message from “Busi-
ness Partner 1” is discarded, only data set “B” transmitted by the second in-
coming message is being forwarded to “Business Partner 2”. VPa is defined
as VirtualProvider instantiated as follows. The VP has to Initialize the
newReqObj by preventing its Processing from being started yet. No data need
to be recorded since only the data of the second message are relevant.
7 Iterator functions FstSubReq and NxtSubReq , terminator symbol Done /∈ SeqSubReq .

8 M. Altenhofen, E. Börger, and J. Lemcke

Initialize(newReqObj , inReqMsg) =
status(newReqObj) := initStatus(Process).

The subsequently incoming message containing data set “B” first needs to
be related to the same newReqObj by prevReqObj (inReqMsg) while evaluating
NewRequest(inReqMsg) to false.8 Second, the dataSet is extracted from the mes-
sage and stored as the only element of SeqSubReq(prevReqObj), to be forwarded
as the only parallel subrequest in ParSubReq(dataSet) to “Business Partner 2”.
Then, VPa is started without having to send or to receive any answer message.
For brevity, we write prevReqObj for prevReqObj (inReqMsg).

RefreshReqObj(prevReqObj , inReqMsg) =
let dataSet = extractDataSet(inReqMsg) in

SeqSubReq(prevReqObj) := { dataSet }
Done({ dataSet }) := nil
FstSubReq({ dataSet }) := dataSet
NxtSubReq({ dataSet }, ,) := nil
ParSubReq(dataSet) := { dataSet }
ToBeAnswered({ dataSet }) := ∅
AnswToBeSent(prevReqObj) := false
status(prevReqObj) := started

The thus instantiated VP machine VPa starts in status started after having
received the two incoming messages and eventually stays in status deliver after
having sent the data set “B” to the mailer SendReq from where it is sent to
“Business Partner 2”.

Pattern b). This interaction pattern can be seen as an extension of Pattern a). In
addition to just forwarding data set “B” to “Business Partner 2”, it Initializes
by also storing data set “A”, without triggering VP to get started9, for sending
it after “B”:

Initialize(newReqObj , inReqMsg) =
status(newReqObj) := initStatus(Process)
dataSetA(newReqObj) := extractDataSet(inReqMsg)

RefreshReqObj(prevReqObj , inReqMsg) =
let dataSetB = extractDataSet(inReqMsg) in

SeqSubReq(prevReqObj) := { dataSetB, dataSetA(prevReqObj) }
Done({ dataSetB, dataSetA(prevReqObj) }) := nil
FstSubReq({ dataSetB, dataSetA(prevReqObj) }) := dataSetB
NxtSubReq({ dataSetB, dataSetA(prevReqObj) },

8 We do neither specify an implementation for prevReqObj (inReqMsg) nor
NewRequest(inReqMsg) here, since their behavior depends on the real messaging
system used. This aspect is an abstract parameter of the specification of this ab-
stract interaction pattern.

9 Note: initStatus(VP) 6= started .

An Execution Semantics for Mediation Patterns 9

dataSetB,) := dataSetA(prevReqObj)
NxtSubReq({ dataSetB, dataSetA(prevReqObj) },

dataSetA(prevReqObj),) := nil
ParSubReq(d) := { d }
ToBeAnswered(d) := ∅, for d = dataSetA(prevReqObj), dataSetB
AnswToBeSent(prevReqObj) := false
status(prevReqObj) := started

Pattern c). In this pattern, “Business Partner 1” sends both data sets “A”
and “B” in the same message, whereas “Business Partner 2” expects to receive
them in two different messages. VP does not need to wait for any subsequent
incoming messages. It therefore Initializes by saving both data sets for their
later sequential sending and directly enables the Processing getting started :

Initialize(newReqObj , inReqMsg) =
let dataSeti = extractDataSeti(inReqMsg) for i = A,B in

SeqSubReq(newReqObj) := { dataSetA, dataSetB }
Done({ dataSetA, dataSetB }) := nil
FstSubReq({ dataSetA, dataSetB }) := dataSetA
NxtSubReq({ dataSetA, dataSetB }, dataSetA,) := dataSetB
NxtSubReq({ dataSetA, dataSetB }, dataSetB,) := nil
ParSubReq(d) := { d }
ToBeAnswered(d) := ∅, for d = dataSetA, dataSetB
AnswToBeSent(newReqObj) := false
status(newReqObj) := started

Pattern d). The specialization for this pattern can be easily adapted from Pat-
tern b) by just combining the received data sets into one single message to be
sent to “Business Partner 2”. We therefore indicate only the changes in the
macro RefreshReqObj:

FstSubReq({ { dataSetA(prevReqObj), dataSetB } }) :=
{ dataSetA(prevReqObj), dataSetB }

NxtSubReq({ { dataSetA(prevReqObj), dataSetB } },
{ dataSetA(prevReqObj), dataSetB },) := nil

ParSubReq({ dataSetA(prevReqObj), dataSetB }) :=
{ combine(dataSetA(prevReqObj), dataSetB) }

Pattern e). In this interaction pattern, a save medium for transmitting messages
from the VP to “Business Partner 2” is apparently assumed. After receipt of the
message carrying data set “A”, it is saved and forwarded without waiting for
further messages. After FinishedSubReqProcessg , the VP creates an appropriate
outAnswer(newReqObj) containig data set “AckA” to be returned to “Business
Partner 1”:

10 M. Altenhofen, E. Börger, and J. Lemcke

Initialize(newReqObj , inReqMsg) =
let dataSet = extractDataSet(inReqMsg) in

SeqSubReq(newReqObj) := { dataSet }
Done({ dataSet }) := nil
FstSubReq({ dataSet }) := dataSet
NxtSubReq({ dataSet }, ,) := nil
ParSubReq(dataSet) := { dataSet }
ToBeAnswered({ dataSet }) := ∅ 10

AnswToBeSent(newReqObj) := true
status(newReqObj) := started

4 Conclusions and Future Work

By utilizing the abstract, high-level specification for mediators presented in [4],
this paper addresses two objectives: On the one hand, it provides an explicit and
unambiguous means for defining patterns of mediators. Thus, it is able to build
a base for “communicating and documenting design ideas”, e.g. of mediation
patterns. Furthermore, it supports “an accurate and checkable overall under-
standing” yielding the ability for proving, that e.g. two patterns (or pattern
combinations) perform equivalent transformations.

On the other hand, the ASM methodology facilitates to “isolate the hard
part of a system” [3, p. 14-15], and thus enabling to view a system from different
levels of abstraction. Based on this capability, the ASM model allows the future
definition of the run-time selection of mediators by the strategy pattern (Fig. 1).
In addition to basic interaction patterns (Sect. 3), more complex ones [6] can
be defined by chaining multiple VPs (Sect. 2.3); or by replacing request-answer
pairs with interactions of multi-party communications in instances of VP.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Work-
flow patterns. Distributed and Parallel Databases 14 (2003) 5–51

2. van der Aalst, W.M.P., Barros, A.P., ter Hofstede, A.H.M., Kiepuszewski, B.: Ad-
vanced workflow patterns. In: CoopIS. (2000) 18–29

3. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer (2003)

4. Altenhofen, M., Börger, E., Lemcke, J.: A high-level specification for mediators.
accepted at 1st International Workshop on Web Service Choreography and Orches-
tration for Business Process Management (2005)

5. Cimpian, E., Mocan, A.: D13.7 v0.1 Process mediation in WSMX – WSMX working
draft (2005) http://www.wsmo.org/TR/d13/d13.7/v0.1/.

6. Barros, A., Dumas, M., ter Hofstede, A.: Service interaction patterns: Towards a
reference framework for service-based business process interconnection. Technical
report, Faculty of IT, Queensland University of Technology (2005)

10 Realizes the assumption of a reliable transmission from VP to “Business Partner 2”.

