
Security Requirements Analysis of ADS-B Networks

Thabet Kacem, Duminda Wijesekera, Paulo Costa
Center of Excellence in C4I
George Mason University

Fairfax, Virginia
[tkacem, dwijesek, pcosta]@gmu.edu

Alexandre Barreto
Instituto de Controle do Espaço Aéreo

Centro Tecnológico da Aeronáutica
São José dos Campos, SP - Brazil

barretoabb@icea.gov.br

Abstract— Due to their many advantages over their hardware-
based counterparts, Software Defined Radios are becoming the
new paradigm for radio and radar applications. In particular,
Automatic Dependent Surveillance-Broadcast (ADS-B) is an
emerging software defined radar technology, which has been
already deployed in Europe and Australia. Deployment in the US
is underway as part of the Next Generation Transportation
Systems (NextGen). In spite of its several benefits, this technology
has been widely criticized for being designed without security in
mind, making it vulnerable to numerous attacks. Most
approaches addressing this issue fail to adopt a holistic
viewpoint, focusing only on part of the problem. In this paper, we
propose a methodology that uses semantic technologies to address
the security requirements definition from a systemic perspective.
More specifically, knowledge engineering focused on misuse
scenarios is applied for building customized resilient software
defined radar applications, as well as classifying cyber attack
severity according to measurable security metrics. We showcase
our ideas using an ADS-B-related scenario developed to evaluate
our research.

Keywords— Ontologies, Misuse case, Cybersecurity, ADS-B

I. INTRODUCTION
Since first proposed in 1991 by Joe Mitola [1], the concept

of Software Defined Radio (SDR) has received considerable
research interest. The idea of migrating hardware-based radio
functionality to software and, among other benefits,
dynamically optimize the spectrum use is compelling. Not
surprisingly, the concept is now applied to applications whose
focus spans from cognitive radios to radar applications.

In particular, Air Traffic Control (ATC) systems research
became a natural area for SDRs, due to a pressing need for
modernizing its current standards, most stemming from the
1970s. In this context, Automatic Dependent Surveillance-
Broadcast (ADS-B) has emerged as the leading technology for
radar surveillance, and has been already deployed in Europe,
Canada and Australia. The U. S. Federal Aviation
Administration plans to have it deployed by 2020 as part of
NextGen [2]. Most aircraft manufacturers are already
equipping their newest models with ADS-B, which is present
in aircraft such as the Boeing 777 and the Airbus A380.

In spite of its success, ADS-B has several critics.
Strohmeier et al. [3] point out the huge lack of security caused
by the fact that ADS-B sends its packets in clear text, making it
vulnerable to attacks that target the confidentiality, integrity,
availability and non-repudiation properties of the data. This
concern is consistent with research done by Costin and

Francillon [4] and Schäfer et al. [5], who described the
possibility of eavesdropping, man-in-the-middle and denial of
service attacks in simulated environments.

Unfortunately, most research efforts aimed at detecting and
mitigating ADS-B vulnerabilities lack a systems engineering
methodology, therefore failing to address the problem from a
holistic perspective. For instance, many lack a comprehensive
approach to perform attack analysis and mitigation, and assess
their impact on applications of ADS-B technology, which we
propose in this paper. Conversely, system engineering
techniques such as use cases and interaction diagrams have
been widely used in other domains to model the system’s
behavior and its interaction with users, which is done from the
early designing steps in the system lifecycle.

Misuse cases [6] extend the concept of use case
development to model potential undesirable behaviors. The
technique has been gaining popularity in recent years as a
means to enhance system security, by modeling undesirable
behaviors, ensuring these are addressed during systems design.
Misuse cases represent the threats to a system at a high level
perspective, while the step-by-step details are represented using
mal-activity diagrams. The latter is key for devising ways of
thwarting attacks, but both are essential for designing resilient
systems.

Another important technology for designing systems is
Ontology engineering. Ontologies represent knowledge within
a specific domain by formally describing its key concepts and
the relationships among them. They allow for automated
knowledge management and discovery via logical inferences
and have been applied to a variety of applications, such as
health care and artificial intelligence. Yet, there has been a
surprising lack of research in the ontology community for
designing secure SDR applications, and only a few have been
proposing to leverage ontologies in this area (e.g. [7]).

Our work bridges this gap by proposing a new
methodology for building resilient SDR applications that relies
on ontologies. We leverage their reasoning capabilities to
automate the modeling of use cases, misuse cases, mal-activity
diagrams, mitigation case diagrams and mitigation activity
diagrams, all within the design phase of the radar application in
question. We present the approach in this paper, and
contextualize our ideas using an ADS-B ATC scenario.

Our methodology brings three main contributions to the
design of secure ADS-B systems. First, we applied semantic
technologies in support to security and requirements modeling,

40

formalizing knowledge relevant to SDR systems for building
resilient radar networks. To the best of our knowledge, this is
the first approach to do so. Other research efforts that leveraged
security ontologies either focused on security in general, such
as [8], or on a specific domain, such as [9]. The work in this
paper formalizes the knowledge of secure ADS-B systems in a
way that can be extended to other SDR applications.

The second major contribution of this paper is the
application of inferential reasoning to enhance security-related
design activities. Examples include automated verification of
whether the mal-activity and mitigation activity diagrams are
consistent with misuse case and mitigation case diagrams
respectively, and checking whether the mitigation techniques
can effectively thwart the potential attacks. In this initial work,
we used Protégé [10] to develop our ontology and the Pellet
reasoner [11] to support the automated verification.

The third major contribution of our paper is the
development of measurable security metrics to classify the
detected attacks according to a taxonomy that we also define in
this paper. We use the work in [12] as a reference when
developing the metrics we defined for ADS-B applications.

The rest of the paper is organized as follows. Section II
presents background information about ADS-B and enumerates
some of the security issues discussed in the literature. Section
III describes our methodology. Section IV illustrates the use of
our methodology by presenting an application scenario. In
Section V, we show how to classify the detected attacks using
ontological rules and security metrics. Section VI describes
related work in securing ADS-B applications, misuse cases,
and mal-activities in security-related operations. Section VII
has our conclusions.

II. BACKGROUND
One of the main contributions of ADS-B to ATC is its

ability to provide better coverage, flexibility, cost-
effectiveness, and simplicity than traditional radar. Further,
ADS-B can either extend radar coverage or provide a similar
service in locations without radar coverage - such as oceanic
routes. It also reduces cockpit activity, since pilots would not
need to provide constant updates. The costs involved in
deploying and operating an ADS-B station are much lower
than those observed in traditional radar stations [13].

The ADS-B protocol has two modes of operation: ADS-B
Out and ADS-B In. The first broadcasts aircraft position along
with other data over the 1090MHz frequency band for
commercial flights and 948MHz band for general aviation.
ADS-B packets are encapsulated in Mode S Extended Squitter
frames consisting of an 8 bits preamble used for
synchronization and a 56 or 112 bits data block containing the
ADS-B data. It is modulated via Pulse Position Modulation
(PPM) at 1 Mbit per second rate. ADS-B In receives broadcasts
from nearby aircraft. This feature is mostly used by ATC
services so its deployment is not mandatory to aircraft.

ADS-B presents considerable advances when compared to
Primary Surveillance Radar (PSR), which determines the
approximate aircraft position by measuring the time a reflected
pulse takes to reach back to its originating radar antenna.
Because the emitted pulse is many orders of magnitude greater

than the incoming reflected pulses, radar circuitry is extremely
complex. ADS-B also has an advantage over Secondary
Surveillance Radars (SSR), which relies on aircraft-borne
transponders to transmit their positions. Unlike ADS-B, SSR
must rely on cooperation by pilots and – mostly for that reason
- its operation tends to be error-prone.

In spite of these advantages, ADS-B has its own share of
limitations due to its vulnerability to cyber attacks. Several
publications on ADS-B security (e.g. [4], [5] and [14]) used a
simulated environment to demonstrate various types of attacks
targeting this technology, mostly using low cost equipment.
The primary source of vulnerability is that data is sent in clear
text, without authentication or encryption. Some of the ADS-B
attacks demonstrated in simulated environments are:

x Eavesdropping: performed with low cost radio devices
operating at 1090 MHz combined with an open source
implementation of ADS-B receiver. Basically, one can
eavesdrop on all air traffic within the range of the radio
device. Although eavesdropping is technically not an
attack by itself, it is a prerequisite step for many others.

x Injection Attacks: performed by an attacker that emits
ADS-B messages referencing a fake aircraft (i.e.
“injects” a fake aircraft) that interacts with the trajectory
of a real aircraft, forcing its pilot and the ATC services
to adopt unintended actions to avoid collisions. These
attacks usually rely on a preceding eavesdropping phase
for capturing the required parameters.

x Denial of Service: these are basically a “brute force”
version of injection attacks, if less elaborate. The idea is
to insert a large number of fake aircrafts to the ATC’s
screen, causing a denial of service. Air traffic
controllers will not be able to distinguish fake aircraft
from real ones, or to prevent system crashes due to the
heavy load.

x Man in the middle: these can be variations of the
above, but with a person in the control of the attack. It is
possible for an attacker to intercept live traffic, store
ADS-B packets, modify them and retransmit the
tampered ones back to create confusion in air traffic
control operations.

III. METHODOLOGY
The main goal of our work is to help the software architect

in designing the core system components with security as a
first class citizen, instead of an afterthought. A key concept is
our reliance on ontologies to provide the ADS-B system
designer with an automated way of testing the security features
in a cohesive fashion. We adopted Protégé [10] in this research
due to its popularity and built-in reasoners, such as Pellet [11]
- which we use to verify the correctness of the attack mitigation
techniques. Figure 1 shows a high-level view of our
methodology, and highlights the input it requires from the
systems engineer. More specifically :

x Use case diagrams: system functionalities.

x Misuse case diagrams: undesired functionalities.

41

x Mal-activity diagrams: sequence of actions refining a
Misuse case.

x Mitigation case diagrams: counteractive functionalities
that detect or mitigate undesired functionalities.

x Mitigation activity diagrams: sequence of actions that
refine a Mitigating use case.

x Base ontology: Models classes, their relationships, and
properties of the SDR domain.

Figure 2 shows the main concepts we have included in the
base ontology. Our methodology precisely defines the
meaning of “security” by specifying security in terms of
desired and undesired system behavior. The proposed design
process involves supporting the system designer to model the
required and undesirable system functionalities using the
classes, inter-class and intra-class relationships, and properties
of the base ontology to produce the input listed in Figure 1.
Logical reasoning is used in the process to ensure that the
design entails the desired and undesired system properties,
empowering the design team with an automated verification of
the fact that their design is compliant with the design’s
security objectives (i.e. design by contract). The process
outcomes can also be used as formal, accountable artifacts that
can be independently verified.

IV. EVALUATION
To evaluate if our ideas would result in a more secure

ADS-B network, we have designed an ATC scenario and
developed an ADS-B application for this scenario using the
proposed methodology. Our scenario includes a network
topology consisting of the following components:

x Helicopters: the scenario focus on a helicopter operation
that is supported by an ADS-B network.

x ATC Center: one main ATC Terminal receives aircraft
track information from a radar and an ADS-B server to
provide navigation instructions to the helicopters.

x ATC server: receives location updates from the
remotely connected telecommunication sites and ADS-
B stations. It stores the updates in a database and

evaluates pre-defined security constraints, such as
separation between helicopters.

x Telecommunication Sites: the scenario includes three
(named T1, T2 and T3), which convey location updates
to the ATC server and broadcast navigation instructions
to helicopters using ADS-B stations.

x ADS-B Stations: each of the five stations (s1 to s5)
receives ADS-B packets from helicopters, broadcasts
these to the telecommunication site it is connected to,
and forwards navigation instructions to the pilots.

x Communication Links: transmit data between the ATC
server, ADS- B stations and telecommunication sites.

Our scenario leverages work such as Magazu [14] shows
that attacking ADS-B networks can be relatively simple and
inexpensive by purchasing a basic radio device (even a
computer dongle) and using open source software such as
GNU Radio [15] and Gr-Air-Modes [16] as an ADS-B
receiver. In the scenario, the attacker can:

x Tamper position: The attacker receives location
updates from a legitimate helicopter using an ADS-B
receiver placed within the transmission range. Then,
modifies ADS-B packets by either altering the
hexadecimal content or by inserting GPS coordinates
into the packet that may be inconsistent with the logical
flight path.

x Create a ghost helicopter: The attacker introduces a
new helicopter in the range of an ADS-B station so that
it gets propagated to the ATC center, and consequently
alters flight paths of legitimate helicopters. That is, if
the fake trajectory interferes with the real aircraft, this
will force active interference by the flight controllers.

x Flood an ADS-B station: The attacker overwhelms an
ADS-B station with fake packets, affecting the control
of helicopters within range of that station. That is, a

Figure 1: High level view of the methodology

Figure 2: Base Ontology

42

Denial-of-Service attack.

x Flood ATC/RADAR: similar to the previous attack but
this is done at a larger scale to overwhelm many or all
ADS-B stations. If successful, this would adversely
affect regional air traffic.

The following mitigations are viable against these attacks:
x Check Hash: Embed a hash of the ADS-B payload in

the packet to preserve data integrity using pre-shared
hashing metadata.

x Rate Limiting: Rate control the packets received from
communication links of the ADS-B stations.

The core functionalities of the application are represented
with use cases. The attacks to be prevented during the design
phase are represented using misuse cases, and counteraction
techniques are represented using mitigation cases. Taken
together, these represent the high-level security objectives of
the system.

To achieve security design objectives, our methodology
requires more detail from the system architect, who has to
define diagrams conveying the activities, mal-activities, and
mitigation activities – all consistent with contemporary design
activities for large-scale resilient systems. Figure 3 illustrates
the combined view of these diagrams. In the figure, every lane
is annotated with a name of an actor and the actions. Black
ovals indicate mal-activities while white ovals indicate normal
or mitigation activities. To facilitate understanding for the
methodology, we now provide an overview of each lane:

x Helicopter lane: the black-filled circle designate the
start of the “Broadcast location” usage scenario. Ovals
“Get self location” and “Broadcast location” designate
the two activities that are responsible, respectively, for
getting the location of the helicopter and sending it via
ADS-B Out. The black rectangle indicates a fork node.
It models how location data is broadcasted to all nearby
helicopters.

x Attacker lane: the three back ovals show how the
misuse case “Tamper position” works. Oval “Receive
location” indicates that the attacker received the
location update from the legitimate helicopter. Oval
“Tamper location” describes how the attacker crafts
fake location inside the ADS-B packet while oval “Send
fake location” broadcasts the altered packet back to the
nearby ADS-B stations.

x ADS-B Station 2 lane: the black rectangle indicates a
join node showing how the ADS-B station receives
location updates from the helicopter and the attacker.
The two ovals “Receive location” and “Send location”
in this lane are two activities as part of “Replay Data”
use case.

x Telecom Site 1 lane: the two ovals “Receive location”
and “Send location” are also part of “Replay Data” use
case and show how the ADS-B packets are replayed
through the telecom sites.

x Comm Link 1 lane: oval “Transmit” indicates how the
data inside the packet is physically transmitted. This
activity is part of “Transmit data” use case.

x ATC Server: oval “Receive” designates that the ADS-B
packets are received. However, oval “Check Hash”
represents a mitigation activity as part of “Check Hash”
mitigation case. It indicates that the ATC server checks
the received hash against the hash it computes based on
the payload of the received packet. The diamond
indicates a decision node. Based on the outcome of the
computation of the above described condition, the ATC
server directs the flow of the whole scenario
accordingly. If the result is a mismatch, then it connects
to the oval “Discard” which is a normal activity
indicating that the ATC server would just ignore the
packet before ending the scenario by connecting to the
double-edged black circle.

x ATC Center lane: if the result of the previous decision
is a match, the oval “Display air traffic” will be
connected. This oval is part of “Display air traffic” use
case”. Similarly, the scenario would end at this point by
connecting to the double-edged black circle.

All the elements of Figure 3 can be mapped to the base
ontology classes where, each lane is an individual of the
Swimlane class and every label has the actor’s name. However,
this mapping depends on the characteristics of each sub-class
of Actor. More specifically:

x Helicopter and Attacker: mapped to the Helicopter
class.

x ADS-B station 2: mapped to the ADS-B_Station class.

x The black-filled circle: mapped to an individual of the
Initial_Node class

x Double-edged black circle: mapped to an individual of
the Final_Node class.

x Black rectangles: can be mapped to either the
Join_Node class or the Fork_Node class, depending on
the incoming and outgoing arrows. This is modelled by
ontological restrictions linking each member of this
class to the number of instance of the Node class
connected to it.

x White ovals: indicate a normal activity and are

Figure 3: Combined view of activity, mal-activity and mitigation activity

diagrams

43

considered individuals of the Normal_Activity_Node,
while those indicating a mitigation activity are
considered individuals of the
Mitigation_Activity_Node.

x Black ovals: are individuals of the Mal-Activity_Node.

Arrows connecting the elements described above are
mapped to object properties that relate two instances of two
different classes. In our work, this is done using (Protégé)
ontology rules, previously known as Semantic Web Rule
Language (SWRL) rules [17]. Each rule implies the consequent
(right hand side, a.k.a. head) from the antecedent (left hand
side, a.k.a. body).

Let S be the statement of Theorem 1, described in Listing 1.
It shows a rule that models the fact that “tamper location”
misuse case “threatens” the “monitor air traffic” use case. The
rule is part of the “threatens” use case / misuse case
relationship in the scenario where every helicopter sends an
ADS-B packet containing the required information.

Each packet has a location defined as {latitude, longitude,
altitude}. When two packets sent from two different helicopters
reach the ATC Server, the server compares their timestamps
and their locations. If the timestamps are the same and the
differences in the received longitudes, latitudes, and altitudes
are greater than the predefined H, then the reasoner will infer
the “threatens” object property. The Pellet reasoner then
gathers the data and object properties of the individuals
concerned by the defined rule, and tries to infer the head - in
this case the “threatens” object property. If it succeeds in doing
“threatens” will appear as highlighted and we can get the
corresponding explanation.

Let ψ be the statement of Theorem 2 provided in Listing 2.
It shows the rule proving that the mitigation case succeeds in
thwarting the previously detected misuse case that threatens a
given use case of the system. It also tags the actor in question
as malicious, and associates the attack with its swimlane (cf.
Figure 3). Therefore tagging the associated object properties as

the names of the mal-activities associated with the attack.

The main idea here is that if the ATC Server receives a
packet from a helicopter, then it computes its corresponding
hash based on the packet’s payload and compares it to the hash
received in the packet. We assume that the ADS-B packet
contains a hash in its payload. If these values match, then the
ATC Server proceeds with broadcasting the packet. Otherwise,
it marks the helicopter that sent the forged packet as malicious
and the “mitigates” object property is proven to be valid. In
order to prove this theorem, the Pellet reasoner checks the data
and object properties of the individuals concerned by this rule
and tries to infer the head of the rule. In this case, if it succeeds
in doing so, the object relations in the head appear as
highlighted and we can get the explanation of the proof.

V. CLASSIFICATION OF ATTACKS USING METRICS
In this section, we describe the taxonomy we have

developed for the message injection ADS-B attacks. It is
composed by three classes of attacks, classified based on the
difficulty of implementation and the location of the radio
device that was used by the attacker. These classes are as
follows:

x Medium-level attacks: in this type of attacks, the
attacker generates the malicious ADS-B messages to be
injected in a typically random way and he does not
move the equipment used to launch the attack. For
instance, the attacker can send a massive amount of
ADS-B messages whose locations are within the reach
of the ATC Sever with fake aircraft identifier in order to
obstruct the view of the radar display and thus prevent
the air traffic controller from performing his duties.

Fig. 4: Outcome of the proof of theorem 1 using Pellet reasoner

Listing 1

Listing 2

44

x Advanced-level attacks: where an attacker uses
sophisticated flight simulator programs along with the
radio device in order to send a more realistic flight path
that cannot be detected as fake easily. For example, one
popular program that can be used to achieve this is
FlightGear [18]. In this case, the location of the
equipment used to perform the attack is fixed.

x Expert-level attacks: similar to the advanced-level
attacks, except for the fact that the equipment used to
launch the attack is located in an aircraft. This kind of
attack is harder to test, since it requires sophisticated
equipment and procedures.

Classifying attacks detected using the techniques described
in the previous section requires collecting parameters, needed
for deciding if an attack belongs to a particular attack class
modelled in an ontology rule. We leveraged the work in [12], a
well-known standard that provided us with a reference for
checking under which category our metrics fell into. We
defined three security metrics, which are described as follows:

x Sender Location Difference: the absolute value of the
difference between the triangulated sender’s location at
two consecutive times ti and tj. We assumed having
appropriated means of triangulation, which is needed
for determining the location of the sender based on the
received ADS-B packet. This metric is broken down
into three sub-metrics which correspond to the
differences between longitudes, latitudes, and altitudes.

x Velocity: which is the speed of the aircraft at a time t.

x Estimated-to-Real Difference: which is the absolute
value of the difference between the estimated location
of an aircraft and the location retrieved from the ADS-B
packet at time t. We assumed the capability of
estimating aircraft locations at all times. This metric is
also composed by three sub-metrics, corresponding to
difference of longitudes, latitudes and altitudes.

After careful consideration, we came to a conclusion that
these three defined metrics fell under the Cyber Intelligence
Threat Analysis category. After all, these metrics collect
practical data about the attacks, and allow the security analyst
to classify cyber attacks based on patterns of wrong behavior.
In our methodology, these metrics are used by the Pellet
reasoner to automatically classify the type of attack. The
relationships between the described classes of attacks and the
security metrics are described as follows:

x Medium-level attacks: an attack belongs to this class
if the sender location difference and the velocity are
equal to zero. An attacker, whose physical location
does not change, is of course very likely to have such
characteristics. Further, the estimated-to-real
difference has to be greater than a predefined
threshold for the longitude, latitude and altitude.
Consequently, if the location retrieved from the
ADS-B packet is not within the aircraft envelope,
then such packet most likely comes from an attacker.

x Advanced-level attacks: An attack belongs to this
class if the sender location difference and the velocity

are equal to zero. The estimated-to-real difference
would be within the predefined thresholds.

x Expert-level attacks: An attack belongs to this class if
the velocity is comparable to the one of a real aircraft.
Besides, the sender location difference cannot be equal
to zero, and the estimated-to-real difference has to be
within the predefined thresholds.

We now focus on how the proofs of the theorems are
generated using ontological rules, similarly to the previous
section of this paper. Due to space limitations, we restrict the
explanation to the ontological rules used for computing the
estimated-to-real difference metric, and for classifying an
attack as belonging to medium-level attacks class respectively
in Listings 3 and 4.

In Listing 3, we collect GPS properties of the malicious
actor, after verifying that the packet he sent had reached the
ATC Server. Then, we compute the properties of the estimated-
to-real metric relatively to longitude, latitude and altitude.

In Listing 4, we collect the data provided by all the metrics
and define the conditions for deciding whether an observed
attack belongs to the medium-level attacks class.

We had to make several assumptions regarding the metrics.
Firstly, we assumed that there is a mechanism to triangulate the
true location of the sender of the packet, which would facilitate
computing its location difference metric. Secondly, we
assumed that it is possible to estimate the location of an aircraft
at all times, which is required for computing the estimated-to-
real difference metric.

For each metric used in this evaluation we have written a
corresponding rule that the Pellet reasoner can use against the
defined individuals to determine its value. The first rule is
related to the sender location difference metric. Basically, it
gets the triangulated sender locations at two consecutive time
steps and calculates the absolute value of the difference of
altitude, latitude and longitude. The second rule addresses the
velocity metric, and extracts its value at a certain time by using
the ADSBPacket and TimedRelation entities. The third rule,

Listing 3

45

which deals with the estimated-to-real difference, gets the
coordinates of both the estimated position and the real position
before calculating the absolute value of the difference in terms
of latitude, longitude and altitude.

The knowledge derived from these rules can provide
reasonable insights into attack classification. We developed
different rules to classify an attack according to its category in
the taxonomy. For example, an attack that belongs to the
medium-level category would have a null velocity, a null
sender location difference, and its estimated-to-real metric
would exceed the defined threshold. Conversely, the advanced-
level category would have its attacks with a null velocity and a
null sender location difference, but its estimated-to real metric
would not exceed the defined threshold. This is expected, given
the use of flight simulator versus generating random values in
the medium-level category. Finally, an attack would be in the
expert-level category if the velocity is comparable to a real
aircraft, while its sender location difference would be greater
than zero and its estimated-to-real metric would not exceed the
pre-defined threshold.

VI. RELATED WORK
In [7], Massacci et al. proposed an ontology for security

requirements by extending existing ontologies with situational
and context awareness. The authors contextualize their ideas by
an ADS-B case study. This work is similar to ours but the main
difference is that they focused on GPS spoofing attacks, while
we address message-injection attacks that are more difficult to
realize, as stated by [3].

Oltramari et al. [19] described an approach to support cyber
operations by enhancing the situational awareness via a
combination of cognitive modelling and ontology engineering.
They plan to evaluate their approach by applying it to design a
cyber defense application. However, their work is not specific
to SDR applications, but to cyber operations in general.

In [8], Obrst et al. presented a methodology for building
cyber security ontologies based on a malware ontology. This
methodology outlines the steps that are required for building a
cyber security ontology, and provide general guidelines for
enhancing the cyber security domain with semantic models.
The main difference between this work and ours is their focus
on security from a general standpoint, starting from a wide
characterization of malware. In our paper, we tackle the

problem of security within the SDR domain by leveraging
knowledge from semantic models and ontologies.

 In [9], Ekelhart et al. introduced a framework for building
security ontologies that assists in providing risk analysis. The
authors used an incremental approach where they start with a
generic security taxonomy formalized in an ontology and they
enhance it by integrating risk factors, constraints, threats and
countermeasures. This work concentrates on risk management
involving IT-security tasks in a company, while our goal is to
create a methodology to secure ADS-B networks.

In [20], Magklaras and Furnell proposed an approach to
address internal IT misuse via a classification of misusers and
their motives, as well as the implications of the misuse on the
system. In our paper, we adopted a more flexible representation
of misuses, which relies on misuse case and mal-activity
diagrams. Moreover, their work describes security in general
while ours focuses on security in ADS-B networks. The
authors provided a mechanism of determining the threat level
that is similar to our work, in which we classify the attacks
according to the taxonomy. The main difference is that we
employ theorem proving with a semantic-web inspired rule
system, while their work is based on an analyzer module built
as part of their proposed framework.

In [21], McCallie et al. assessed ADS-B security by
detecting and classifying attacks that may target ADS-B
applications. They provide some general recommendations on
how to thwart these attacks. In contrast, we provide a
methodology to be applied when analyzing the security of SDR
applications.

Similarly, Costin and Francillon [4] demonstrated the lack
of security of ADS-B by implementing attacks in a low-cost
simulated environment. They did not focus on attack
mitigation. In contrast, our methodology assists the systems
engineer in formulating security requirements by precisely
defining and verifying these for SDR applications, while using
automated design verification for attacks and their mitigations.

In [22], Whittle et al. proposed a technique for modeling
possible attacks and mitigating them. They employ misuse
cases to model undesirable system behavior. The approach
models misuse cases as aspects, inserts these in the core system
features before integrating mitigation techniques. Then, they
use the attacks as test cases to evaluate the design robustness.
Although our objective is similar to theirs, but we base our
methodology on ontologies to support the system design from
the ground up with security as an integral design aspect. In
contrast, they use prior work on state machines.

In [23], Sindre introduced the concept of mal-activity
diagrams as an enhanced form of activity diagrams where each
actor of the system, normal or malicious, occupies a swimlane
and starts normal or malicious activity nodes. Our approach
uses the concept of a mal-activity diagram and integrates it in
the design process with the support of ontologies.

In [24], El-Attar presented a tool to convert a textual
description of the system to a model taking into consideration
the security aspects in term of misuse case and mal-activity
diagram. This is achieved with support from two tools. One
transforms the textual description to a context-free grammar,

Listing 4

46

which is used to build the first meta-model. The other creates
the meta-model that captures the mal-activity diagrams. This
work appears similar to ours, but El-Attar’s main goal is to
create meta-models from textual description. In contrast, we
formally capture the diagrams using ontological rules and
verify that the stated relationships between them exist using a
theorem prover.

VII. CONCLUSION
ADS-B has emerged as a promising technology for

optimizing the use of the air space while lowering costs and
increasing the security of air traffic operations. Hindering this
progress, many security vulnerabilities in the protocol have
been discovered, generating a pressing need for a holistic,
systems-oriented approach to properly address the problem.
Within this context, in this paper we present a methodology
that relies on time-tested, traditional requirements engineering
while leveraging advanced semantic technology concepts to
automate the process of requirement verification. We have
tested the methodology in an ADS-B scenario, and were able to
support the system design by translating security requirements
into formally verifiable claims. Finally, we used logical
reasoning to ascertain the validity of the mitigating solutions
and classify the attacks using security metrics.

We plan to further evaluate the methodology in complex
simulation environments that will provide a better
understanding of its broader impact in designing resilient SDR
applications. Future work on the methodology also involves
standardizing its procedures, so they would be applicable to the
field of SDR applications in a consistent fashion. In this paper
we have focused on the initial phases of the system engineering
life-cycle, but the methodology can be easily expanded to
formalize and automate other parts of the systems engineering
life cycle. Examples of the latter include supporting trade-off
analysis of adding security features against their associated
cost, validation and verification of the actual system based on
stakeholder requirements (e.g. FAA specs for different types of
systems), and others that would benefit from the formalization
of the design process with a focus on its security requirements.

REFERENCES

 [1] J. Mitola, “The software radio architecture,” IEEE Communications
Magazine, vol. 33, no. 5, pp. 26–38, May 1995.

[2] “NASA - NextGen,” 24-Oct-2014. Available at:
http://www.hq.nasa.gov/office/aero/asp/airspace/index.htm.

[3] M. Strohmeier, V. Lenders, and I. Martinovic, “On the Security of the
Automatic Dependent Surveillance-Broadcast Protocol,”
arXiv:1307.3664 [cs], Jul. 2013.

[4] A. Costin and A. Francillon, “Ghost in the Air(Traffic): On insecurity
of ADS-B protocol and practical attacks on ADS-B devices,” 2012.

[5] M. Schäfer, V. Lenders, and I. Martinovic, “Experimental Analysis of
Attacks on Next Generation Air Traffic Communication,” in Applied
Cryptography and Network Security, Springer Berlin Heidelberg,
2013, pp. 253–271.

[6] G. Sindre and A. L. Opdahl, “Eliciting security requirements with
misuse cases,” Requirements Eng, vol. 10, no. 1, pp. 34–44, Jan. 2005.

[7] F. Massacci, J. Mylopoulos, F. Paci, T. T. Tun, and Y. Yu, “An
Extended Ontology for Security Requirements,” in Advanced
Information Systems Engineering Workshops, C. Salinesi and O.
Pastor, Eds. Springer Berlin Heidelberg, 2011, pp. 622–636.

[8] L. Obrst, P. Chase, and R. Markeloff, Developing an Ontology of the
Cyber Security Domain. .

[9] A. Ekelhart, S. Fenz, M. Klemen, and E. Weippl, “Security
Ontologies: Improving Quantitative Risk Analysis,” presented at the
40th Annual Hawaii International Conference on System Sciences,
2007. HICSS 2007, 2007, p. 156a–156a.

[10] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen, “The
Protégé OWL Plugin: An Open Development Environment for
Semantic Web Applications,” in The Semantic Web – ISWC 2004, S.
A. McIlraith, D. Plexousakis, and F. van Harmelen, Eds. Springer
Berlin Heidelberg, 2004, pp. 229–243.

[11] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 5, no. 2, pp. 51–53, Jun. 2007.

[12] “MITRE’s Making Security Measurable,” MITRE’s Making Security
Measurable. Available: http://makingsecuritymeasurable.mitre.org/.

[13] “ADS-B Frequently Asked Questions (FAQs),” 07-Apr-2014.
Available at:
http://www.faa.gov/nextgen/implementation/programs/adsb/faq/#3.

[14] D. Magazu III, “Exploiting the Automatic Dependent Surveillance-
Broadcast System via False Target Injection,” 2012.

[15] GNU Radio. Available at www.gnuradio.org.
[16] N. Foster, “Gr-air-modes,” Available:

https://github.com/bistromath/gr-air-modes.
[17] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M.

Dean, “SWRL: A Semantic Web Rule Language Combining OWL
and RuleML,” May 2004.

[18] “FlightGear.” Available: www.flightGear.com.
[19] A. Oltramari, C. Lebiere, W. Zhu, L. Vizenor, and R. Dipert, “owards

a Cognitive System for Decision Support in Cyber Operations,”
presented at the International Conference on Semantic Technologies
for Intelligence, Defense, and Security (STIDS), 2013.

[20] G. B. Magklaras and S. M. Furnell, “Insider Threat Prediction Tool:
Evaluating the probability of IT misuse,” Computers & Security, vol.
21, no. 1, pp. 62–73, Jan. 2001.

[21] D. McCallie, J. Butts, and R. Mills, “Security analysis of the ADS-B
implementation in the next generation air transportation system,”
International Journal of Critical Infrastructure Protection, vol. 4, no.
2, pp. 78–87, Aug. 2011.

[22] J. Whittle, D. Wijesekera, and M. Hartong, “Executable misuse cases
for modeling security concerns,” presented at the ACM/IEEE 30th
International Conference on Software Engineering, 2008. ICSE ’08,
2008, pp. 121–130.

[23] G. Sindre, “Mal-Activity Diagrams for Capturing Attacks on Business
Processes,” in Requirements Engineering: Foundation for Software
Quality, P. Sawyer, B. Paech, and P. Heymans, Eds. Springer Berlin
Heidelberg, 2007, pp. 355–366.

[24] M. El-Attar, “From misuse cases to mal-activity diagrams: bridging
the gap between functional security analysis and design,” Software
Systems Modelling, vol. 13, no. 1, pp. 173–190, Feb. 2014.

47

