Toward the Discovery and Extraction of Money
Laundering Evidence from Arbitrary Data Formats
using Combinatory Reductions

Alonza Mumford, Duminda Wijesekera
George Mason University
amumford @ gmu.edu, dwijesek @gmu.edu

Abstract—The evidence of money laundering schemes exist
undetected in the electronic files of banks and insurance firms
scattered around the world. Intelligence and law enforcement
analysts, impelled by the duty to discover connections to drug
cartels and other participants in these criminal activities, require
the information to be searchable and extractable from all types of
data formats. In this overview paper, we articulate an approach
— a capability that uses a data description language called Data
Format Description Language (DFDL) extended with higher-
order functions as a host language to XML Linking (XLink)
and XML Pointer (XPointer) languages in order to link, discover
and extract financial data fragments from raw-data stores not co-
located with each other —see figure 1. The strength of the ap-
proach is grounded in the specification of a declarative compiler
for our concrete language using a higher-order rewriting system
with binders called Combinatory Reduction Systems Extended
(CRSX). By leveraging CRSX, we anticipate formal operational
semantics of our language and significant optimization of the
compiler.

Index Terms—Semantic Web, Data models, Functional pro-
gramming, Data processing, Formal languages, Law enforcement

I. INTRODUCTION

The approach leverages emerging developments in data
description languages such as Data Format Description Lan-
guage (DFDL) [1] for providing efficient representations of
dense binary and textual data formats through vendor-neutral
mechanisms. A DFDL schema allows raw data to be read from
its native data format as an instance of a DFDL data model,
and equivalently, composed to raw data from an instance of
a DFDL data model. Within the context of this application, a
DFDL schema represents a data repository containing any data
format because the schema can refer to the local storage of the
data it describes and provide instructions as to how that data
may be read or written in its native form (e.g., bits, formats).
Further, the concept outlines the addition of new abstractions
to DFDL for defining the relationship and linkage between
data fragments corresponding to different data files as well as
for functions for extracting data fragments. The strength of
this approach is grounded in the specification of a declarative
parser-generator for these DFDL extensions using CRSX,
which implements Klop’s Combinatory Reduction Systems
(CRS) with extensions to support the writing of compilers [2].

32

Fig. 1. An illustration of an anti-money laundering application that connects
to multiple data storage sites. In this case, the native data format at each site
differs, and a data description language extended with higher-order functions
and linking/pointing abstractions are used to extract data fragments based on
their ontological meaning.

II. RELATED WORK

This work presents a multifaceted challenge that primarily
breaks out into two areas. The first challenge is to provide
a mechanism that can be used to describe and access any
number of data formats. A class of data parsing languages
commonly referred to as data description languages to include
PADSI[3] and DATASCRIPT have demonstrated this potential.
This capability is not the same as offered by prescriptive data
format languages such as JSON or even JSON-LD [4], which
require compliance to a pre-specified structure and physical
format. Descriptive languages have the advantage of being able
to describe a data model’s logical representation, which defines
the semantics of the data, as well as its physical representation,
which defines the methods by which its stored, without having
to alter the target data from its initial format.

The second challenge is to combine the former capabil-
ity with a lightweight-mechanism that supports metadata-
based discovery and extraction of arbitrary data fragments
from raw data stores without the system development and
maintenance costs associated with major data conversion, and
database storage and indexing. While popular data storage
and extraction schemes such as Apache’s Hadoop/MapReduce
[5] and Accumulo/Big Table [6] provide a rich software-
framework, they typically require data conversion for querying
data fragments.

Unlike its data description language cohorts, DFDL extends

a subset of XML Schema Description Language (XSDL),
and augments the inherit logical model of the schema with
DFDL annotations that are used to describe the physical
representation of the data. In the same manner, our approach
further extends DFDL’s logical model with annotations for
semantic-based traversal between local and remote resources
that can be used to facilitate distributed discovery, parsing
and extraction of raw data fragments. In addition to being
interpretable by external XLink-XPointer processors, these
semantic annotations also serve as instructions to the DFDL
compiler for parser generation.

I[II. METHODOLOGY

The high-level methodology for this research proposal has
been decomposed into four components. First, a plausible
money laundering scheme is provided, and some inferences
regarding how that scenario may appear in financial informa-
tion is conceived. Second, the data records that are the focus
of the money laundering investigation are examined for their
format and subsequently, the data is modeled to understand
its logical and physical specification. Third, the information
within the data is conceptualized based on the "money scheme"
and modeled for its semantic relationships using linking and
pointing abstractions. Fourth, parts of the specification for the
parser-generator are provided. Further details are provided in
each respective section of the paper.

IV. ANALYSIS OF A MONEY
LAUNDERING SCHEME

Consider an example of a money laundering scheme that
could be used by any analyst to drive the discovery and
extraction of data with evidentiary value from electronic in-
surance records. In the example scheme, the early cancellation
of insurance policies with return of premiums has been used
to launder money. Based on an assessment from the law
enforcement community, this kind of insurance scheme has
occurred where there have been [7]:

« A number of policies entered into by the same insurer
(i.e. a person or company that underwrites an insurance
risk) for small amounts and then canceled at the same
time

o Return premium being credited to an account different
from the original account, and

« Requests for return premiums in currencies different to
the original premium.

V. DATA MODELING
A. Inspection of the Insurance Account Records

The information referenced in the return premium scheme
is made available in three electronic insurance records:
the policyAccountRecord, cancelRequestRecord, and creditRe-
questRecord. At this step, the analyst’s objective is to inspect
the data such that he may describe a data model for each
format type, which consist of a logical structure and physical
representation.

33

In figure 2(a.1), the logical structure of the policy Accoun-
tRecord is a sequence complexType named by the identifier
PLCYACCT. The policyAccountRecord type can be viewed as
a data structure, where its value contains other values and
its definition contains a datatype and identifier for each field.
For example, INSUR is the identifier for a simpleType field
named Insurer. The physical representation of the policyAc-
countRecord type is also describable. Delimiters, which are
a sequence of characters, are used to specify the boundary
between separate, independent areas in the text representation.
For example, "/" is an infix separator between an identifier
and value such as PAYCUR and Peso (ARG), and white-space
is a initiator and "//" is a terminator for each field. Also,
the character-encoding scheme for the text representation is
identified as ASCIL. In figure 2(b.1), the creditRequestRecord
type is given using some peculiar characters for separating
the fields in the record. The cancelRequestRecord type uses
the standardized JSON format (not shown). At this stage, the
analyst discovers that each of the record types do not share a
common format type such as XML or JSON.

B. DFDL-based Data Modeling for Parsing

At this step, the analyst models the logical model in the
sequential order of the data file using the "logical datatypes
& constraints" such as those in listed in figure 3. Then, the
analyst maps the physical representation of each data file to its
logical model, using the "physical representation properties"
like those also shown in figure 3.

At compilation, a DFDL schema model generates a "pro-
gram," which is essentially a parser and unparser. Upon pars-
ing, if the input policyAccountRecord data file (ref: 2(a.1)), for
example, satisfies all the constraints specified by the policyAc-
countRecord.dfdl schema file (ref: figure 4), it is considered
to be valid according to the schema. More importantly, the
DFDL parser generates a logical representation of that input
data file, shown in figure 2(a.2), called the DFDL information
set (infoset) or data model. In return, the DFDL information
set can be used to unparse or generate a data file.

VI. ONTOLOGICAL MODELING
A. Inspection of the Application Domain Context

At this point, the analyst will apply his analytical reason-
ing to define the concepts that are relevant to the money
laundering domain. In ontological engineering, a concept
definition conveys the name of an evidentiary fact and its
value data type. In figure 5, the generic kinds of conceptual
abstractions are given along with corresponding examples
of how those abstractions are applied within the example
domain. In figure 6, a conceptual ontology of the "anti-money
laundering" domain is given to show the kinds of classes
and properties used in the domain. Generally, classes are
identified by nodes and properties are identified by directed
paths or arcs. This figure illustrates, for example, how these
conceptual labels such as creditRequestRecord are structured
taxonomically by composition (i.e., hasPart) and equivalence
(i.e., sameAs) relations.

DFDL Logical
Datatypes
& Constraints (a)

Structures
(xs:complexType)

Context Free Grammar (CFG) example

2 <dcl_xs> 1= "< " XS_COMPONENT <stmt>*
"</" XS_COMPONENT ">"

11 XS_COMPONENT ::= "xs:complexType"

Higher-Order Abstract
Syntax (HOAS) example

XsComponent|ComplexType]

Atomic data values
(xs:simpleType)

11 XS_COMPONENT ::= "xs:simpleType"

XsComponent[SimpleType]

Ordering
(xs:sequence
or xs:choice)

11 XS_COMPONENT ::= "xs:sequence"
| "xs:choice"

XsComponent[Sequence],
XsComponent[Choice]

Occurences
(xs:minOccurs
or xs:maxOccurs)

5 <stmt> ;= XS_ATTRIBUTE "=" <xs_attribute_value>
16 XS_ATTRIBUTE ::= "xs:minOccurs" | "xs:maxOccurs"

8 <xs_attribute_value> ::= <xs_number>

ComponentAttribute[MinOccurs],
ComponentAttribute[MaxOccurs]

DFDL Physical
Representation
Properties (b)

Physical types
(dfdl:representation)

5 <stmt> ::= DFDL_ATTRIBUTE "=" <dfdl_attribute_value>
18 DFDL_ATTRIBUTE ::= "representation"

7 <dfdl_attribute_value> ::= <dfdl_enum_value>

FormatProperty[Represetation]

Delimiters
(dfdl:initiator,
dfdl:separator,
dfdl:terminator)

18 DFDL_ATTRIBUTE ::= "initiator"

7 <dfdl_attribute_value> ::= <dfdl_string_value>
| <reg_exp_value>

FormatProperty[Initator],
FormatProperty[Separator],
FormatProperty[Terminator

Extraction of elements
(dfdl:lengthKind)

18 DFDL_ATTRIBUTE ::= "lengthKind"

7 <dfdl_attribute_value> ::= <dfdl_enum_value>

FormatProperty[LengthKind]

Points of uncertainty
(dfdl:discriminator)

3 <dcl_dfdl> ::= "<" DFDL_ADMIN <stmt>* ">" <dcl_dfdl>
"</" DFDL_ADMIN ">"

15 DFDL_ADMIN ::= "dfdl:discriminator"

DfdlValidation[Discriminator]

Detecting occurrences
(dfdl:occursCount)

18 DFDL_ATTRIBUTE ::= "occursCount"
7 <dfdl_attribute_value> ::= <non_neg_int_value>
| <dfdl_exp_value>

FormatProperty[OccursCount]

XLink Properties (c)

XLink type and
label attributes
(xlink:type

or xlink:label)

5 <stmt> ::= XLK_ATTRIBUTE "="
<xlk_attribute value>

23 XLK_ATTRIBUTE ::= "xlink:type"
| "xlink:label"

89 <xlk_attribute_value> ::= <xlktype_enum>

XlinkAttribute[X1k Type],
XlinkAttribute[X1kLabel]

DFDL Higher-Order
Functions (HOF) (d)

DFDL hof
(dfdl_ext:filter
or dfdl_ext:contains)

19 DFDL_HOF ::= "dfld_ext:filter"
| "dfdl_ext:contains"

DfdIHof[Filter],
DfdlHof[Contains]

Fig. 3. A specification of a DFDL compiler using CRSX performs stepwise transformations from the DFDL concrete syntax (shown in left column)) to an
equivalent higher-order abstract syntax (HOAS) intermediate language (in right column). This transformation to the target language matches a context-free
grammar (CFG) syntactic rule (in center column) to each unit of DFDL syntax and uses CRS-based rewrite rules to address semantic and optimization
concerns.

34

1 <?xml version="1.0" encoding="UTF-8"7?>

2 <xs:schema xmlns:xsd="http: //www.w3.0rg/2001/XMLSchema" xmlns:dfdl="http: //www.ogf.org/dfdl/dfld —1.0/"
xmlns:xlink="http: //www.w3.0rg/1999/xlink" xmlns:dfdl_ext="http://linuz.org/dfdl_ext" xlink:type="
extended ">

IS

<xs:element name="policyAccountRecord" minOccurs="0" maxOccurs="unbounded" dfdl:lengthKind="implicit
" xlink:type="resource">

5 <xs:complexType>

6 <xs:sequence dfdl:sequenceKind="ordered">

7 <annotation>

8 <xs:appinfo source="http://www.ogf.org/dfdl/vl1.0">

9 <dfdl:element representation="text" encoding="ascii" lengthKind="delimited"
sequenceKind="ordered" initiator="//" separator="/" separatorPosition="infix"
separatorPolicy="required"/>

10 <dfdl_ext:filter>

1 <dfdl_ext:param def=[function_definition]/>

12 </dfdl_ext:filter>

13 </xs:appinfo>

14 </annotation>

15 <xs:element name="policyAccountldentifier" type="xs:string" dfdl:lengthKind="explicit"

dfdl:length="20" xlink:type="resource" xlink:href="http://linuzl/policyAccountSchema
.dfdl#xpointer (/// policyAccountldentifier[@xs:string=value])"/>

16 <xs:element name="policyStartDate" ... xlink:label="policyStartDate" xlink:type="resource
" xlink:href="http://linuzl/policyAccountSchema. dfdl#xpointer (/// policyStartDate [
@xs:date=value])" />

17 <xs:element name="policyHolder" ... xlink:label="policyHolder" xlink:type="resource"
xlink:href="http://linuzl/policyAccountSchema.dfdl#xpointer (/// policyHolder [
@xs:string=value])"/>

18 <xs:element name="policyInsurer" ... xlink:label="policyInsurer" xlink:type="resource"
xlink:href="http: //linux1/policyAccountSchema.dfdl#xpointer (/// policylnsurer [
@xs:string=value])"/>

19 <xs:element name="payerName" ... xlink:label="payerName" xlink:type="resource" xlink:href
="http://linuzl/policyAccountSchema.dfdl#xpointer (///payerName[@xs:string=value])"/>
20 <xs:element name="payerCurrency" ... xlink:label="payerCurrency" xlink:type="resource"

xlink:href="http://linuzl /policyAccountSchema.dfdl#xpointer (/// payerCurrency [
@xs:string=value])"/>

21 <xs:element name="premiumAmount" ... xlink:label="premiumAmount" xlink:type="resource"
xlink:href="http://linuzl/policyAccountSchema.dfdl#xpointer (///premiumAmount [
@xs:string=value])"/>

2 </xs:sequence>
23 </xs:complexType>
2 </xs:element>

25
26 </Xs:schema>

Fig. 4. The Policy Account Record DFDL schema illustrates attributes and elements belonging to the XLink (e.g., xlink:type) and extended DFDL (e.g.,
dfdl_ext:filter) namespaces. Note that the DFDL name attribute (e.g., name="premiumAmount") is a named reference type to the data model context, while
the xlink:label attribute is a named reference type to the ontological model context as defined through XLink and anti-money laundering application domain.
Therefore, if the application domain shifts to a new domain of inquiry, then a new schema with the same data model but different conceptual labels can be
devised.

B. XLink-XPointer-based Concept Modeling for Data Linking, contains multiple XLink annotations in order to identify the
Addressing & Extraction respective data fragment’s location.

In order to create a connection between two resources
and define the meaning of the relationship between them,
an anti-money laundering linkbase is devised —see figure 7.
A linkbase [8] provides the location and label information
for each financial data resource. A linkbase describes links
between resources by providing an arc defintion or trav-
eral instruction. On line 12, for example, the traversal from
the source resource, linkbase, to the destination resource,
http://tmp 1. linuz.org/policyAccountRecord.dfdl is defined. The
XLink syntax grants for a number of attributes in the XLink
namespace, as shown in figure 8.

XLinks can be embedded within a XML document that con-
tains links between other XML or non-XML documents. Since
any DFDL schema is also an XML document, XLinks can be
placed within DFDL schemas. In figures 4 and 7, both poli-
cyAccountRecord.dfdl and moneyLaunderLinkbase.xml specify
an extended link, which defines a collection of resources and
a collection of arcs between resources. Not only does each
resource point to a financial data fragment, it also represents
a concept within the anti-money laundering ontology shown in
figure 6. In figure 4, resource attributes mark local resources.
In this case, a local resource is equivalent to a locally-
stored data fragment that can be read from or written to For data fragment addressing and selecting, XPointer ex-
by an associated DFDL schema. Each remote DFDL schema pressions are applied in the xlink:href attributes of various

35

owl:sameAs ———p

[policyAccountIdentifier

(cred itRequestIdentiﬁer)

]4* owl:sameAs

cancelRequestldentifier

—
owl:sameAs owl:sameAs
owl:hasPart owl:hasPart owl:hasPart
cancelRequestRecordJ E
[policyAccountRecord creditRequestRecord
owl:hasPart owl:hasPart owl:hasPart owl:hasPart ,.-hasPart / \
l owl:hasPart owl:hasPart L owl:hasPart owl:hasPart
I - owl:hasPart owl:hasPart

cancelEffectiveDate owl:hasPart poficy ‘

[payerCurrencyj [premiumAmount] [policyHoIder]

creditAmount payeeCurrency

(policyStartDateJ

[payerName)

creditRequestDate

Fig. 6. The semantic relationships between the various concepts (data fragments) involved in a money laundering scheme may be illustrated in our ontological

model of the domain.

elements in order to point to the data fields of the three data
record types. In figure 4 on line 6, for example, the link address
the reasonForCancel element with xs:string value is provided.
In the example, XPointer depends on XPath expressions to
point to resources. This data linking architecture is defined by
a linkbase as well as corresponding XLink/XPointer-extended
DFDL schemas for each record type and remote data stores.

VII. EXTENSIONS FOR HIGHER-ORDER FUNCTIONS

This section focus on the utility of higher-order functions
(HOFs), accompanied by XLink/XPointer constructs, in facilit-
ing data extraction from native data repositories. In figure 4, an
example of a dfdl_ext:filter function is illustrated. This higher-
order function takes a predicate function and list, and returns
to the money laundering application the list of elements that
satisfy the predicate. Note another HOF construct is given in
figure 3. To facilitate the data extraction, each DFDL processor
is pre-complied, and the function definition is passed to the
DFDL parser’s runtime environment by way of a XLink arc
traversal. As a result, the analyst is able to ignore the details
of the data model and URI-based location of data fragment,
and implement functional queries based on the conceptual
modeling of the money laundering domain.

VIII. COMPILER SPECIFICATION FOR DATA DESCRIPTION
LANGUAGE EXTENDED WITH HYPERLINK STRUCTURES
AND HIGHER-ORDER FUNCTIONS (HOF)

This section addresses the initial specification of a DFDL
compiler using CRSX to perform syntactic analysis, semantic
analysis and transformation of a DFDL instance into a higher-
order abstract syntax (HOAS) intermediate language. As a
mathematical rewriting method, CRSX is used to formalize a
stepwise transformation and evaluation of the concrete DFDL
language into a highly optimized parsing application or raw
data writer. By way of a recursive tree traversal over a DFDL
schema instance, the CRSX-based compiler steps through each
of the following compilation phases:

36

A. Syntax to CFG Production Rule for DFDL

First, the names for all components of the DFDL schema
language are specified. In this case, a component is anything
that can be defined or declared in the DFDL vocabulary (e.g.,
an element, a simple type or a complex type). As in figure 3,
more than four hundred components belonging to the DFDL
namespace were specified. Second, for each specified name
in the language, explicit transformation mappings were made
from the DFDL schema syntax onto context-free grammar
(CFG) structures.

A DFDL schema fragment is illustrated in figure 3, by
the xs:complexType declaration example. This particular code
fragment is related to defining a complexType element that
contains other elements such as choice and sequence. As
the CFG for complexType is used to guide the parse into
each fragment of the DFDL schema syntax, essentially an
invocation of a unit of instruction is sent to the DFDL compiler
to be executed. The XML markup in the DFDL schema
express structure. The process of parsing a DFDL schema
identifies elements and attributes, and creates an abstract image
(i.e., the DFDL data model) that corresponds to the DFDL
schema structure.

Consider, for example in figure 4, one of the DFDL element
declarations. On "line 9", it declares to be an instance of a
’dfdl:element’ element type. The DFDL element must comply
with the structure and attribute constraints stated by the
element type in order to qualify as an instance. In this case,
membership of an instance of an DFDL element or attribute
to a type is determined by validation of a DFDL processor
that is tasked to accept or reject DFDL instances as well as
data mapped to those instances. In the case of the syntax for
XLink, XPointer and higher-order functions (ref: figure 3) used
in the extended DFDL schema, CFG production rules are also
prescribed in a similar manner.

Further, a parallel exits between the DFDL schema and the
data file which validated against the DFDL schema. Use of
a CFG is the approach taken by the compiler for providing

1 <?xml version="1.0" encoding="UTF-8"7>
2 <linkbase xmlns:xlink="http: //www.w3.0rg/1999/xlink" xlink:linkbase="http: //www.w3.0rg/1999/xlink/
properties/linkbase ">

3 <link xlink:type="extended" xlink:title="moneyLaunderLinkbase">

4 <!— Linkbase loads on extraction request. —>

5 <basesloaded>

6 <startrsrc xlink:label="filter_spec" xlink:href="/local/filter_spec .xml#params" />

7 <linkbase xlink:label="linkbase" xlink:href="/local/linkbase.xml" />

8 <load xlink:from="spec" xlink:to="linkbase" actuate="onRequest" />

9 </basesloaded>

10

1 <!— Arcs between linkbase and DFDL—data stores. —>

12 <invokeStoreArc xlink:type="arc" xlink:arcrole="linkbase" xlink:from="linkbase" xlink:from="
PolicyAccountRecord" />

13 <invokeStoreArc xlink:type="arc" xlink:arcrole="linkbase" xlink:from="linkbase" xlink:from="
CancelRequestRecord" />

14 <invokeStoreArc xlink:type="arc" xlink:arcrole="linkbase" xlink:from="linkbase" xlink:from="

RefundRequestRecord" />

16 <!— Locator elements. —>

17 <loc xlink:type="locator" xlink:label="PolicyAccountRecord" xlink:href="http://tmpl.linuz.org/
policyAccountSchema.dfdl"/>

18 <loc xlink:type="locator" xlink:label="PolicyAccountldentifier" xlink:href="http://tmpl.linuz.
orglinuzl /policyAccountSchema.dfdl#xpointer (//// policyAccountldentifier[@xs:string=value])"/>

19 <loc xlink:type="locator" xlink:label="PolicyStartDate" xlink:href="http://tmpl.linuz.org/
policyAccountSchema . dfdl#xpointer (//// policyStartDate [@xs:date=value])"/>

20 <loc xlink:type="locator" xlink:label="PolicyHolder" xlink:href="http://tmpl.linuz.org/
policyAccountSchema . dfdl#xpointer (//// policyHolder[@xs:string=value])"/>

21 <loc xlink:type="locator" xlink:label="Policylnsurer" xlink:href="http://tmpl.linux.org/
policyAccountSchema . dfdl#xpointer (//// policyInsurer[@xs:string=value])"/>

2 <loc xlink:type="locator" xlink:label="PayerName" xlink:href="http://tmpl.linuz.org/
policyAccountSchema . dfdl#xpointer (////payerName[@xs:string=value])"/>

23 <loc xlink:type="locator" xlink:label="PayerCurrency" xlink:href="http://tmpl.linuz.org/
policyAccountSchema . dfdl#xpointer (//// payerCurrency [@xs:string=value])"/>

2 <loc xlink:type="locator" xlink:label="PremiumAmount" xlink:href="http://tmpl.linuz.org/

policyAccountSchema . dfdl#xpointer (////premiumAmount[@xs:string=value])"/>
25
26

27 <!— Relationship between policy account, cancel request and refund request identifiers. —>

28 <invokeldArc xlink:type="arc" xlink:arcrole="owl:sameAs" xlink:from="PolicyAccountldentifier"
xlink:to="CancelRequestldentifier"/>

29 <invokeldArc xlink:type="arc" xlink:arcrole="owl:sameAs" xlink:from="PolicyAccountldentifier"
xlink:to="RefundRequestldentifier"/>

30 <invokeldArc xlink:type="arc" xlink:arcrole="owl:sameAs" xlink:from="CancelRequestldentifier"
xlink:to="PolicyAccountldentifier"/>

31 <invokeldArc xlink:type="arc" xlink:arcrole="owl:sameAs" xlink:from="CancelRequestldentifier"
xlink:to="RefundRequestldentifier"/>

32 <invokIdArc xlink:type="arc" xlink:arcrole="owl:sameAs" xlink:from="RefundRequestldentifier"
xlink:to="PolicyAccountldentifier"/>

33 <invokeldArc xlink:type="arc" xlink:arcrole="owl:sameAs" xlink:from="RefundRequestldentifier"

xlink:to="CancelRequestldentifier"/>
34

35 <!— Relationship between policy account record and its parts. —>

36 <invokeParArc xlink:type="arc" xlink:arcrole="owl:hasPart" xlink:from="PolicyAccountRecord"
xlink:to= "PolicyAccountldentifier" />

37 <invokeParArc xlink:type="arc" xlink:arcrole="owl:hasPart" xlink:from="PolicyAccountRecord"
xlink:to= "PolicyStartDate" />

38 <invokeParArc xlink:type="arc" xlink:arcrole="owl:hasPart" xlink:from="PolicyAccountRecord"
xlink:to= "PolicyHolder" />

39 <invokeParArc xlink:type="arc" xlink:arcrole="owl:hasPart" xlink:from="PolicyAccountRecord"
xlink:to= "Policylnsurer" />

40 <invokeParArc xlink:type="arc" xlink:arcrole="owl:hasPart" xlink:from="PolicyAccountRecord"
xlink:to= "PayerCurrency" />

41 <invokeParArc xlink:type="arc" xlink:arcrole="owl:hasPart" xlink:from="PolicyAccountRecord"
xlink:to= "PayerName" />

a2 <invokeParArc xlink:type="arc" xlink:arcrole="owl:hasPart" xlink:from="PolicyAccountRecord"
xlink:to= "PremiumAmount" />

43

44 </link>

4s </linkbase>

Fig. 7. The money laundering linkbase.

37

(a.1l) Input "policy account record" data:
PLCYACC/741032—1071//

DATE/2013 —09 —28//

PLCYHLD/ Allegier , Cox & Associates , Inc.//

INSUR/ALI Corp .//
PAYER/Grupo Palermo S.A.//
PAYCUR/Peso (ARG) //
PRMAMT/42004.98//

(a.2) DFDL generated XML model:

<policyAccountRecord>
<policyAccountldentifier>741032—-1071</
policyAccountldentifier>
<policyStartDate>2013—-09—-28</policyStartDate>
<policyHolder>Allegier , Cox & Associates Inc.
</policyHolder>
<policyInsurer>ALI Corp.</policylnsurer>
<payerName>Grupo Palermo S.A.</payerName>
<payerCurrency>Peso (Argentine)</
payerCurrency>
<premiumAmount>42004.98</premiumAmount>
</policyAccountRecord>

20
2
22

23 (b.1) Input "credit request record" data:
24

25 [[[[[[[CRDREQ%]741032—1071%]

26 CRDATE%]2013—11—02%]

27 PAYEE%] Allegier , Cox & Associates, Inc.%]

PAYCUR%]USD%]
CRDAMT%15000.00%]

2
29

>3

31 (b.2) DFDL generated XML model:

32

@

<creditRequestRecord>
<creditRequestldentifier>741032—1071</
creditRequestldentifier>
<creditRequestDate>2013—-11-02</

34

35

creditRequestDate>
36 <payeeName>Allegier , Cox & Associates, Inc.</
payeeName>

<payeeCurrency>USD</payeeCurrency>
<creditAmount>5000.00</creditAmount>
</creditRequestRecord>

Fig. 2. Policy Account and Credit Request records. A DFDL parser accepts
raw data (e.g., in (b.1)) and generates a DFDL data model (in (b.2)).
Symmetrically, a DFDL unparser uses a DFDL data model generate equivalent
raw data.

syntactic checking. Ultimately, the aggregate of four hundred
or so CFG production rules will partition any DFDL schema
into a set of components, where each component can match
against an unique fragment of a DFDL schema. The CFG has
been designed to ensure that any DFDL schema be reduced to
its normal form in order to provide a specific name for each
component of the DFDL schema specification.

B. CFG Production Rule to HOAS for DFDL

Next, rules for transformation of the CFG into the HOAS
intermediate language are prescribed in the DFDL compiler
implementation. Note in figures 3 and 4, a HOAS con-
structor name is shown for each provided CFG. A HOAS
representation is the equivalent to an abstract syntax tree
(AST), and it serves as the intermediate representation for
further transformation and optimizations of a DFDL schema

38

Concept | Example
Classes propertyAccountRecord, cancelRequestRecord and
creditRequestRecord (ref: figs. 5 and 8)
An instance of a propertyAccountRecord is one bearing
Instances | "741032-1071" as the policyAccountldentifier
(ref: fig 2, a.1).
Relations: | The three properties, policy Accountldentifier,
hasPart, cancelRequestldentifier, and creditRequestldentifier
sameAs are equivalent (sameAs) (ref. figs. 8 and 9).
policyAccountldentifier, policyStartDate, policyHolder,
Properties | policylnsurer are properties of a policyAccountRecord
(ref: figs. 5, 8 and 9).
"USD" and "5000.00" are the values of payeeCurrency
Values and premiumAmount respectively for a particular
instance of a creditRequestRecord (ref: fig. 2, b.2).
The three properties, policyAccountldentifier,
cancelRequestldentifier, and creditRequestldentifier
Rules . .
are equivalent (sameAs) if they evaluate to the
same value, for example, "741032-1071".
Fig. 5. This table gives an explanation of the anti-money laundering

conceptual ontology and illustrates where these concepts are defined within
XLink-extended DFDL schemas and linkbase. 2

Attribute Value Description

Parent element, which defines a complex
link in which multiple links can be
combined based on other attributes.

Child element of extended-Type element,
which provides a local resource to

associate with the link.

Child element of extended-Type element,
which specifies the location of a remote
resource associated with the link.

Child element of extended-Type element,
which define traversal rules between the
link’s associated resources.

Traversal attribute of extended-,
resource-Type elements, which provides

a reference (of itself) to arc-Type in
composing a traversal arc.

Traversal attributes of arc-Type element,
which define the source and target resources
of the arc link.

Attribute of locator-Type element, which
provides the data that helps an XLink
application to locate a remote resource .
Semantic attribute of extended-,
resource-Type elements, which indicates a
property of the resourcein a computer
readable-form.

Semantic attribute of arc-Type element, which
coincides with the [RDF] view of a property,
where the role can be understood as HAS
relationship between the starting-resource and
the ending-resource.

Creates XPointer fragment links with syntax:
#xpointer(id("<value>"))

extended

resource

locator

xlink:type

arc

xlink:label NCName

xlink:from,

xlink:to NCName

xlink:href URI

xlink:role URI

URI,

xlink:arcrole linkbase

#xpointer

Fig. 8. XLink elements and attributes used in the anti-money laundering
application. *

instance. As illustrated in the HOAS column of figure 3,
a HOAS surmounts the difficulty of having to define name
binding constructs in the abstract syntax [9]. For example,
XsComponentType is a syntactic category and ComplexType,
which is a name of a type that has membership to that
category, is bound using the [] syntax. All the DFDL types

1 TERM ::=

2 Let[VALUE, TYPE, x::VALUE . TERM];
3 Lam[VALUE, TYPE, x::VALUE . TERM];
4 Context[];

5

Element [KIND, $List [ATTRIBUTE], $List[
DFDL_PROPERTY], $List [XLP_ATTRIBUTE], TERM
1

Pair [

Nil;

T;

T—Attribute

T—BuildSchema

T—BuildElement

XMI~Visit|[XLink—XPointer |

’TERM, TERM];

Fig. 9. Consider our top level terms for the DFDL CRSX system after
normalization. The terms are written in the form of a higher-order abstract
syntax.

(including the new extensions) are derived from syntactic
sorts or syntactic categories, which are normalized into the
top level terms of the DFDL HOAS shown in figure 9.
The objective is to convert all CFG derivations into the
syntactic sorts. For example, in the normalization process, the
"XsComponentType[ComplexType]" would be transformed to
the term: "Element[XsComponentType[ComplexType]], ...]".

C. HOAS to CRSX Rewrite Rule for DFDL

CRSX rewrite rules are specified to address the semantic
and optimization transformation and evaluation of the DFDL
compiler. An example rewrite rule is given (in figure 10) that
defines explicit scoping of XS COMPONENT ATTRIBUTE(s)
in the DFDL specification. The meaning of the rewrite rule
syntax is provided in [10]:

(a) A rewrite rule takes the form:

nameloptions] : pattern — contraction

, where name should be a constructor and the pattern and
contraction should be ferms; where
(b) XsComponent-Attribute and Copy are constructors, which
take an optional ordered or positional parameter list in
immediately following []s, where each parameter is itself
a term, and called a subterm, uncapitalized words (e.g. x
and foo) denote variables; and where
a Lambda-construction with a single subterm binds the
variable x (before the .) and contains a single construction
with two subterms that both are occurrences of x.

In CRSX, we model this as Let[El, x.E2], i.e. let all
occurrences of x in the body of function E2 be replaced or
substituted by x, where x := E1. This allows explicit scoping.
The entire compiler is specified as rule system is written as a
sequence of rules each terminated by ; semicolon;

(©)

IX. CONCLUSION AND FUTURE WORK

In this paper, an approach is given for a lightweight-
capability that supports metadata-based discovery and
extraction of informational fragments from raw data stores
without having to alter the information’s native data format.

39

1 XsComponent—Attribute [Copy [#QName]]

2

3 {#Env; #QName: ComponentAttribute [#kind]}
4+ XML-Attribute [#prefix , #QName, #Value, ok.#
Continuation[ok]]

5 —>

¢ {#Env}
Let[#Value,
QName,

7

a.{#Env} AddXsAssoc[#prefix , #

a, ok.#Continuation[ok]]

Fig. 10. Illustrates a CRSX rewrite rule that defines explicit scoping of XSD
attributes. CRSX rewrite rules are an equivalent form of a programming
language’s operational semantics. In this case, we define the operational
semantics from the perspective of compilation.

This approach offers an advantage over popular data extraction
schemes such as Apache Hadoop platform that require the con-
version of data into a prescriptive data format. The approach
extends an existing data description language with linking/-
pointing constructs and higher-order functions. An overview
of the DFDL compilation is provided using concepts from
programming language design and formal rewriting systems.
The future work includes: specifying the transformation and
evaluation of the DFDL/XLink/HOF specification into parser
combinator form; investigating the operational semantics of
the higher-order function (HOF) and linking abstractions in
order to optimize distributed data extraction; and generating
comparative performance metrics.

ACKNOWLEDGMENT

The authors would like to thank Dr. Kristoffer Rose for
his valuable guidance on Higher-order Rewriting for Compiler
Specifications and the Combinatory Reduction System with
Extensions.

REFERENCES
[1]
2]
[3]

O. D. WG, S. M. Hanson, and A. W. Powell, “Data format description
language (dfdl) v1. O specification.”

K. H. Rose, “Crsx—an open source platform for experiments with higher
order rewriting,” HOR 2007, p. 31, 2007.

K. Fisher and R. Gruber, “Pads: a domain-specific language for process-
ing ad hoc data,” in ACM Sigplan Notices, vol. 40, no. 6. ACM, 2005,
pp- 295-304.

M. Sporny, G. Kellogg, and M. Lanthaler, “Json-1d 1.0-a json-based
serialization for linked data,” W3C Working Draft, 2013.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113,
2008.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

I. A. of Insurance Supervisors, Examples of Money Laundering
and Suspicious Transactions Involving Insurance. International
Association of Insurance Supervisors, 2004. [Online]. Available:
http://books.google.com/books?id=bSvoHAAACAAJ

S. DeRose, E. Maler, D. Orchard, and N. Walsh, “Xml linking language
(xlink) version 1.1, w3c recommendation 06 may 2010,” 2010.

F. Pfenning and C. Elliot, “Higher-order abstract syntax,” in ACM
SIGPLAN Notices, vol. 23, no. 7. ACM, 1988, pp. 199-208.

K. H. Rose, “Crsx-combinatory reduction systems with extensions,”
in LIPIcs-Leibniz International Proceedings in Informatics, vol. 10.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011.

[4]
[5]

[6]

[7]

[8]

[9]
(10]

