
Effective RDF Resource Identifiers for Integration
of Structured Data Sources

Ian Emmons
Raytheon BBN Technologies

Arlington, VA
iemmons@bbn.com

Abstract—Based upon extensive experience in the use of
semantic technologies to integrate structured data from disparate
systems, the author recommends a set of best practices for
creating IRIs for RDF resources. Particular attention is paid
to avoiding unnecessary coreferences in scenarios where data is
drawn from a structured, non-semantic source of record, issues
that commonly arise in Department of Defense (DoD), Intelli-
gence Community (IC), and government contracting scenarios,
as well as other common pitfalls.

I. BACKGROUND

At the very foundation of the Resource Description Frame-
work (RDF), before we can ever write down a single triple, we
encounter the notion of the International Resource Identifier
(IRI) as a means to create identifiers with global validity.1 The
Web has proven that the IRI is in fact a good solution to this
problem, and so the RDF standard has very little further to
say about this topic [3]. However, creating sub-optimal IRIs
is a common pitfall of the Semantic Web.

In the discussion that follows, an important concept is the
source of record of a datum. This is the particular copy of the
datum that is considered to be its authoritative source. When
data is created directly in RDF format, so that the source of
record is the RDF itself, then choosing good IRIs is relatively
straightforward. However, the source of record for a data set
is often a non-RDF database of some sort, such as a relational
database, and the data is translated into RDF in order to enable
Semantic Web processing techniques. In these cases, there are
a number of additional considerations that come into play
when choosing resource IRIs, which we address here. Note
that a different set of issues arises when choosing IRIs for
data whose source of record is unstructured. Such situations
are not considered here.

In the sections below, we will first address the issues asso-
ciated with forming IRIs in general, and then we will consider
structured, non-RDF sources of record. We pay particular
attention to situations that arise in DoD, IC, and government
contracting.

II. CONSIDERATIONS FOR ANY SOURCE OF RECORD

This section discusses issues that apply to data from any
kind of source of record.

1The IRI [1] is a generalization of the Uniform Resource Identifier (URI)
[2] to include international character sets.

A. Hierarchical Naming

The most important aspect of resource identifiers is this: A
resource’s IRI must be globally unique. In other words, no two
resources may share the same identifier. Unlike the primary
key of a database table, which need only be unique among
the records of that table, a resource’s IRI must be globally
unique. There are two widely used systems for creating such
identifiers: Globally Unique Identifiers (GUIDs), which are
sometimes also called Universally Unique Identifiers (UUIDs),
and hierarchical naming. The former gathers a number of
relatively unique items from the local computing environment,
such as the current time and network interface MAC addresses,
and combines them algorithmically into a large, fixed-length
number whose uniqueness is guaranteed with such high prob-
ability that we can assume absolute global uniqueness.

RDF uses hierarchical naming to achieve global uniqueness,
as exemplified by the IRI system. This approach constructs an
identifier as a variable-length character string consisting of
a hierarchy of segments, each of which further narrows the
scope until a unique identifier for a specific item is achieved.
Each successive level of hierarchy carves out a subset of the
namespace denoted by its predecessor and often corresponds
to an organizational entity with jurisdiction over that subset.
For instance, the segments might be arrayed as follows:

http://org/dept/project/class/item

The portion preceding the first colon designates the scheme.
Most RDF IRIs use the http: scheme as shown here,
but others are possible as discussed below in Section II-B.
The “org” portion is a Domain Name System (DNS) name
(see Section II-C). Using a DNS name leverages the domain
registration process to reserve a namespace on behalf of
an organization. From there, the IRI narrows the scope by
appending a department name, a project name, the name of
a class of entities, and then finally the identifier of one item
within that class.

Naturally, there are many variations on this theme:

• In a very large organization, the “dept” segment may
be replaced by several segments that descend through
multiple layers of organizational structure. And some
organizations may prefer to use a sub-domain of their
primary DNS name for this purpose.

18

• The “project” portion of the IRI may also be subdivided
into components.

• Including a date can help with versioning, and it can
guard against the possibility that the remainder of the
identifier is reproduced at a later time by a different
organization that has the same name.

• Many practitioners include a segment immediately after
the domain name that is either “id” or “ontology” to
distinguish between instance data and its ontology.

There are numerous sources that offer guidelines for con-
structing such hierarchical names [4, 5, 6, 7], which the reader
may wish to consult to gain a deeper understanding of best
practices. However, there is no one-size-fits-all strategy, so you
will need to adapt the given advice to your particular situation.

As a point of terminology, the portion of the IRI in the
example above that precedes “item”, including the last slash,
is called the base IRI. The base may end in a slash, as in this
case, or with a hash ‘#’. For our purposes here, the distinction
is immaterial, but a full discussion of the differences can be
found in [4].

In order for hierarchical naming to properly achieve its goal
of global uniqueness, it is crucial that each RDF author create
new IRIs only within those hierarchical scopes in which he
or she has the authority to do so. For instance, an author
who works for Company A should not create IRIs using
the domain name of Company B, unless Company B has
given its permission to do so. Otherwise, there exists a very
real possibility for different authors to use the same IRI to
identify two different things. Likewise, an author within one
department of a company should not create IRIs using the
department identifier segment of a different department, unless
the second department has given its permission to do so.

A different situation arises when one RDF author has
already created an IRI for an entity and another author wants
an identifier for the same item. In this case, the second author
should, whenever possible, reuse the original author’s IRI in
order to avoid the confusion that arises from having multiple
names for the same entity. (See Section III-A below.)

Note that although the RDF standard chose IRIs as its
system for unique identification, RDF authors can still use
GUIDs, and Section II-B shows how.

B. IRI Schemes
In Section III-A above, it was noted that the IRI scheme

most commonly used in RDF is http:. While this is true,
there are other schemes that work well. But first, why are
http: IRIs so common? In part the answer is that this scheme
possesses a mix of features that make unique identification
easy, with extremely low cost. In addition, http: IRIs can
be resolvable, which means that given appropriately configured
infrastructure, the resource identifier can also be used to
retrieve information about the resource it identifies. A detailed
discussion of how to achieve this goal can be found in [4].

Another IRI scheme that is useful in RDF is the “tag”
scheme. The syntax of tag: IRIs is given in [8], and an
accessible discussion of how to create them can be found in

[9]. The tag: and http: schemes are similar in many ways.
The principle ways in which they differ are the following:

• tag: IRIs are explicitly non-resolvable.
• The root of a tag: IRI may be a domain name, as with
http:, or an email address.

• The tag: scheme formalizes the use of dates in the IRI.
Our original IRI example, translated to the tag: scheme,
looks like so:

tag:org,2014-10-01:dept/project/class/item

where “org” is either a DNS name as before or an email
address.

IRI schemes other than http: and tag: are very rare
in RDF. One other scheme that might seem useful is the
Uniform Resource Name (URN) scheme [10]. However, URN
IRIs require the registration of a namespace [11], which makes
them far too cumbersome for use in RDF. However, there is
a URN namespace already declared for GUIDs [12]. Using
this, RDF authors can easily convert a GUID into a valid IRI
simply by prepending the string urn:uuid:, like so:

urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

Of course, a GUID can also be converted into a valid IRI
by prepending an http: or tag: base IRI.

C. DNS Names

This section discusses a number of issues involving the DNS
name portion of an IRI so that developers can better avoid
them.

Example Domains: Occasionally, an IRI author may not
have a DNS name to which he or she can lay claim. Unless
the work is truly intended as an example, it is best to avoid
using the reserved names example.org or example.com.
IRIs have a tendency to rapidly work their way into many
nooks and crannies of a software system (such as queries,
source code, or rules), so that the global search-and-replace
operation to switch away from example.org that seems so
easy at the beginning quickly becomes a large undertaking that
inconveniences the whole development team. Instead, either
acquire a proper domain name or use tag: IRIs containing
an email address.

Contractors: Contractors who are working on behalf of
another organization may be required to use the DNS name
of their customer. In such cases, contractors should take care
to be sure that the appropriate individuals in the customer
organization know that this is happening so that naming
collisions do not occur. One easy and effective way that the
customer organization can solve such problems is to reserve
to the contractor a subset of their IRI space by allocating an
IRI segment beyond the DNS name to the contractor’s project.

Resolvable IRIs: A popular way to expose semantically en-
coded data is via the Linked Open Data (LOD) methodology.
One of its tenets is that RDF IRIs should always be resolvable,
and that when resolved, an IRI should return some information
about the concept it identifies. A discussion of best practices
for implementing such systems can be found in [4]. A number

19

of issues can crop up in these cases that developers should be
careful to consider:

• Resolvable IRIs require a DNS name that resolves to an
actual Web server. In a large enterprise such as the DoD
or IC, these tasks may require considerable administrative
effort and entail non-trivial approval periods. Some cases
may also require security authorizations. Thus, develop-
ers must establish DNS names and servers as early as
possible in order to avoid changing IRIs mid-project.

• Be sure to check early in your project whether organiza-
tional security policies require that web traffic runs over
secure connections. This is a frequent requirement on
DoD and IC projects. In such cases, your IRIs will need
to use the https: scheme.

• DoD and IC projects that result in an operational system
typically must establish development and test deploy-
ments in addition to the operational system itself. These
will necessarily have different DNS names, resulting in
separate IRI spaces. Queries, source code, and rules,
however, will by default contain a single DNS name, and
will therefore break when moved from development to
test unless a more sophisticated approach is devised. One
partial solution is to segregate the ontologies on a separate
server that is common to all of the deployed systems.
Since the ontologies are typically read-only static content,
this server can be an incredibly simple deployment that
never changes. Since many of the IRIs that appear in
queries, source code, and rules are taken from the on-
tologies, this will substantially decrease the number of
IRIs that break when moving between deployments.

• Classified systems must sometimes run on multiple, iso-
lated networks. However, the entities that are identified on
the lower networks are typically also present on the upper
ones. Thus, the IRIs that identify these entities should be
the same in all cases. In an LOD scenario, this means
that corresponding servers on different networks should
have the same DNS name.

D. Allowed Characters
One confusing point about RDF IRIs is that the portion after

the base IRI is allowed to contain a broad range of characters
directly and nearly any character in an escaped (or percent-
encoded) form. However, as a practical matter, the characters
allowed in this portion of the IRI are limited to the following:

• The first character must be a letter or underscore, and
• Subsequent characters must be letters, underscores, hy-

phens, periods, or digits.
The reason for this is that in many contexts the base IRI

is assigned a short prefix, which is used to abbreviate. For
instance,

http://org/dept/project/class/item

can be written more concisely as p:item in a document that
declares a prefix like so:

prefix p: <http://org/dept/project/class/>

This prefix syntax is borrowed from eXtensible Markup
Language (XML) namespaces, where the abbreviated form is
called a QName (qualified name), and the portion following
the prefix is called a local name. The XML syntax for a
local name is much more restrictive than the IRI syntax, as
noted above. Thus, for reasons of convenience, most RDF
authors limit themselves to the more restrictive syntax so
that they can use prefixes to abbreviate their IRIs. This is
particularly helpful for making SPARQL Protocol and RDF
Query Language (SPARQL)2 queries readable [13], but it also
helps when data is viewed in Turtle (.ttl) syntax [14].

E. IRIs as Content

While forming IRIs, it is natural and proper to put some
thought into their information content. However, at query time,
IRIs should be considered to be opaque identifiers devoid of
content other than their ability to uniquely identify a resource.
The reason for this is that semantic query languages and
query processors are poorly adapted to efficiently parsing out
pieces of IRIs. Therefore, if there is information embedded in
your IRIs that you wish to access from queries, duplicate that
information in properties designed for that purpose.

III. IRIS FOR NON-RDF SOURCES OF RECORD

Over the last decade, Semantic Web technologies have
proven to be an effective approach for solving data integration
problems. Usually this involves creating an RDF representa-
tion of data from an existing, non-semantic source of record.
The RDF may then be stored in, for example, a triple store
such as Raytheon BBN Technologies’s (BBN’s) ParliamentTM

[15],3 or it may be generated on demand and fed dynamically
to the requesting activity, as with a federated query system
like BBN’s AsioTM [16].

Whether stored or generated on demand, the end result
is that the same data is represented in multiple formats
and places, and in such situations the proper creation and
maintenance of identifiers is crucial. Our goal in such cases is
always to maintain a one-to-one relationship between entities
in the source of record (which may be any kind of identifier)
and their identifiers in other representations (which are always
IRIs in our case). In this section, we consider how best to
accomplish this goal in general, as well as investigate a number
of specific examples.

A. Uniqueness and Reproducibility

To achieve the goal given above, we put forth two guiding
principles for the formation of IRIs:

• Unique: A resource’s IRI must be globally unique, as
discussed above in Section II-A.

• Reproducible: Every time we form the RDF representa-
tion of an entity, the IRI we create must be same one.

2The SPARQL acronym was chosen during a time when recursive acronyms
were in vogue. As a result, the expansion of the acronym is confusing because
it contains the acronym itself.

3http://parliament.semwebcentral.org/

20

http://parliament.semwebcentral.org/

These two tenets correspond to the two halves of the one-
to-one constraint that is our goal. The uniqueness principle
says that no two data items may share the same identifier, and
the reproducibility principle says that no data item may have
two distinct identifiers.

Most people understand the uniqueness principle easily,
both the need for it and how to achieve it. The reproducibility
principle, however, is more subtle: If we encounter the same
entity twice, forming its RDF data representation each time,
then we must form the same IRI for it both times. But why is
this important?

Consider an example system that queries a Relational Da-
tabase Management System (RDBMS) and then translates the
result set into RDF. A straightforward way to do this is to
create an IRI to represent each row (or, more precisely, to
represent the real-world entity represented by the row), and
then transform each column into a property of that resource.
Foreign key columns become object properties, and other
columns translate into datatype properties. So if we issue the
following query:

select employee_id, first_name, last_name,
ssn from Employee where employee_id < 40

and the result set looks like Table I, then the resulting RDF

employee_id first_name last_name ssn

12 Robert Smith 123-45-6789

37 Alice Jones 987-65-4321
TABLE I

EXAMPLE RESULT SET

might look like so:

prefix ont: <http://example.org/ont#>
prefix id: <http://example.org/id#>
id:z138ce39f-0434-4d16-b307-82b9206142b5

a ont:Employee ;
ont:employeeId 12 ;
ont:firstName "Robert" ;
ont:lastName "Smith" ;
ont:ssn "123-45-6789" .

id:z1e036a52-7e1e-4a33-a48f-03837634f776
a ont:Employee ;
ont:employeeId 37 ;
ont:firstName "Alice" ;
ont:lastName "Jones" ;
ont:ssn "987-65-4321" .

Note that the IRIs for the two employee instances are based
on GUIDs.

Now, suppose that later on in the execution of this same
system, another query against the Employee table happens to
return row 37 again. Then the same code will translate the
new result set into RDF. When it returns to row 37, it will get
a GUID just as it always does, generating something like this:

id:zf4139560-8c48-4b4c-a860-5d1bb9e02bdf

a ont:Employee ;
ont:employeeId 37 ;
ont:firstName "Alice" ;
ont:lastName "Jones" ;
ont:ssn "987-65-4321" .

This is exactly the same RDF as before, except that by the
nature of GUIDs, a different IRI is now representing employee
37. The end result is that in RDF, we now have two separate
employees named Alice Jones with employee number 37. In
other words, we have created a coreference where none existed
before. This is exactly what the reproducibility principle seeks
to avoid — unnecessary coreferences — and it also illustrates
why GUIDs are best avoided in RDF resources under most
circumstances. (For an exception, see Section III-B.)

One way to avoid the coreference created in this scenario is
to identify employee 37 by the IRI id:employee37. Using
the primary key from the RDBMS table ensures that every time
we encounter row 37, we will form the same IRI. But what
if we encounter Alice Jones in a different context, say in an
RDBMS table at the Internal Revenue Service (IRS)? Now we
cannot expect that Alice will be associated with the number 37,
because that number is an internal implementation detail of her
employer’s database. In order to avoid creating a coreference
in this case, we might turn to Alice’s Social Security Number
(SSN). This information will almost certainly be in both
databases, because both the IRS and Alice’s employer are
concerned about her income tax. Thus if we identify Alice
by the IRI id:ssn-987-65-4321, we can be sure that
Alice will be a single, unified entity across these two separate
organizations.

Generalizing from this particular example, we see that to
comply with the reproducibility principle, the information used
to form a resource’s IRI should be semantically intrinsic to the
thing being identified. Ideally, this should hold true whether
we encounter the entity in a repeat of the original context (e.g.,
the same source of record) or in a different context altogether
(such as a source of record in a different organization).

Clearly, if we encounter the entity in two very different
contexts, we may discover that there is no identifying in-
formation held in common. The scenario above was cleverly
constructed so that a solution satisfying the reproducibility
principle was readily available. However, if we add a third
database to this scenario from the immigration agency of a
non-U.S. government, then the record of Alice’s visit while
on vacation will almost certainly not contain her SSN.

Thus, it is important to realize that while the uniqueness
principle is of paramount importance, never to be violated, the
reproducibility principle is really much more of a guideline to
strive for, but which usually requires some carefully chosen
compromises.

B. Example Scenarios

In this section, we seek to explore a variety of data integra-
tion scenarios to see how the uniqueness and reproducibility
principles can best be achieved.

21

Derivation from a single source of record: In cases where
the RDF will always be derived from a consistent source of
record, we look to the identification system used in the source
of record itself. One common case is a database table that
uses a sequence number for its primary key. In this case, we
can use the primary key itself to form the resource identifier,
but as with the example given in Section III-A, this will
cause a coreference whenever the same real-world entity is
encountered in a different source of record. Thus, if the table
contains a semantic key, i.e., a key that has semantic meaning
intrinsic to the entity represented by the table, that may be
preferable.

Note that a key, and particularly a semantic key, can span
several columns. In such cases, the individual values from
these columns must be combined to form the IRI. Section III-C
shows one way to do this correctly and without producing long
and unwieldy IRIs.

Occasionally, you may find a database table whose primary
key is a GUID column. (This happens most often with
Microsoft SQL Server.) This is one occasion when using a
GUID in your IRIs is a reasonable thing to do, because the
GUIDs come from the source of record, rather than being
generated anew every time the IRI is created.

Derivation from multiple sources of record: Sometimes
there are multiple sources of record that contain overlapping
data sets. If the sources of record were built within the same
organization, they may have a common identifier system that
can be leveraged to create consistent IRIs across the sources
of record. Alternately, the entities in question may have a
well-known standard system of identification, such as airplane
tail numbers or merchant ship registration, that is included
in all of the sources of record. However, in the general case
of multiple sources of record that were built independently,
the sources of record will not have a common system of
unique identifiers. In such cases, it may be necessary to encode
data from each source of record in isolation, resulting in
potential coreferences, and then apply a coreference resolution
algorithm to identify and merge the coreferences after the fact.
Such algorithms are beyond the scope of this paper.

Flat file sources of record: When a flat file is nicely
designed, it presents no issues that are not covered by the
scenarios discussed above. Unfortunately, flat files are often
more ad hoc than databases, with little thought given by their
creators to identification of the entities contained within. As
a result, it is common when translating a flat file into RDF
to discover that there is no column that serves the purpose of
identifying the row.

If possible, try to identify a subset of the columns in the
file that uniquely identify the entity represented by the row. In
particularly difficult cases, the author has resorted to regarding
all of the columns as the key. This approach will tend to
create coreferences, but it has the best chance of satisfying
the uniqueness principle.

An approach that is not recommended is to use the flat file’s
name and/or path to form part of the IRI for each row. This
is usually not a good idea because the file name and location

can be changed without any change to the file content, and
therefore without a change to the semantics of the entities
represented therein. In other words, every time the file is
moved or renamed, there is potential to create coreferences
for all of the contained entities.

Derivation from a single source of record, with inter-
mediate processing: Consider a case where there is a single
source of record, like a database, that feeds data through
some process (or set of processes), transforming or enriching
the data on the way, and then we wish to render the final
output as RDF. By far the best approach to forming IRIs in
such a case is to find the identifying information from the
original source of record and make sure that this information
is carried throughout the processing chains. This enables the
IRIs to be constructed independent of the particular processing
steps, and it also allows a consistent IRI for an entity that
passes through multiple processing chains, thereby avoiding
unnecessary coreferences.

Sub-row entities: In simple cases, each row in a database
table translates into one RDF entity, as outlined in Sec-
tion III-A. However, ontologies are often more structured than
database schemas, and so what appears as just more columns
in a database table may well be a separate entity in your
ontology. Thus, it is often the case that one database row
translates into multiple related resources, each with its own
properties, in RDF.

Some sub-row entities are logically part of the entity repre-
sented by the row in which they occur. In such cases, a handy
way to form the IRI is to use the IRI for the row entity and
then append additional key fields to distinguish it from the
row entity.

Other sub-row entities are logically independent of the entity
represented by the row in which they occur. An easy way to
distinguish whether a sub-row entity falls into this category
is to ask yourself the following question: “If the columns
containing the sub-row entity in two rows contain the same
values, should the end result be two row entities related to
one sub-row entity?” If the answer is yes, then the sub-row
entity is logically independent. In this case, you will want to
form the IRI for the sub-row entity from only those columns
containing the sub-row entity much as if they were a row in
a separate table.

C. Avoiding Overly Long IRIs
As indicated in the above example scenarios, sometimes

many individual pieces of information must be combined into
a single IRI. This can result in an enormously long IRI, and
it can also result in arbitrary characters that must be escaped.
A handy way to avoid this situation is to concatenate the indi-
vidual strings and then run the result through a cryptographic
message digest (or hash) algorithm. Sample Java code for this
procedure is shown in Figure 1.

There are a couple of subtleties to this procedure that require
some explanation. First, the use of a hash weakens the unique-
ness guarantee. However, cryptographic hash algorithms are
designed specifically to avoid collisions, and so the probability

22

static String encode(List<String> keys)
{

StringBuilder buf = new StringBuilder();
boolean isFirstKey = true;
for (String key : keys)
{
if (!isFirstKey)
{

buf.append(’,’);
}
if (key.contains("\""))
{

buf.append(’\"’);
buf.append(
key.replace("\"", "\"\""));

buf.append(’\"’);
}
else if (key.contains(",")

|| key.contains("\r")
|| key.contains("\n"))

{
buf.append(’\"’);
buf.append(key);
buf.append(’\"’);

}
else
{

buf.append(key);
}
isFirstKey = false;

}
try
{
MessageDigest md = MessageDigest

.getInstance("SHA-256");
byte[] input = buf.toString()

.getBytes("UTF-8");
HexBinaryAdapter hba

= new HexBinaryAdapter();
return hba.marshal(md.digest(input));

}
catch (NoSuchAlgorithmException
| UnsupportedEncodingException e)

{
// This should never happen, because
// all JVMs must support the SHA-256
// hash and UTF-8 char encoding.
throw new RuntimeException(e);

}
}

Fig. 1. Hashing a List of Strings for Inclusion in an IRI

of this procedure causing a collision of IRIs is vanishingly
small when a strong algorithm such as SHA-256 is used.

Second, a quick examination of the code in Figure 1 reveals
that the individual pieces of key material are not simply
concatenated, but rather encoded as if they were a row within
a Comma-Separated Values (CSV) file. The reason for this
is that string concatenation is not an invertible operation.
For instance, if we concatenate “their reversible”, we get
exactly the same result as if we concatenate “the irreversible”.
However, when we CSV-encode these two pairs of strings, we
get “their,reversible” and “the,irreversible”, which are distinct.
Thus, the use of CSV encoding upholds the uniqueness
principle by assuring that two distinct keys are not mapped
to a single IRI.

IV. CONCLUSION

Though the IRI lies at the heart of the RDF standard,
creating IRIs for RDF resources is a topic that is often glossed
over in the literature. In this treatment, we hope to have given
the reader a solid understanding of the issues underlying the
creation of effective IRIs, as well as specific advice for a range
of scenarios relating to structured, non-RDF sources of record
as well as situations that arise in DoD, IC, and government
contracting.

V. GLOSSARY

Asio AsioTM is BBN’s semantic federated query
framework. This is not an acronym. It is simply
a name derived from a genus of owls. (p. 3)

BBN Raytheon BBN Technologies, Inc. (p. 3)
CSV Comma-Separated Values (p. 6)
DNS Domain Name System (pp. 1–3)
DoD Department of Defense (pp. 1, 3, 6)
GUID Globally Unique Identifier (pp. 1, 2, 4, 5)
IC Intelligence Community (pp. 1, 3, 6)
IRI International Resource Identifier (pp. 1–6)
IRS Internal Revenue Service (p. 4)
LOD Linked Open Data (pp. 2, 3)
Parliament ParliamentTM is BBN’s triple store, so named

because “parliament” is the collective noun for
a group of owls. A triple store is a specialized
database tuned to the unique needs of the Se-
mantic Web data representation. (p. 3)

RDBMS Relational Database Management System (p. 4)
RDF Resource Description Framework (pp. 1–6)
SPARQL SPARQL Protocol and RDF Query Language.

This acronym is a bit confusing, because it
was conceived when recursive acronyms were
popular. (p. 3)

SSN Social Security Number (p. 4)
URI Uniform Resource Identifier (p. 1)
URN Uniform Resource Name (p. 2)
UUID Universally Unique Identifier (p. 1)
XML eXtensible Markup Language (p. 3)

23

VI. REFERENCES

[1] M. Düerst and M. Suignard, “Internationalized Re-
source Identifiers (IRIs),” IETF, Request for Comments
3987, Jan. 2005. [Online]. Available: http://tools.ietf.
org/html/rfc3987 (cit. on p. 1).

[2] T. Berners-Lee, R. T. Fielding, and L. Masinter, “Uni-
form Resource Identifier (URI): Generic Syntax,” IETF,
Request for Comments 3986, Jan. 2005. [Online]. Avail-
able: http://tools.ietf.org/html/rfc3986 (cit. on p. 1).

[3] G. Schreiber, Y. Raimond, F. Manola, E. Miller, and
B. McBride, “RDF 1.1 Primer,” W3C, Working Group
Note, version 1.1, Jun. 24, 2014. [Online]. Available:
http://www.w3.org/TR/rdf-primer/ (cit. on p. 1).

[4] L. Sauermann, R. Cyganiak, D. Ayers, and M. Völkel,
“Cool URIs for the Semantic Web,” W3C, Interest
Group Note, Mar. 31, 2008. [Online]. Available: http:
//www.w3.org/TR/cooluris/ (cit. on p. 2).

[5] “223 Best Practices URI Construction,” W3C, Wiki,
Mar. 14, 2012. [Online]. Available: http://www.w3.org/
2011/gld/wiki/223_Best_Practices_URI_Construction
(cit. on p. 2).

[6] P. Bryant, “REST-ful URI design,” 2PartsMagic Blog,
May 30, 2012. [Online]. Available: http : / / blog .
2partsmagic.com/restful-uri-design/ (cit. on p. 2).

[7] M. T. C. Benitez, “Best Practice for Web Data URI,”
W3C, Editor’s Draft, Jun. 10, 2014. [Online]. Available:
http://dragoman.org/duri/ed-1.html (cit. on p. 2).

[8] T. Kindberg and S. Hawke, “The ‘tag’ URI Scheme,”
World Wide Web Consortium, Request for Comments
4151, Oct. 2005. [Online]. Available: http://tools.ietf.
org/html/rfc4151 (cit. on p. 2).

[9] ——, (Jul. 9, 2008). Tag URI, [Online]. Available: http:
//www.taguri.org (cit. on p. 2).

[10] R. Moats, “URN Syntax,” IETF, Request for Comments
2141, May 1997. [Online]. Available: http://tools.ietf.
org/html/rfc2141 (cit. on p. 2).

[11] L. L. Daigle, D.-W. van Gulik, R. Iannella, and P.
Faltstrom, “URN Namespace Definition Mechanisms,”
IETF, Request for Comments 2611, Jun. 1999. [Online].
Available: http : / / tools . ietf . org / html / rfc2611 (cit. on
p. 2).

[12] P. J. Leach, M. Mealling, and R. Salz, “A Universally
Unique IDentifier (UUID) URN Namespace,” IETF,
Request for Comments 4122, Jul. 2005. [Online]. Avail-
able: http://tools.ietf.org/html/rfc4122 (cit. on p. 2).

[13] S. Harris, A. Seaborne, and E. Prud’hommeaux,
“SPARQL 1.1 Query Language,” W3C, Recommenda-
tion, version 1.1, Mar. 21, 2013. [Online]. Available:
http://www.w3.org/TR/sparql11-query/ (cit. on p. 3).

[14] E. Prud’hommeaux, G. Carothers, D. Beckett, and T.
Berners-Lee, “RDF 1.1 Turtle, Terse RDF Triple Lan-
guage,” W3C, Recommendation, version 1.1, Feb. 25,
2014. [Online]. Available: http://www.w3.org/TR/turtle/
(cit. on p. 3).

[15] D. Kolas, I. Emmons, and M. Dean, “Efficient Linked-
List RDF Indexing in Parliament,” in Proceedings of the
Fifth International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS 2009), ser. Lecture
Notes in Computer Science, vol. 5823, Washington, DC:
Springer, Oct. 2009, pp. 17–32. [Online]. Available:
http://ceur-ws.org/Vol-517/ (cit. on p. 3).

[16] D. Kolas, “Query Rewriting for Semantic Web Infor-
mation Integration,” in Proceedings of the Sixth Inter-
national Workshop on Information Integration on the
Web (IIWeb-07), at the Twenty-Second Conference on
Artificial Intelligence (AAAI-07), Vancouver, Canada,
Jul. 2007. [Online]. Available: http : / /www.aaai . org /
Papers/Workshops/2007/WS-07-14/WS07-14-008.pdf
(cit. on p. 3).

24

http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/cooluris/
http://www.w3.org/TR/cooluris/
http://www.w3.org/2011/gld/wiki/223_Best_Practices_URI_Construction
http://www.w3.org/2011/gld/wiki/223_Best_Practices_URI_Construction
http://blog.2partsmagic.com/restful-uri-design/
http://blog.2partsmagic.com/restful-uri-design/
http://dragoman.org/duri/ed-1.html
http://tools.ietf.org/html/rfc4151
http://tools.ietf.org/html/rfc4151
http://www.taguri.org
http://www.taguri.org
http://tools.ietf.org/html/rfc2141
http://tools.ietf.org/html/rfc2141
http://tools.ietf.org/html/rfc2611
http://tools.ietf.org/html/rfc4122
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/turtle/
http://ceur-ws.org/Vol-517/
http://www.aaai.org/Papers/Workshops/2007/WS-07-14/WS07-14-008.pdf
http://www.aaai.org/Papers/Workshops/2007/WS-07-14/WS07-14-008.pdf

