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Abstract—In this position paper we argue for the role that
Topological Data Modeling (TDM) principles can play in pro-
viding a framework for sensor integration. While used success-
fully in standard (quantitative) sensors, we are developing this
methodology in new directions to make it appropriate specifically
for semantic information sources, including keyterms, ontology
terms, and other general Boolean, categorical, ordinal, and
partially-ordered data types. Given pairwise information source
integration principles, TDM can measure overall consistency,
and most importantly, reveal cyclic dependencies amongst data
sources where conflicts might not be able to be identified. We
illustrate the basics of the methodology in an extended use
case/example, and discuss path forward.

I. INTRODUCTION AND MOTIVATION

There is a need to develop systems to establish situational
awareness of events based on multiple real-time information
feeds. Information about a typical public event may be avail-
able from published news reports, cameras, audio streams,
eyewitness blog posts, public twitter feeds, and police infor-
mation. What are the characteristics of such an information
integration problem? What is the significance for modeling
choices of the fact that (some of) these input feeds are of a
semantic nature? How can we then integrate such multiple
feeds to form a holistic operational picture of the relevant
situational characteristics, such as participants, identities, atti-
tudes, and preferably content? How do we assess consistency
of data values given overlapping measurements (different units,
vocabularies, numerical types)? How can we identify locally
or globally consistent or inconsistent data, or regions of the
network where such conflicts may not be able to be identified?

At present there are no rigorous mathematical techniques
deployed to integrate qualitative, semantic information (e.g.
from textual analytics) with traditional quantitative signals
and sensors data [7]. But there is a provably well-justified
mathematical approach to approach this problem. We propose
Topological Data Modeling (TDM) techniques from topology,
combinatorics, and category theory to address problems in in-
formation integration, extending to semantic data sources. The
mathematical tools of TDM include machinery like topological
spaces, set systems, cell complexes, simplicial complexes,
delta complexes, homology and co-homology, and sheafs and
co-sheafs to represent both the properties of each analytic, and,
most importantly, their pairwise and multiway interactions.

While initially proven to be tremendously valuable in
traditional signal analysis (e.g. radar networks or collections of

optical cameras [9]), TDM methods using persistent homology,
finite topology, and sheaf theory are increasingly penetrating
data analytics and knowledge discovery [3]. Extensive theoret-
ical work in sheaf theory [6] leads to powerful detection and
inference methodologies in the abstract. When we cast appli-
cations into sheaves, the theory does the work of providing a
systematic, algorithmic way to globalize data. These methods
promise the possibility of critical new capabilities, including:

• Modeling the structural connectivity of information
networks, representing multi-way interactions and in-
formation overlaps among heterogeneous sensors.

• Modeling the data content flowing within such net-
works, so that given knowledge of each sensor individ-
ually, and knowledge of locally consistent interactions,
it can be possible to automatically generate a candidate
global view of the integrated sensor network.

• Measuring the overall topology of the resulting net-
work, providing critical information about where
cyclic dependencies may hide latent inconsistencies.

• And finally, measuring a network’s sensitivity to vari-
ation, perturbation, or reliability of the constituent
sensors and their connections.

We abstract the concept of a “sensor” from an instrument
generating a quantified signal to a generic information process
returning a stream of observations, either direct measurements,
derived measurements, or the output of an analytic process.
We then cast “semantic sensors” more specifically as compu-
tational analytics which return symbolic information such as
keywords, topics, handles, hashtags, proper nouns (individuals,
groups, places), and sentiment, including polarity and intensity.

Mathematically, it may be sufficient to distinguish semantic
sensors as those whose data types are less than numeric or
scalar (integers or real-values, or vectors of these types). This
would include Boolean values (polarity), categoricals (key-
words), small cardinality ordinals (intensity, sentiment, e.g.
high, medium, low), partially ordered entities (ontology nodes),
and semantic graph nodes (social network role). Semantic
sensor data live in mathematical spaces which are relatively
impoverished compared to the richer vector spaces or higher-
order structures normally used in TDM. While this has made
penetration of topological approaches into data analytics more
difficult, more modern methods like sheaf theory, and its
use of “categorification”, do have the ability to build the
needed machinery to support topological representation of
these simpler structures. This provides a method to build
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integrated information networks which combine semantic and
quantitative data in a principled way.

More strongly, TDM promises a mathematical approach
which is not only sound, but axiomatically necessary, in that
theorems indicate that any methods for consistency-checking
and global modeling of linked sensor networks will recapit-
ulate these TDM methods [1]. TDM promises to support a
range of new capabilities such as 1) automatically generating
a global model of how sources can be integrated; 2) assessing
consistency within the model; 3) measuring the degree of fit of
the two models given only partial information about each; and
4) testing for sensitivity with respect to the presence, absence,
or credibility of certain sources.

II. EXPOSITIONAL USE CASE

Our version of TDM proceeds by specifying some sit-
uation in the world about which we have some questions;
and where there are many information feeds, “sensors”, or
“analytics” of different modalities (text, numeric, symbols,
ontologies, places) which inform those questions. We require
that the user specify only the mathematical form of each
input, a mathematical mapping between them pairwise, and
which sensors inform which world variables. So while no
free lunch, TDM has the ability to handle both quantitative
and semantic sources. TDM methods then promise the ability
to calculate global and local consistencies. Additionally, and
quite importantly, a topological analysis can identify cyclic
dependencies amongst information sources, around which it
may not be possible to resolve such inconsistencies, requiring
intervention or recognition from the modeler.

We now introduce the following true story to drive the
example information network. Appropriate for a short position
paper, this example was deliberately constructed to be realistic
while also illustrating the most important features of our TDM
approach. Technical details and example data analysis will
await a larger paper in another venue.

On Mayday, 2014, an exuberant group of protesters staged
a peaceful demonstration in downtown Seattle in support of
immigrant rights and an increased minimum wage. Shortly
thereafter, a group of even more exuberant “anticapitalists”
meandered through the city streets, from downtown to Capitol
Hill, blocking intersections and lighting small fires. Police
mostly watched or “escorted” the protesters, but towards the
end a half dozen people were arrested, and some tear gas was
deployed.1 While a fine time was being had by all that evening,
one of us (Joslyn) was spending a night in in Richland,
Washington. There he followed the events of the day through
the local KOMO TV news feed and a couple of twitter feeds.

Imagine that in addition to these sources, we additionally
had access to overhead video, police scanner audio, Seattle
urban transit cams at major intersections, and the feed from
the Seattle Times. Fig. 1 shows the overall situation, and how
these means might inform our ability to track a collection of
“state variables”:
S = Size of the crowd: An integer.
O = tOpic being protested: Terms like “immigrant rights”,

“minimum wage”, or “anti big business” are normalized

1http://www.huffingtonpost.com/2014/05/02/seattle-may-
day n 5253707.html

into an ontology, each being a node in a partially-ordered
semantic class hierarchy.

P = Place: A categorical variable like “1st and Pine” or
“Broadway”.

I = Intensity: An ordinal variable: “high”, “medium”, “low”.
L = vioLence: A Boolean variable: “present” or “absent”.
R = Role: Another categorical variable, reflecting the kind

of person present, for example “protester”, “police”, “by-
stander”, or “press”.

Fig. 1. An information integration scenario: multiple sensors partially
informing multiple state variables.

We can cast each information source as a separate sensor
or analytic, with structure as follows:

A= police scAnner: A speech recognizer has been trained to
extract specific information about crowd size and location
from speech like “I see about 12 people here at 1st and
Pine, 4 police and 8 protesters”.

C= transit Cameras: Cameras at specific intersections can
show when the crowd has reached those locations, and
whether violence is present.

E= sEattle Times: An anlaytic deployed against the local
newspaper web feed to parse out information about the
presence of people in certain roles and the presence or
absence of violence.

K = KOMO News: The news broadcast shows a video feed
of crowds with a chyron showing the specific intersec-
tions, and video analytics are trained to estimate crowd
sizes and intensity.

T1 = Twitter1: A text analytic extracts keywords to identify
protest topics.

T2 = Twitter2: A different text analytic extracts keywords to
estimate topic, crowd size, and intensity.

V = overhead Video: An algorithm is used to estimate the
number of people shown in a live video stream.

We model the sensors and their overlapping coverage by
letting X = {P, S, O, I, L, R} be the set of state variables
and Y = {A, C, E, K, T1, T2, V } be the set of sensors. Then
table I shows the relationships between these sensors and the
state variables they inform. We cast Table I as a binary relation
B ⊆ X×Y . Then Fig. 2 shows B as a set system (undirected
hypergraph) B(X) ⊆ 2Y on the sensors Y . The variables x ∈
X (i.e., the columns of B) are represented (in red) as subsets
B(x) ⊆ Y of the sensors (in black) which inform them.
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S O P I L R
crowd Size tOpic Place Intensity vioLence? Role

Number Ontology term Intersection Level T/F Police, Protester
Scalar Partial Order Categorical Ordinal Boolean Categorical

A =Police scanner
√ √ √

C=Transit cams
√ √

E=sEattle times
√ √

K=KOMO News
√ √ √

T1 =Twitter1
√

T2 =Twitter2
√ √ √

V =Overhead video
√

TABLE I. SENSOR STRUCTURE.

Fig. 2. Representation of sensor structure B as a set system.

Fig. 3 shows B(X) as a combinatorial structure called an
“abstract simplicial family” [4] with simplices B(x), x ∈ X of
dimension |B(x)|−1. Note that B(S) is the (solid) tetrahedron
{A, K, V, T2}, with the {A, T2} edge underneath, indicating
the four-way interaction of the sensors through the variable S.
Similarly, B(P ) is the filled-in triangle {A, C, K}, while the
triangle {A, C, E} is not filled in, rather consisting of the three
distinct edges {A, C} (for P ), {C, E} (for L), and {E, A} (for
R). Also, the edges {K, T2} (column B(I)) and {T1, T2} (the
column B(O)) are called out from the table and shown in blue,
as are the edges {C, E} and {E, A} (but not {A, C}).

Fig. 3. Representation of B as a simplicial family. The dashed ellipse is
exploded in Fig. 4.

While B(I) ⊆ B(S), none of the other faces are pairwise
inclusive, and so they comprise the maximal faces of an
abstract simplicial complex (ASC), which further contains
all the included sub-faces (all triangles, edges, and vertices).
The characteristic f-polynomial x3 + 5x2 + 11x + 7 of the
ASC serves to enumerate the counts and dimensionalities of
all 24 faces present, not just the “listed” ones read off the
table: one (3D) tetrahedron, five (2D) triangles, eleven (1D)
edges, and seven (0D) vertices. Abstraction to an ASC allows
easy tracking of all k-way interactions dually amongst sensors
and variales. Topological features of the connectivity pattern

can be identified, including loops, voids, etc., where potential
informational feedbacks can result in faulty conclusions. In
our case, the ACK triangle can establish consistency around
place P , while the ACE loop may yield assignments which are
impossible to resolve consistently amongst all three sensors.

We can represent the 24 faces (interactions) distinctly, but
for brevity, we only show the 7 associated with the variable P
in a “sheaf” diagram in Fig. 4. Here each node shows some
combination of the sensors A, C , and K above (black), and
the corresponding variables they inform below (red).

A�

SP�

K�

SIP�

C�

P�

AC�

P�

AK�

SP�

CK�

P�

ACK�

P�

Fig. 4. Sheaf representation of the sensors A, C, K informing the variable
P . The arrows are functions transforming data on faces into a common form.

The sheaf in Fig. 4 shows not just all the combinations
of sensors, but how they can be mapped into each other to
measure consistency. Continuing our drilldown, Fig. 5 shows
this in detail for just the A $→ AK edge of the sheaf, showing
the sensor A (the police scanner) in interaction with the sensor
K. Since sensor A reads off in crowd size, role, and location,
this is in the form of a three-way data tensor as shown on
the right. A and K share only S and P in common, so the
matrix projects over R and aggregates S into the two-way
tensor shown on the left, reported up from K. Here we can
see that there is a match at City Hall (20 total people); a match
for Main Street (5 police and 5 dozen bystanders yields 65 total
people, which is in the interval [50, 100]); but finally a failure
at Broadway (26 ̸∈ [5, 10]).

Note how the semantic information is encoded in the var-
ious linear objects. Through the process of “categorification”,
the semantic variables of role and place (both categoricals)
have unique positional assignments, as reflected in the block
structure of the central matrix, called the “restriction map”.
This kind of categorification supports the integration of quanti-
tiative data with the mathematically weaker data types typically
used for semantic information.

An assignment of data to the sensors which yields consis-
tency over some of the faces is called a “local section” over

95



20 people at City Hall
50 to 100 people on Main St.
5 to 10 people on Broadway

...

10 protesters at City Hall
4 police at City Hall

; dozen bystanders at City Hall
...

0 protesters on Main St.
5 police on Main St.

5 dozen bystanders on Main St.
...

1 protester on Broadway
 1 police on Broadway

2 dozen bystanders on Broadway
...

1 1 12 ... 0 0  0  ... 0 0  0  ...
0 0  0  ... 1 1 12 ... 0 0  0  ...
0 0  0  ... 0 0  0  ... 1 1 12 ...
           ...(                                ) (                                )(                                )=

A
SPR

AK
SP

K
SIP

?=?. . .

Fig. 5. One edge of the sheaf in detail, showing the mapping of the sensor
A against K, checking for consistency.

those faces. Fig. 6 shows a local section over the AC edge and
the isolated vertex K, but no data linking AC to K, which is
just reporting the weather. Fig. 7 shows a global section over
the whole P triangle, indicating agreement of all Place sensors.
Both the degree of consistency and the degree of completeness
can thus be measured over this whole portion of the sheaf.

era at 1st and 
Broadway sees 
peace l acti ty

w e wea er

Broadway

olice scanne owd o rotesters at Ci all

Fig. 6. A local section only over AC and K.

Camera at 1st and 
Broadway sees an
violent crowd

News: "An angry mob at 1st and Broadway"

Police scanner: Crowd of 500 protesters at 1st and Broadway

1st and Broadway

(500 people, 1st and Broadway)

1st and Broadway

1st and Broadway

Fig. 7. A global section over all sensors informing P .

Can this approach be expanded across the entire ASC
to measure consistency globally? The A, C, E triangle has
no three-way interaction, only the three pairwise interactions.
Thus fixing data at one vertex (say A), can constrain another
(say C), which in turn can constrain E, but there is no way
to guaurantee that there will then be final consistency needed
between E and A. Knowing this loop is present is critical to
the modeler, and identifying its presence (and those of more
complexity) involves calculating the homology of the ASC, or
the co-homology of the sheaf. Once identified, the modeler can
be informed of the risk, and allowed to mitigate or address it.

III. PATH FORWARD

This small position paper is intended to evoke the spirit
and flavor of our TDM approach to semantic information
integration. The path forward to a more complete expression
of this idea obviously begins with encoding realistic datasets
to demonstrate operaion of actual algorithms in our example.

We are showing Boolean methods for local sections: quan-
tities and qualities either match exactly, or satisfy some crisp
condition like 65 ∈ [50, 100], 26 ̸∈ [5, 10]. We are also
exploring a mathematical theory of “approximate sections”,
which could provide more robust inferences in the presence of

uncertainty. We will establish distances between numerical and
non-numerical quantities, which can be aggregated to provide a
quantitative degree of match. We will then additionally require
the user specify distances measures between data types in
addition to their types. In the case of fully semantic data, like
the keyterms of ontologies, we could use order metrics on class
hierarchies [8], which we have previously established in the
context of ontology management [5].

Where sheaves provide a bottom-up view of integrating
existing sensors covering certain variables, their dual “co-
sheaves” (where the arrows of Fig. 4 are reversed) support
“world models” which can specify the structure of sensors
needed to cover variables of interest (see Fig. 8). Linear
duality between sheaves and cosheaves corresponds to the
duality between sensor-centric and world-centric modeling
disciplines. Recent results on “sheaf and co-sheaf duality” [2]
allow construction of explicit joint world/source models, so
given a partial world model and a partial source model we may
measure degree of fit and seek sensitivity analysis to source
variations using “topological persistence”.

el d lity

Senso entri

orl entri

e t stre ber a e

e

e t stre a ear et locations

detectorparser

syn esizer p ysical si lation

Sensor da

Fig. 8. A sensor-centric sheaf model of a text-image integration, together
with its dual world-centric model as a co-sheaf.
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