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Abstract. Association rules are essential data mining tool and as such
has been well researched. Many new types of association rules based on
both categorial or quantitative data have been founded ([8], [7], [2], [4]).
Our work is directed to the theoretical features of association rules; espe-
cially, we study a specific class of association rules called d-cosymmetric
rules. We present here some interesting properties of such rules and pro-
vide a definition of rules expressing the significant difference in position,
as an example. We show here that even the usual implicational rules are
special cases of -cosymmetric rules.
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1 Preface

This paper is intended to motivate the rise of a new class of association rules
called d-cosymmetric rules. First of all, we describe here briefly the notions of
the Logic of typed relations used to write the association rules down (for more
information see [6]). After that, we provide some motivating examples of the
representative cosymmetric rule types. We also study several features of the §-
cosymmetric rules and define the §-cosymmetric rule of significant difference in
position. The end of this paper is dedicated to some notes on how to mine the
d-cosymmetric rules.

2 Logic of typed relations

In [6], we have developed the Probabilistic Logic of Typed Relations (PLTR)
suitable for the formal association rules representation. In this section we briefly
and informally describe main notions of that logic to understand the meaning
of its formulae.

The main notion of PLTR is typed relation. Typed relation can be simply
viewed as a data table with finite number of columns and rows. Each column
represents one attribute and a set of such attributes is a type of the relation.

A typed relation is similar to classical concept of mathematical relation. We
can perform usual set operations as union (U), intersection (N) or difference
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Fig. 1. Selection and projection on the relation R.

(—). Furthermore, there exist two crucial relational operations: selection and
projection. Selection is an unary operation of the form

R(C1 A ca A\ _‘63)

where R is typed relation and c¢; A co A —cg is a formula called selection con-
dition. Selection is used to select only the rows satisfying the given condition.
For example, when R is a data table (typed relation) of university students, the
selection

R(age > 25)
picks only the students older than 25. The projection on relation R is an unary

operation of the form
R[Ay, As, ..., Ayl

The projection is used to take out only several columns (attributes) of the rela-
tion R. The choosed attributes are simply written in the comma-separated list
in the brackets. The projection

R[name, date_of_birth]

results simply in the two-column data table with student’s basic personal infor-
mation. Obviously, we can combine selection and projection together to pick up
an arbitrary sub-relation of the original typed relation, e.g.

R(age > 25)[name, date_of_birth],

which results in a relation of basic personal information of students older than
25. (See also figure 1.) The rules written in PLTR use the relational operations
described above to explicitly express a knowledge. For example,

R(age > 65)[blood_pressure] >

mean

R(age < 21)[blood_pressure]

tells that the blood pressure of people older than 65 is in average significantly
higher than for people younger than 21. In the above rule we use a mapping
>% can 1O express the strong difference in the mean value between two “data
columns”. (See also figure 2.) The mapping >7, ..., is simply a function, which
computes a truth value of the strong difference in mean from the given two typed

relations.
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Fig. 2. Comparison of the two disjunctive sub-tables.

3 The d-cosymmetric rules

There exist a wide variety of the association rule types. The best-known are the
rules in the implicational form, which say that when the object satisfies some
condition (called antecedent), it (very probably) gratifies some other condition
(succedent), e.g.:

tequila A salt = lemon. (1)

This rule simply says that customers who buy tequila and salt often buy lemons,
too. However, there are many other rule types (e.g. associational, correlational
etc. — see [1], [2], [5], [7], [8], [9]). It is not our goal to mention each of them.
We preferable move the focus to the rules, which we later name &-cosymmetric.
Consider the subsequent rule from [4]:

sex = “female” = wage: mean = $7.90/hr (overall mean wage = $9.02). (2)

It indicates that the women’s wage mean is significantly different to the rest of
examined objects. That is, the rule says that women earn in average less than
men. (The overall wage is in the rule for information only. To be statistically
consistent, we must compare two disjoint sets of values, e.g. female againts male
—see [4].) In general, the statistical test in the background of the rule compares
two sets of quantitative data — women’s wage against the wage of the remaining
data table (in fact, against men’s wage). We can apply the same mechanism and
mine similar rules, e.g.:

non-smoker A wine-drinker = life-expectancy = 85 (overall = 80).  (3)

Such rule says that people who drink wine and do not smoke live in average
longer than the other people. One can see, we compare the life expectancy of
people who don’t smoke and drink wine against the rest of the data table. Such
property is more visible when re-writing the original rules (2) and (3) (see also
[4]) into PLTR:

R(sex # “female”)[wage] (4)

R(sex = “female” )[wage] <I..an
and

R(non-smoker A wine-drinker)[life-expectancy] >%, ...
R(—(non-smoker A wine-drinker))[life-expectancy].  (5)
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Our research shows that many types of the associational rules can be trans-
formed to the fashion of comparing “something” against “something else” (later
in this paper, we mention some of them). Thus, it is natural to expect that such
rules will have some equal properties and that it will behave similarly in alike
situations. Therefore it is reasonable to identify the common features and use
them in general definition of a new class of association rules. Later in this paper
we try to do so and name the class of such association rules the §-cosymmetric
rules.

Moreover, it is obvious to contemplate rules of type (4) or (5) as formulae
of PLTR. That is, one can treat the symbol <%, .., as a predicate, whose truth
value is the probability (quantity in interval [0, 1]). Such approach corresponds
to the fact that the statistical test gets never the absolute truth — there is always
a chance (non-zero probability) of a false result. In [6], we have developed a logic,
whose truth values are probability intervals ¢ = (I, h) where 0 <1< h < 1.

3.1 Domain

The following subsections try to highlight some properties that are common in
the class of association rules we want to name §-cosymmetric. After that, we
provide the first prototype definition of what §-cosymmetric rule is.

We start with the domain of the d-cosymmetric predicate <*. We can see,
the rules of type (4) or (5) compare two typed relations. It is natural to expect
that when (A, B) is comparable then (B, A) is comparable too.

Let R is a set of all typed relations. We may expect that each d-cosymmetric
predicate’s domain D equals to the carthesian product of some set of typed
relations:

dJKCR:D=Kx K.

This property tells us that for each typed relations A, B € K, (A, A), (A, B) and
(B, A) are comparable by the §-cosymmetric predicate. That is, one can ask the
truth value of the formulae <* (A, A), <* (4, B), <* (B, A) for each A,B € K.

3.2 Minimum difference

When mining the rules of type (4), it is useful to introduce an user-definable
minimum difference parameter §. (See also [4].) Its purpose is as follows: Finding
conditions for which the means of some attribute are merely different does not
lead to interesting information. If we were to discover, for example, a group of
people with life expectancy five days more than the rest population, it may not
be of interest to us even if it passes a statistical test.

The same concept can be used when comparing variances, probability or any-
thing else. — The next thing common to each cosymmetric rule is the possibility
to employ the minimum difference § to it.

In the following, we will write the rule of the minimum difference § the
subsequent way:

R(CY)[A] >5 R(C2)[A] (6)
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or prefixually:

>5 (R(C1)[A], R(C2)[A]). (7)
E.g. see the rule of the difference in wage of at least $5:
R(sex = “female”)[wage] <} .,,.55 R(sex # “female”)[wage]. (8)

3.3 Non-symmetricity

In the following, we will need to define the negation of formula F'. Suppose F is
formula of PLTR (e.g. (4)) whose truth value is ¢ = (I, h). (It stands for the fact
that F' is true with probability p € [I, h].) We define a truth value of formula’s
F negation (denoted —F) as i’ = (1 —h, 1—1).

The third common feature of rules similar to (4) is its non-symmetricity.
Suppose we are convinced of the validity of the rule >* (A, B). What can we say
about the truth value of the rule >* (B, A)? It is clear, if values of relation A
are significantly higher than values of relation B, the contrary statement can’t
be true as well (so the formula (10) holds).

More generally, the truth value of a statement “objects of relation B are
minimally over § less than objects of relation A” equals to a negation of the
statement “objects of relation A are minimally over (—d) less than objects of
the relation B”. Formally written:

<5 (B, A) & (<L, (4,B)). ()
When 6 = 0 is omitted, it leads to
<*(B,A) & —~(<*(A,B)). (10)

3.4 Monotony

Let >3 (A7 B) = (l1,h1) and >3, (A, B) = (la, he) where >* is a predicate
similar to the previously discussed. One can observe that the following holds all
the time:

(51 < 62) = ((ll > lg) AN (h1 > hg)) (11)
Informally, this property says that the increase of the minimum difference § leads
to the reduction of the rule’s probability.

3.5 Quasi-transitivity

We name probable the rule, which truth value ¢ = (I, h) satisfies the condition
0,5 < I. Let <§ (A,B) = <ll,h1>, <§ (B,C) = <l2,h2> and <§ (A, 0) = <l3,h3>.
The last property of rules similar to (4) named quasi-transitivity tells the fol-
lowing:
((0,5 <) A(0,5<1p)) = (0,5<13). (12)

Informally, when some sub-table A is probably lower than B and B is probably
lower than C' it implies that A is probably not higher than C.

Please note, we can’t say that the probability of A <* C'is higher or equals to
the maximum or minimum of the probabilities of A <* B and B <* C, because
such condition holds in fact very seldom.
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3.6 The definition of d-cosymmetric rules

Actually, we are still working on the precise definition of the d-cosymmetric
relationship predicate. We try to unhide the important properties of the rules
similar to (4). The subsequent definition should be considered as the first pro-
totype of our effort. As our knowledge about the rules increases, we will modify
the definition to better pick up the reality.

Definition 1. Let R be the set of all typed relations, V' the set of all truth
values, K C R and D = K x K. We name <* the cosymmetric predicate
schema if <* is a set of relationship predicates <j: D — V (defined for each
0 € R) and if the following holds:

1. For each typed relations A, B € K and § € R holds:
<:§ (AaB) = _'( <i§ (BvA))a

2. For each typed relations A,B € K and 61,02 € R and i1 = (l1,h1), ia =
(l2, ho) such that <} (A, B) =1y, <j, (A, B) = iz holds:

(51 < 52) = (ll > 12) A (h1 > hz),

3. For each typed relations A,B,C € K and 6 € R and i; = (l1,h1), is =
<lg,h2>, i3 = <13,h3>, such that <g (A,B) =11, <§ (B,C) = 1o, <§ (A,C) =
i3, holds:

((0,5 <l1) A (0,5 < 1)) = (0,5 <Is).

The elements <} of the set <* are called d-cosymmetric relationship predicates.
The set D is also called the domain of the cosymmetric predicate schema.

4 Concrete §-cosymmetric predicates

In the above section we have discussed several properties of a so-called cosym-
metric rules. In this section, we provide an exemplary definitions of such rule

type.

4.1 Cosymmetric rules of significant difference in position

The idea for cosymmetric rules of significant difference in position is subsequent.
One may have data which are quantitative and may ask, for which subsets of
data the focused quantitative attribute is rather higher or lower in contrast
to the rest (c.f. rule (4) or (5)). In the other words, one may enquire for all
hypotheses about the differences in position that are supported within data.
We can determine the difference and measure the significancy with appropriate
statistical test of hypotheses.

For such purpose we use the Aspin—Welch statistical test (see [3]), which is
two-sample test on means. The test is similar to the common Student’s ¢ test. It



26 Michal Burda, Marian Mindek, Jana Sarmanové

assumes the two random samples X and Y to be normally distributed (there is
no need of equal variances) and it tests the zero hypothesis Hy : EX — EY =46
against the two-sided alternative hypothesis Hy : EX—EY # §. The test statistic
is

XV -5 [52 52 g
T:f’ where S = H—&—?; f=—= 51

mz(n)f—l) + n2(ny—1)

The hypothesis Hy is rejected if |T| > ty(1 — §), where ¢y is a distribution
function of Student’s distribution with f degrees of freedom.
Pursuant to the one-sided Aspin—Welch statistics, we can define the relation-

ship predicate <}y .; as follows.

Definition 2. Predicate <}yy.5 is a function where an interval of probability
i = (p,p) is mapped the following way to each pair of typed relations (X,Y),
which both are non-empty and both contain just one column.

<f4W;5 <X7Y) = <pap>
for such p where T = t;(p) for T, f and t; as above.

The usage example comes after. Suppose we have a data table D about pa-
tients suffering certain disease. Let such table contains categorial column sex
and quantitative column pressure. One may be interested whether D(sex =
“male”)[pressure| gives higher values than D(sex = “female”)[pressure]. That
is, one enquires the validity of the following rule:

D(sex = “male” ) [pressure] > a0 D(sex = “female”)[pressure].

Now we can take a closer look at the Aspin-Welch predicate <7y to see,
whether it has all the properties enumerated in section 3.6.

Theorem 1. The set of all Aspin—Welch relationship predicates <}y (Vo) is
cosymmetric predicate schema.

Proof. (a) Non-symmetricity. We should check the equivalence (9). Suppose
typed relations X, Y and value 6. Let >%y 5 (X,Y) = (p1,p1) and >4y s
(Y, X) = (pa, p2). We are going to show that p; = 1 — po. Computing the values
of p; and ps; means accordingly to the definition 2 computing the T' characteris-
tics. Thus,

X-Y -6 Y-X— (-6
h=—%— (

=ts(p1) and Ty = f):tf(pg).
We see that T} = —T5, so tf(p1) = —ts(p2). It is commonly known that ¢5(p) =
—ty(1—p), s0 pr =1 —pa.

(b) Monotony. It is commonly known that ¢,(p) is monotone, so when we
increase 4, the value of characteristics T" gets lower and so does the value of the
resultant probability p.

(¢) Quasi-transitivity. the validity of quasi-transitivity condition is evident
from the fact that Vf € N:¢,(0,5) = 0.
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4.2 Funded cosymmetric rules

We can go on and define various other §-cosymmetric predicates similar to the
definition of Aspin—Welch predicate. We don’t have enough space for such defi-
nitions, so let us leastwise mention some possibilities.

We can define many other predicates for determining the significant difference
in position. Such definitions could be based on various existing statistical tests
— it is possible e.g. to employ the rank tests to achieve robust cosymmetric
predicates etc. Similarly to the significant difference in position, we can define
predicates deciding of the difference in variance (dispersion). For example, we
can mine rules telling us whether the presence of some attribute puts there
significant increase of dispersion of some other attribute etc.

We can employ the two-sample tests on binomial distribution to generate
rules about discrete attributes. Generally said, almost every two-sample statisti-
cal test may be considered to be used in a definition of appropriate cosymmetric
predicate.

Let’s have a look on the implicational rules of type (1). We show that we
can define -cosymmetric rules that are analogous to them. Before doing so, we
should describe shortly the meaning of the implicational rules.

The GUHA method ([8], [7]) works with the so-called generalized quantifiers.
These quantifiers form the base for the association rule creation. The rules are of
the form ¢ ~ 1), where ¢ and ¢ are formulae and ~ the generalized quantifier.
The truth of the rule is determined from a 4-field table (see table 1), which
summarizes the amount of objects satisfying ceratin configurations.

Table 1. 4-field table of ¢ and

v Y
%) a b
- c d

The a value denotes the number of objects satisfying both ¢ and v, b is the
number of objects satisfying ¢ and not 1 etc.

The quantifier = pese called also the funded implication is defined for 0 <
p <1 and base > 0 as follows. The rule ¢ =, pase ¥ is true if and only if (iff)

a
> > Base.

P p/N\a > Base

More on such rules can be read from [8], [7] or [10]. The example of the rule

based on the funded implication is (1).

Now, we provide a definition of a predicate that is similar to the quantifier
of funded implication. After that, we show that it is d-cosymmetric.
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Definition 3. Let A and B be the typed relations, each containing exactly one
column with values from the set {0,1} and let 0 € [—1,1]. Let us denote sum(A)
the number of A’s rows possessing “1”. We define the Funded relationship pred-
icate <}, .5 as follows:

‘ sum(A) 1+9

s (A, B) = (1,1
>tnas (A, B) = (1,1) f sum(A) + sum(B) g 2’
. - ‘ sum(A) _ 1490
>%as (A, B) = (0,5,0,5) if sum(A) + sum(B) 2
sum(A) 1+0

huas (ALB) = (0.0)iff oA <

Theorem 2. The set of all funded relationship predicates <},4.5 (V6) is cosym-
metric predicate schema.

Proof. (a) Non-symmetricity. We must prove that {7 > 1T+6 iff aLer < 1%5.

a 145 2a 2a+2b—2b
T e 51> e = o1>0 e

& 1--2

a-+b
(b) Monotony and (¢) Quasi-transitivity are obvious.

b 1-§
>0 <~ m<T

If we omit the minimum support constraint in the definition of the funded
implication, we get the same rules as with the funded d-cosymmetric predicate.
In the other words, the rule

® =p,0 w
is true on data table R iff the following rule has truth value equal to (1,1):

R(W [90] >}nd;(2p71) R(_‘w) [90]

As a result we can say that implicational GUHA rules are just special cases
of d-cosymmetric rules. This surprising result convinced us of the importance of
the d-cosymmetric rules research.

5 Schemes of d-cosymmetric association rules

Consider the general pattern of a J-cosymmetric rule:
R(C1)[A] > R(Co)[A]. (13)

When mining such rules, we can generate and test virtually every combination
of Cy, Cs, A, but doing so makes not much sense. It is because the association
rule mining process results often in a wide range of association rules and it is
sometimes hard to be acquainted with it. Moreover, only several combinations
of conditions C7 and Cy are easy to interpret. Consider the following rule —
although it may be true, the analyst has probably no usage for it.

R(eyes = “blue” A sex = “male”)[fat] >* R(age > 30 A wage < $200)[fat] (14)

In the following, we try to recognize the patterns of J-cosymmetric rules of
better interest than general pattern (13).
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5.1 Scheme “one-against-the-rest”

The easiest pattern of interesting J-cosymmetric rules is
R(C)[A] >* R(-C)[A]. (15)

We take one condition C' and compare values of some quantitative attribute A
for two sub-tables where the first satisfies the given condition C' and the second
doesn’t. Such rules express the condition at which the values of attribute A are
“somehow” significantly higher (or lower) than the rest of the data table. This
basic pattern we name one-against-the-rest.

A pattern similar to (15) is conditional one-against-the-rest:

R(Cl A CQ)[A] > R(ﬁCl AN CQ)[A] (16)
This pattern stands for “when considering only values fulfilling the condition
(4, the additional condition C; indicates the significant increase of value A (in
the sense of >*).” That is, we fisrt restrict ourselves on data rows satisfying Cs
only and then we search simply the one-against-the-rest rules on them.

5.2 Scheme “one-on-one”

The pattern one-on-one is a little more tricky. It is good in situations, when we
want to compare groups created accordingly to one categorial attribute. Suppose
attribute B be categorial with domain {by,bs,...,b,}. Let moreover attribute
A be quantitative. The pattern one-on-one is as follows:

R(B=b)[A] >* R(B=b)[A]  (for i # ). (7)

The rule of such type means: “The objects with value b; in attribute B involve
significantly higher values of attribute A than objects with value b; in attribute
B.” Generally, we can generate and test (g) different hypotheses for a categorial
attribute with n various values.

We can add an additional condition C' to form conditional one-on-one pat-
tern, too:

R(B =b; AC)[A] >* R(B=b; AC)[A]  (for i # j). (18)

6 Some notes of how to reduce the number of resultant
rules

The large size of the association rule mining results is the common problem.
Analyst hardly orientates himself or herself in a big list of mined rules. Therefore,
we enumerate here some hints of how to prune the result from less-interesting
rules and so to restrict the resultant J-cosymmetric formulae to the reasonable
amount.
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1. The significance level — the basic restriction on eventual rules is stating the
minimum probability of its validity — in the other words, one may set a
number p,,;, and throw away every rule, which truth value is below that
threshold. Significance level can be pre-set to any of the usual values as 0,95
or 0,99.

2. Contradictory conditions — the conditions appearing in the rule should be
contradictory. That is, when considering the rule

R(C1)[A] >* R(C2)[A]

then the formula C; A Cy should be contradiction. Rules satisfying that cri-
terion are more easily interpretable and we avoid the uncorrect statistical
comparing of non-disjunctive samples. (Compare with rule (14). Note also
that the rules based on one-against-the-rest or one-on-one are all of contra-
dictory conditions.)

3. Minimum support — minimum support is the best-known instrument for
pruning away the non-interesting conditions from which the association rules
are going to be formed. The minimum support criterion simply says that
there must exist minimally minsup objects satisfying condition that appears
in the rule. If not, such condition isn’t used in the association rule generating
process. The definition of the minsup value greatly improves the efficience
of association rule mining algorithms (see [1], [9], [11] for more information).
Minimum support should be set by expert only.

4. Minimum difference — setting the minimum difference § is analogous to the
stating of minimum rule probability. Doing so we express that we are inter-
ested in the rules, which confirm the dissimilarity to be at least of size 6.
Minimum difference should be set by expert only.

5. FEasy-to-interpret rules only — in section 5 we have shown that generating
all possible rules makes no sense. One may to generate only the rules, which
are easy to interpret. That is, we should generate rules conforming to the
patterns discussed in section 5. A similar criterion on that topic is to use
conditions in conjunctive form only.

7 Conclusion and future work

In this paper, we have introduced the new class of association rules — the §-
cosymmetric rules. We are the first who has shown, how to use the Probability
logic of typed relations (PLTR, see [6]) to express rules of such type. This paper
also shows the benefit of using PLTR as a language for writing the association
rules in, too.

We have identified the basic properties of §-cosymmetric rules and provided
the definition of rules of significant difference in position, as an example. The
second part of this paper was dedidacted to some notes on how to generate the
d-cosymmetric rules to obtain the interesting rules only.

This paper also presents two basic examples of concrete §-cosymmetric rules:
the Aspin—Welch predicate and the Funded predicate. The second is surprise for
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us, since it shows that GUHA’s implicational rules are just the special cases of
more general J-cosymmetric rules.

Our future work will address the deeper research of §-cosymmetric rules. We
will try to unhide more interesting features of that rule class. For example, our
actual research shows that the cosymmetric rules can be used in the definition of
a function that is metric. An interesting task will be undisputably the clustering
using such metrics, etc.

We are also focused on finding the fast and efficient algorithm to mine the
d-cosymmetric rules. A lot of work was done in [4] by Aumann and Lindell.
(However, they didn’t know that they are mining cosymmetric rules — their
algorithm should be slightly modified to comply the wide range of possible rule
types.)

We are also interested in the methods of visualisation of é-cosymmetric rules.
The properties of §-cosymmetric rules make rational to use the slightly modified
Hasse’s diagrams to visualize the rules mined according to the pattern “one-
on-one” discussed above. We also work on employing the conceptual lattices to
represent mined J-cosymmetric rules.
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