
Ontology alignment with OLA
Jérôme Euzenat1, David Loup 2, Mohamed Touzani3, Petko Valtchev4

Abstract

Using ontologies is the standard way to achieve interoperability of heteroge-
neous systems within the Semantic web. However, as the ontologies underlying
two systems are not necessarily compatible, they may in turn need to be aligned.
Similarity-based approaches to alignment seems to be both powerful and flexible
enough to match the expressive power of languages like OWL. We present an align-
ment tool that follows the similarity-based paradigm, called OLA. OLA relies on
a universal measure for comparing the entities of two ontologies that combines in
a homogeneous way the entire amount of knowledge used in entity descriptions.
The measure is computed by an iterative fixed-point-bound process producing sub-
sequent approximations of the target solution. The alignments produce by OLA on
the contest ontology pairs and the way they relate to the expected alignments is
discussed and some preliminary conclusions about the relevance of the similarity-
based approach as well as about the experimental settings of the contest are drawn.

1 Presentation of the system

The ontology alignment tool OLA (forOWL-Lite Alignment) is jointly developed by the teams
at DIRO, University of Montréal and INRIA Rhône Alpes. Its main features are presented below
(see also [5, 6]).

1.1 General purpose statement

OLA is dedicated to the alignment of ontologies expressed in OWL, with an emphasis on its
restricted dialect, called OWL-Lite.

1.1.1 Functional specifications

More than a simple tool for automated alignment construction, OLA is designed as an environ-
ment for manipulating alignments. Indeed, in its current version, the system offers the following
services:

• parsing and visualization of (pairs of) ontologies,
• automated computation of similarities between entities from different ontologies,
• automated extraction of alignments from a pair of ontologies,
• manual construction of alignments,
• initialization of automated alignment construction by an existing alignment,
• visualization of alignments,
• comparison of alignments.

In the following sections we focus exclusively on the automated alignment construction and
the related services offered by OLA.

1 INRIA Rhône-Alpes,Jerome.Euzenat@inrialpes.fr
2 Université de Montréal
3 Université de Montréal
4 Université de Montréal,Petko.Valtchev@umontreal.ca

1.1.2 Basic assumptions

Universality : All the available knowledge about ontology entities should be taken into account
when aligning.

Automation : We required the alignment mechanisms to be of the highest possible automa-
tion degree. In other terms, although the entire alignment process may be set on a semi-
automated basis, the production of an alignment should not require user intervention at the
intermediate steps. Thus, we expect the user to provide a minimal set of parameters for the
alignment process whereas the tool will suggest one or more candidate alignments at the
end. This may be performed in a loop aimed at establishing the optimal parameters for a
specific case or domain. Automation may be used for optimal parameter learning as well.

Uniform comparison : Following the syntactic structure of the OWL language, entities are
divided into categories, e.g.,classes, objects, properties, relations, and only entities of
the same category are compared. Moreover, the entities of a category are compared using
the same similarity function and on the same feature space. In other words, for each pair
of entities of a given category, the same set of similarity factors are considered and the
respective contributions of those factors to the overall similarity of the pair are combined
in a way that depends only on the category.

Comparability of similarity results : To enable comparison of similarity scores between dif-
ferent alignment tasks, the values of the similarity measure are normalized. It is notewor-
thy that normalization is enforced throughout the entire iterative computation process via
an appropriate function definition. Moreover, useful properties of the function as proxim-
ity measure are ensured such aspositiveness, maximalness5, andsymmetry6.

1.1.3 Specific restrictions

• Primary focus is on a rather restricted sublanguage, OWL-Lite. However, some constructs
from the richer OWL-DL are also supported. As a long-term goal, the coverage of the
entire OWL-DL language will be sought.

• No inference is performed on the ontology, in particular inheritance is not used to ex-
pand entity descriptions. This choice has been motivated by efficiency considerations. It
could be easily altered by applying a limited form of reasoning to the available descriptive
knowledge as a pre-processing step.

• Only descriptive knowledge is taken into account: The similarity of an entity pair depends
on all the similarities of neighbor pairs whose membersdescribe the respective initial
entities. In other terms, given two neighbor entitiese1 ande2, e2 may appear in a similarity
expression fore1 if the link between both is considered as a part of the description ofe1.
For instance, we consider that a data type is not described by a property whose range the
datatype represents. Consequently, datatypes are compared in an ontology-independent
manner.

• Entity category separation is enforced in similarity definition: Only entities from the same
category are compared for similarity and hence for alignment. Thus, classes from the
first ontology are compared to classes from the second one, and datatypes to datatypes,
respectively7.

1.2 Specific techniques used

OLA relies on an all-encompassing similarity measure that is defined by a system of quasi-linear
equations. Its actual values are computed as the fixed point of an iterative approximation process
which starts with a lexical similarity measure and gradually brings in contributions from structure
comparing functions. The entire computation process is supported by a graphical representation
of the ontology structure, the OL-Graph of the ontology.

1.2.1 OL-Graph construction

To provide an easy-to-process inner representation of OWL ontologies, we use graph structure
that we called OL-Graph. An OL-Graph is a labeled graph where vertices correspond to OWL

5 With normalization, this amounts to forcing scores of 1 for identical entities within identical ontologies
6 The price to pay for symmetry is the impossibility of detecting subsumption by this purely numerical

procedure.
7 However, some test cases, e.g., the alignment of ontology 301, suggest that a class may be more advanta-

geously aligned to a datatype.

entities and edges to inter-entity relationships. As described in [6], the set of different vertex cat-
egories is: class (C), object (O), relation (R), property (P), property instance (A), datatype (D),
datavalue (V), property restriction labels (L). Moreover, distinction is made between datatype
relations (Rdt) and object relations (Ro), as well as between datatype properties (Pdt) and object
ones (Po).

The relationships expressed in the OL-Graph are:

• specializationbetween classes or relations (S),
• instanciation(I) between objects and classes, property instances and properties, values

and datatypes,
• attribution (A) between classes and properties, objects and property instances;
• restriction(R) expressing the restriction on a property in a class,
• valuation(U) of a property in an object.

The OL-Graph of an ontology is constructed after the ontology is parsed and its entities and
their relationships extracted. So far, we use the OWL API [1] for the parsing of OWL files, but
other possibilities remain open. It is noteworthy that OL-Graph supports well inference process.
For instance, the graphs of an ontology can be easily extended with the descriptive knowledge
derived by inheritance between classes or relations, or by saturation following the property types
(e.g., by adding transitivity arcs for aowl:TransitiveProperty). Further details on OL-Graph
construction will be given in [8]. It does not, however, scale to OWL-Full.

1.2.2 Integrative similarity measure

Our similarity model assigns a specific function to each node category in the OL-Graph. The
functions are designed in a way to cover the greatest possible part of the available descriptive
knowledge about a couple of entities. Thus, given a categoryX, the similarity of two nodes from
X depends on:

• the similarities of the terms used to designate them (may be URIs, labels, names, etc.),
• the similarity of the pairs of neighbor nodes in the respective OL-Graphs that are linked by

edges expressing the same relationships (e.g., class node similarity depends on similarity
of superclasses, of property restrictions and of member objects),

• the similarity of other local descriptive features depending on the specific category (e.g.,
cardinality intervals, property types)

Datatype and datavalue similarities are external to our model. As such, they are provided
by the user or measured by a standard function (e.g., string identity of values and datatype
names/URIs).

Formally, given a categoryX together with the set of relationships it is involved in,N (X),
the similarity measureSimX : X2 → [0, 1] is defined as follows:

SimX(x, x′) =
X

F∈N (X)

πX
F MSimY (F(x),F(x′)).

The function is normalized, i.e., the weightsπX
F sum to a unit,

P
F∈N (X) πX

F = 1. for the
computability For instance, for two classesc, c′ :

SimC(c, c′) = πC
L simL(λ(c), λ(c′))

+ πC
I MSimO(I(c), I′(c′))

+ πC
S MSimC(S(c),S ′(c′))

+ πC
Adt

MSimP (Adt(c),A′
dt(c

′))

+ πC
Ao

MSimP (Ao(c),A′
o(c

′))

The set functionsMSimY compare two sets of nodes of the same category. They are presented
in the next paragraph. Table 1 illustrates the set of similarities in our model.

1.2.3 Similarity-based matching of entity sets

In order to ensure equity between factors inSimX(n1, n2), all similarities of pairs linked with
the same type of links are combined into a unique value. This is achieved by means of a generic
set similarity functionMSim. Its arguments are two setsS1 andS2 of entities of the same
categoryY and the respective measureSimY . The result is an average of the similarities of a

Funct. Node Factor Measure
SimO o ∈ O λ(o) simL

a ∈ A, (o, a) ∈ A MSimA

SimA a ∈ A r ∈ R, (a, r) ∈ R SimR
o ∈ O, (a, o) ∈ U MSimO
v ∈ V , (a, v) ∈ U MSimV

SimV v ∈ V value literal type dependent
SimC c ∈ C λ(c) simL

p ∈ P , (c, p) ∈ A MSimP

c′ ∈ C, (c, c′) ∈ S MSimC

simD d ∈ D λ(r) XML-Schema
SimR r ∈ R λ(r) simL

c ∈ C, (r, domain , c) ∈ R MSimC
c ∈ C, (r, range , c) ∈ R MSimC
d ∈ D, (r, range , d) ∈ R SimD

r′ ∈ R, (r, r′) ∈ S MSimR

SimP p ∈ P r ∈ R, (p, r′) ∈ S SimR
c ∈ C, (p, all , c) ∈ R MSimC
n ∈ {0, 1,∞}, (p, card , n) ∈ R equality

Table 1. Similarity function decomposition (card = cardinality andall = allValuesFrom).

limited subset of the productS1 × S2. The subset represents a matching that optimizes the total
similarity [9]:

MSimC(S1, S2) =

P
〈c1,c2〉∈Pairing(S1,S2) SimC(c1, c2)

max(|S1|, |S2|)

wherePairing(S1, S2) is the optimal matching. For normalization reasons, the sum of the
similarities of the pairs inPairing(S1, S2) is divided by the size of the larger set.

1.2.4 Equation system definition and iterative resolution

As many of the relationships are both-ways, it may be impossible to follow standard procedures
in computing the similarity values. Indeed, the recursive definition of the similarity may easily
lead to circular dependancies of the similarity values for two or more node pairs. In such cases,
an equation system is composed (see [2, 9]) out of the similarity definitions where variables
correspond to similarities of node pairs while coefficients come from weights.

Because of the uncertainty due to the matching functions whose outcome cannot be fixeda
priori , the resulting system is not linear and therefore cannot be solved in a direct way. Instead,
an iterative method is used to approximate the solution (which always exist) as the fixed point
of a vector function. The process starts with the local similarity, i.e., the one computed without
looking at neighbor nodes. It then integrates neighbor similarities and lets them grow as a result
of mutual influence. The growth is steady at each step of the iterative process but is nevertheless
limited from above since neither of the functions from table 1 can reach values greater than 1.
Thus, the process necessarily ends with a vector fixed point whose components are the similarity
values sought.

1.2.5 Lexical similarity measures

OLA relies on WordNet 2.0 [7] for comparing identifiers. For that purpose, it applies a measure
of “relatedness” between two terms. Given a pair of identifiers, the lexical similarity mechanisms
retrieve the sets of synonyms (thesynsets) for each term. A normalized Hamming distance is then
applied to these sets. A variant of the substring distance is used to establish a default similarity
value for identifier pairs. Such a default mechanism allows identifiers that are not entries in
WordNet, e.g., compound identifiers or abbreviations, to be processed in a sensible way.

1.3 Implementation

OLA is implemented in JAVA . Its architecture follows the one of the Alignment API and the re-
cent implementation that was described in [4]. OLA relies on the OWL API [1] for parsing OWL
files. An entire subsystem is dedicated to the onstruction of OL-Graphs on top of the parsed on-
tologies. A set of further components offer similarity computation services: substring distances,
edit distances, Hamming distance, etc. A specific component extracts similarity values from the
limited WordNet interface provided by the JWNL library [3]. Similarity-based matching between
sets of entities is performed by another component. Similarity and matching mechanisms are in-
tegrated into the alignment producing subsystem which supports the entire iterative computation

process. Finally, the VISON subsystem provides a uniform interface to all the automated tools
and visualizes both the input data, i.e., the OL-Graphs, and the final result, i.e., the alignment.

1.4 Adaptation made for the proposal

Several changes have been made to fit the complexity of the comparison. The most noteworthy
one is the abandon of the requirement that all entities of the same category are compared along
the same feature space.

1.4.1 Adaptive description space

We found that the “uniform factor weights” condition tends to favor pairs of entities that have
complete descriptions, i.e., pairs where both the members are connected to at least one descrip-
tive entity for each of the similarity factors in the respective formula. Conversely, pairs where
a particular factor is void tend to score to lesser similarity values. The extreme case is the pair
of Thing classes which, if present, usually have almost no description. With fixed weights for
similarity factors, and hence universal feature space for comparison, theThing class pair will
be evaluated to a relatively weak similarity value and the chances are high for it to be skipped
from the alignment.

For the above reasons, we decided to limit the comparison of two entities to the strict set
of factors which are non void in both. This has been achieved in an uniform way, i.e., through
a division of the initial linear combination formula by the sum of the weights of all non-void
factors. Thus, for a categoryX, the similarity measureSim+

X : X2 → [0, 1] becomes:

Sim+
X(x, x′) =

SimX(x, x′)P
F∈N+(x,x′) πF

whereN+(x, x′) is the set of all relationshipsF for whichF(x) ∪ F(x′) 6= ∅ 8.

1.4.2 Lexical similarity measure

The initial straightforward similarity measure has been replaced by a more sophisticated one
that better accounts for semantic proximity between compound identifiers. Thus, given a pair of
identifiers, they are first “tokenized”, i.e., split into a set of atomic terms. Then, the respective
pairs of terms are compared using WordNet. In fact, their degree of relatedness is computed as
the ratio between the depth of the most specific common hypernym and the sum of both term
depths. Finally, a similarity-based match is performed to establish a degree of proximity between
the sets of terms.

1.4.3 Weight finding mechanism

To increase the level of automation in OLA, a weight-search mechanism was added to the initial
architecture. Indeed, it is far from obvious for a novice user how to weight the different similarity
factors. The underlying module performs several runs of the alignment producing subsystem
with various weight combinations. It keeps only the combination that has resulted in the best
alignment, i.e., the one of the highest total similarity between aligned entities. On the one hand,
this procedure is not realistic in a setting where reference alignments are not given. On the other
hand, if the tests a realistic, then what is learned is the best behaviour of the system in general.

2 Results

The test protocol was as follows. We first looked for the typical weight combinations with an
exhaustive search on a small subset of test cases. The resulting combinations were then applied
systematically to the rest of the ontology pairs. Whenever the results were unsatisfactory, ex-
haustive search was applied to the neighborhood of the best scoring typical combinations. Here
we provide some details on the combinations that were mined out by OLA as well as a brief
comment for every single test indicating the combination of parameters that led to the best scor-
ing alignment. A summary of the results obtained with equal weights for all factors in a category
is provided at the end as well.

8 That is, exists at least oney such that(x, y) ∈ F or at least oney′ such that(x′, y′) ∈ F .

2.1 Preliminary tests

The optimal weight searching engine of OLA was run on a small subset of ontologies that seemed
to represent the extreme cases. The resulting matchings were compared to the respective expected
alignments according to the contest guidelines. The underlying weight combinations and their
respective alignment scores were then analyzed to discover possible trends. For this preliminary
experiment, the step in the variation of the specific weight values was set to 0.2 while the total
of all weights in a category was set to 1. This value provided a good trade-off between the range
of variation for each single weight (i.e., a five-grade scale) and the number of combinations to
be tested. Actually, there are 8 categories with 3, 4 or 5 weights. To bring down the resulting
combinatorial explosion, we used the same weight combination for entity categories sharing the
same set of similarity factors, e.g., datatype and object properties.

The results of this step suggested that there were three weight combinations that can lead to
the best scoring alignment for a test case:

• equal or nearly equal weights for all factors,
• one factor is assigned the total weight of 1 while the other weights are set to 0,
• the total weight of 1 is divided into two non-zero parts assigned to two factors, the remain-

ing factors are given zero weights.

In what follows, we indicate for each test the weight combination that led to the best align-
ment with respect to precision and the lexical similarity used. To provide an idea about the
average performances of OLA, we include also a summary of the scores obtained with perfectly
equal weights in every entity category (i.e., 0.2-step constraint relaxed). It is noteworthy that the
overwhelming majority of the results where precision is below 1.0 are mere lower bounds and
may well be improved through an exhaustive search in the weight combination space. Moreover,
in each test, our tool aligned all the named entities of the basic ontology to the most similar entity
of the compared ontology. Therefore, the recall scores, which depend on the size of the proposed
alignment, are relatively low.

2.2 Concept

In this group of tests, the string distance was systematically used for lexical comparisons.

2.2.101 Identity

The best alignment was obtained with unit weight to lexical similarity and zero weights to the
remaining factors for all categories.

Precision Recall Fallout
1.0 0.611 0.0

2.2.102 Irrelevant ontology

OLA used equal weights to obtain the following result that proved best.

Precision Recall Fallout
1.0 N/A 0.0

2.2.103 Language generalization

The best combination assigns for each category 0.4 weight to the lexical similarity and 0.6 to the
factor representing the links to more general entities (e.g., the super classes of a class, the class
for an individual, the relation for a property restriction, etc.).

Precision Recall Fallout
1.0 0.611 0.0

2.2.104 Language restriction

The combination that scored best is identical to the one described in the previous paragraph.

Precision Recall Fallout
1.0 0.611 0.0

2.3 Systematic

2.3.201 No names

Equal weights were used together with string distance.

Precision Recall Fallout
0.714 0.436 0.286

2.3.202 No names, no comment

The same settings as in test 201 were used.

Precision Recall Fallout
0.626 0.383 0.374

2.3.204 Naming conventions

are used for labels.
The same settings as in test 201 were used.

Precision Recall Fallout
0.901 0.550 0.099

2.3.205 Synonyms

Equal weights and WordNet led to the best precision alignment.

Precision Recall Fallout
0.802 0.490 0.198

2.3.206 Foreign names

The settings used were identical to those of test 205.

Precision Recall Fallout
0.761 0.450 0.239

2.3.221 No hierarchy

The settings used were identical to those of test 205.

Precision Recall Fallout
1.0 0.611 0.0

2.3.222 Flattened hierarchy

The best combination is equal to the one for test 201, except for the class category where the 0.6
weight was assigned to the instance factor. String distance was used as well.

Precision Recall Fallout
0.945 0.577 0.055

2.3.223 Expanded hierarchy

The same settings as in test 222 were used, with the exception of the 0.6 weight in the class
category which was assigned to the datatype property factor.

Precision Recall Fallout
0.989 0.604 0.011

2.3.224 No instances

The same settings as in test 205.

Precision Recall Fallout
1.0 0.968 0.0

2.3.225 No restrictions

The same settings as in the test 222 were used.

Precision Recall Fallout
1.0 0.611 0.0

2.3.228 No properties

Once again, the winning combination had equal weights for all factors with string distance.

Precision Recall Fallout
1.0 0.375 0.0

2.3.230 Flattening entities

The winning weight combination was the one of test 222 but with WordNet-based similarity.

Precision Recall Fallout
0.946 0.476 0.054

2.4 Real ontologies

2.4.301 BibTeX/MIT

The exclusively lexical comparison, e.g., weight of 1.0 to the lexical similarity factors in all
categories, which was supported by WordNet produced the best alignment in this case.

Precision Recall Fallout
0.623 0.513 0.377

2.4.302 BibTeX/UMBC

Same settings as in the 301 test.

Precision Recall Fallout
0.542 0.245 0.458

2.4.303 Karlsruhe

The same settings as in test 205.

Precision Recall Fallout
0.5 0.311 0.5

2.4.304 INRIA

Same settings as in the 301 test.

Precision Recall Fallout
0.671 0.315 0.329

2.5 Summary of equal-weight results

Figure 1 summarizes the results obtained by OLA with equal weight combinations.

Test Nbr Name Lex. Sim. Precision Recall Fallout

101 Id SD 0.97 0.59 0.03
102 Irrelevant SD 1.0 N/A 0.0
103 Language Generalisation SD 0.901 0.550 0.099
104 Language Restriction SD 0.912 0.557 0.088

201 No Names SD 0.714 0.436 0.286
202 No Names, No Comments SD 0.626 0.383 0.374
204 Naming Conventions SD 0.901 0.550 0.099
205 Synonyms WN 0.802 0.490 0.198
206 Foreign Names WN 0.761 0.450 0.239
221 No Hierarchy WN 1.0 0.611 0.0
222 Flattened Hierarchy WN 0.901 0.550 0.099
223 Expanded Hierarchy WN 0.967 0.590 0.033
224 No Instances WN 1.0 0.968 0.0
225 No Restrictions WN 0.967 0.590 0.033
228 No Properties SD 1.0 0.375 0.0
230 Flattening Entities WN 0.92 0.463 0.08

301 BibTeX/MIT WN 0.607 0.493 0.393
302 BibTeX/UMBC WN 0.5 0.226 0.5
303 Karlsruhe WN 0.5 0.311 0.5
304 INRIA WN 0.618 0.439 0.382

Figure 1. Results of the alignment with equal weights. Lexical similarity codes: WN stands for similarity
based on WordNet and SD for (inverted) string distance.

3 General comments

3.1 Comments on the results (strength and weaknesses)

According to experimental results, our algorithm performs well when the structure of the com-
pared ontologies are closed or identical (tests 10X and 22X).

3.2 Discussions on the way to improve the proposed system

Many of the initial assumption and constraints have proven to be a hamper for the establishment
of precise alignments. Here is a discussion of points that could not be corrected during the test
period but that we shall look at in the aftermath.

3.2.1 Limited inference in OL-Graph construction

In the construction process of our inner representation of the ontology we plan to expand class,
relation and property nodes with the description knowledge they inherit from the super entities.
Similarly, in the case where class restrictions fix property values, these values will be brought
down to the descriptions of class instances.

3.2.2 Inter-category comparisons

An extended version of the similarity measure should allow the comparison of entities from
different categories:

• classes with data types,
• object properties with datatype ones,
• objects with values.

3.3 Comments on the test cases

We fond that the proposed testbed cases cover a large portion of the situations that may arise
in ontology alignment practice. However, the targeted variation of the test cases, i.e., on one
specific dimension at once, is a challenge for our algorithm. Indeed, it was designed to be robust

on all features, hence no single feature is favored by the collection of weights. This does not
seem to be a winning strategy with a test set that alters systematically a single feature: Whereas
an algorithm that puts the emphasis on a particular feature will be negatively affected only by the
test that puts noise on that feature, our own system experiences a systematic, albeit much lighter,
negative impact.

3.4 Comments on measures

The proposed measures are definitely a first step in the right direction. Applying information
retrieval metrics such as recall and precision seems to be a good approximation for the expecta-
tions of an alignment tool user. And the underlying model is simple enough to be understood by
an average user. However, there is a price to pay for the simplicity, in particular with similarity-
based alignment tool that grades the strength of an alignment cell. In fact, the counting of “hits”
and “misses” ignores completely the actual strength values which may vary in large ranges.

3.5 Proposed new measures

A possibility would be to integrate the strength of the cells in the precision computation, some-
thing that could be done at low cost (e.g., by adding up strength values instead of counting).

4 Raw results

4.1 Links to the set of provided alignments (in align format)

A .zip archive of all the mentioned results together with indication of the OLA settings used for
their extraction is provided at:
http://www.iro.umontreal.ca/ ∼owlola/align_files.html .

4.2 Matrix format

See section 2.5.

5 Conclusions

It is still too early to draw final conclusions on the capacity of our system and our similarity-based
approach in general to produce meaningful alignments on real ontologies. Indeed, the results on
artificially altered ontologies only suggest the tool is robust to a single, albeit often powerful,
source of noise. Further experiments will be necessary to gain deeper insight into the behavior
of our alignment mechanisms. It is also noteworthy that the time allocated to the preparation of
the contest was clearly insufficient to deal with all the challenging issues it has revealed. We
are nevertheless very obliged to the contest organizers for their excellent initiative. Indeed, our
participation effort yielded a long list of exciting problems to look at.

Despite the partiality of the picture we could draw about the performances of OLA, we would
advocate for similarity as a mechanism for supporting alignment construction. It represents a
good trade-off between several criteria that need to be taken into account in the design of effective
alignment tools: precision of the final results, computational efficiency, good level of automation.

REFERENCES
[1] Sean Bechhofer, Raphael Voltz, and Phillip Lord. Cooking the semantic web with the OWL API. In

Proc. 2nd International Semantic Web Conference (ISWC), Sanibel Island (FL US), 2003.
[2] Gilles Bisson. Learning in FOL with similarity measure. InProc. 10th AAAI, San-Jose (CA US), pages

82–87, 1992.
[3] John Didion. The Java WordNet Library, http://jwordnet.sourceforge.net/, 2004.
[4] Jérôme Euzenat. An API for ontology alignment. InProc. 3rd ISWC, pages 698–712, Hiroshima (JP),

2004.
[5] Jérôme Euzenat and Petko Valtchev. An integrative proximity measure for ontology alignment. InProc.

ISWC-2003 workshop on semantic information integration, Sanibel Island (FL US), pages 33–38, 2003.
[6] Jérôme Euzenat and Petko Valtchev. Similarity-based ontology alignment in OWL-lite. InProc. 15th

ECAI, pages 333–337, Valencia (ES), 2004.
[7] A.G. Miller. Wordnet: A lexical database for english.Communications of the ACM, 38(11):39–41,

1995.
[8] Mohamed Touzani. Alignement d’ontologies dans OWL. Master’s thesis, University of Montréal, in

preparation.
[9] Petko Valtchev.Construction automatique de taxonomies pour l’aide à la représentation de connais-

sances par objets. Thèse d’informatique, Université Grenoble 1, 1999.

