
Collaborative Ontology Building with Wiki@nt
- A Multi-agent Based Ontology Building Environment

Jie Bao and Vasant G Honavar

Artificial Intelligence Research Laboratory
Department of Computer Science

Iowa State University, Ames, IA 50011-1040, USA
{baojie,honavar}@cs.iastate.edu

Abstract. Collaborative ontology building requires both knowledge in-
tegration and knowledge reconciliation. Wiki@nt is an ontology building
environment that supports collaborative ontology development. Wiki@nt
is based on a language extension to SHOQ(D) with O (partial order on
axioms) and P (localized axioms in package) constructors. Wiki@nt sup-
ports integration and reconciliation of multiple independently developed,
semantically heterogeneous, and very likely inconsistent ontology mod-
ules. A web browser based editor interface is provided, with features to
support team work, version control, page locking, and navigation.

1 Introduction
1.1 Ontology Editing is a Knowledge Integration Process
Semantic Web aims to support seamless and flexible access, use of semanti-
cally heterogeneous, networked data, knowledge, and services. The success of
the semantic web enterprise relies on the availability of a large collection of do-
main specific ontologies and mappings between ontologies to allow integration
of data [12]. However, by its very nature, ontology construction is a collabora-
tive process which involves direct cooperation among domain experts, knowledge
engineers or/and software agents, or indirect cooperation through reuse or adap-
tation of previously published, autonomously developed ontologies.

In such settings, typically, different participants have only partial knowl-
edge of the domain, and hence can contribute only partial ontologies of the do-
main.Common tasks involve refinement of a predefined ontology, and integration
of several such partial ontologies to obtain a coherent ontology. Semantic mis-
matches and logical inconsistencies between independently developed ontologies
are unavoidable. Thus, there is an urgent need for principled approaches and flex-
ible tools for allowing individuals to collaboratively build, refine, and integrate
existing ontologies as needed in specific contexts or for specific applications.
1.2 Proposed Approach
While there has been a great deal of work on ontology languages, inference mech-
anisms, as well as ontology editing environments, relatively little attention has
been paid to the development of principled approaches and tools for collabora-
tive ontology building. Existing ontology editing and discovery tools are mostly
focused on stand-alone ontology development rather than collaborative construc-
tion of ontologies. In this paper, we propose Wiki@nt, a general architecture of
an ontology editing, ontology refinement, and ontology integration environment.
Wiki@nt exploits OSHOQP(D), a modular ontology representation language

2

with preference partial order on axioms; a light-weight, browser-based ontol-
ogy editor which requires minimal user effort and allows concurrent editing and
integration of ontologies, is presented.

2 Collaborative Ontology Building as Knowledge
Integration and Reconciliation

We start with a brief discussion of the theoretical basis of Wiki@nt including
logical foundations of ontology languages. We then introduce a modular repre-
sentation of ontologies and discuss some problems in inconsistency reconciliation
with modular ontologies.
2.1 Description Logic as a Knowledge Representation Language

Ontologies are typically described using ontology languages, such as DAML+OIL
or OWL. Description logic(DL) can be used to express the formal semantics of
an ontology written in those languages. A description logic consists of a Tbox
and an Abox, where the Tbox is a finite set of terminological axioms such as
C v D, and the Abox is a finite set of assertional statements such as C(a) or
R(a, b). In particular, SHIOQ(D) is the formal background DL for OWL. A
complete list of SHIOQ(D) and OWL/DL constructors can be found in [10].

However, ontology languages with I (i.e. inverse roles) constructor suffers
from complexity and/or intractability problems when combined with O or (D).
Hence, we use a subset of SHIOQ(D), SHOQ(D), as the basis for a collabo-
rative ontology development environment.

We assume that we have an abstract domain 4I , and a set of data types D
and associate with each d ∈ D, a set dD ⊆ 4D where 4D is the domain of all
types. An example Animal Ontology is given here:

SubClassOf(Dog , Carnivore)
SubClassOf(Dog , Pet)
SubClassOf(Carnivore, Animal)
restriction(eats allValueFrom(Animal))

ObjectProperty(eats) domain(Animal)
individual (billy type(Dog))

2.2 Package-Extended Ontology
Collaborative ontology building demands modularized ontology representation
by its very nature. Current ontology languages like OWL, while offer some de-
gree of modularization using XML namespaces, fail to fully support modularized
semantics. In our previous work [3], we have argued for package based ontology
language extensions to overcome these limitations. In the resulting ontology lan-
guage SHOQP(D), a package is an ontology module with clearly defined access
interface. Mapping between packages is performed by views which define a set
of queries on the referred packages. Semantics are localized by hiding semantic
details of a package with appropriately defined interfaces (special views). Pack-
ages provide an attractive way to compromise between knowledge sharing and
knowledge hiding in collaborative design and use of ontologies.

Table 1 gives the syntax and semantics of P constructors. Let P be the set of
all packages. We define 4P as the domain of P . We assume that the domain of

3

interpretation of all packages 4P is disjoint from the concrete datatype domain
4D, the abstract concept domain 4I , the abstract role domain 4I ×4I and
concrete role domain 4I×4D. The resulting package-extended description logic
language is called SHOQP(D) where P stands for “package-extended”.

Table 1. Syntax and semantics of P Constructors

Constructor Syntax Semantics

Package p pP ∈ 4P

View v vI ∈ 4P

Global Pkg p0 p0 ∈ 4P

InPackage RP RIP ⊆ 4I
T ×4P

HomePackage HP (t) HP (t)I = {p|(tI , p) ∈ RIP }
NestedIn ∈N ∈IN∈ 4P ×4P , ∈IN= (∈IN)+

SLM SLM(t, p) p ∈ 4P can access t ∈ 4I
T iff SLM(t,p)=true

public(t, p) ∀p, public(t, p) = true
private(t, p) ∀p, private(t, p) := (p = HP (t))

protected(t, p) ∀p, protected(t, p) := (p = HP (t) or p ∈N HP (t))
Import im(P1, P2) P2 is imported into P1

2.3 Ontology Reconciliation

As noted earlier, semantic mismatches and possible logical inconsistencies be-
tween independently developed ontology modules make the combining of such
modules a challenging task. Specifically, in the case of two ontology modules α,
β, it is possible that although α ² t, the module resulting from combining α and
β may not entail t i.e., {α, β} 2 t That is, any system for collaborative ontology
building has to provide mechanisms for handling nonmonotonicity.

An example (adapted from [9]) illustrates this problem. A dog is carnivore;
however, a sick dog sometimes eats grass. Formally, we add new axioms to the
Animal Ontology:

DisjointClasses(Plant,Animal)
SubClassOf(SickDog, Dog)

restriction(eats someValueFrom(Plant))

The resulting knowledge base will be inconsistent because a sick dog (which is
a dog) now can eat grass (which contradicts the assertion that dogs are carni-
vores). Several techniques have been developed to reconcile inconsistent ontology
system, such as default logic [2] and defeasible logic [13] [9]. Here we extend our
SHOQP(D) with the OSHOQ(D) [13]. An axiom is said to be defeasible if
some other axiom could defeat (or override) it. The resulting ontology language
is called OSHOQP(D) where O denotes a strict partial order on the axioms.
Definition 1 A OSHOQP(D)-knowledge base is a tuple 〈T , <〉, where T is a
SHOQP(D)-knowledge base and < is a strict partial order between axioms of
T . For each pair a1 < a2, a2 is said to be defeasible while a1 is a (possible)
defeater of a2

For example, if we revisit the Animal Ontology in OSHOQP(D), The ter-
minology T could be rewritten as

4

package(1) package(2)
(1a) public(Dog, 1) (2a) im(2, 1) ; import package 1

(1b) 1 : Dog v 1 : Carnivore (2b) public(Plant, 2)
(1c) 1 : Dog v 1 : Pet (2c) 2 : Plant u 1 : Animal v⊥
(1d) public(Animal, 1) (2d) 2 : SickDog v 1 : Dog
(1e) public(eats, 1) u∃1 : eats.2 : Plant
(1f) 1 : Carnivore v 1 : Animal
(1g) 1 : Carnivore v ∀1 : eats.1 : Animal
(1h) {1 : billy} v 1 : Dog

A simple combination of packages 1 and 2 is inconsistent on (1g) and (2d).
However, with a partial order <, this logical inconsistency can be eliminated.
One such possible partial order is (2d)<(1g) (read as axiom (2d) is stronger
than axiom (1g)). In this case, a specific axiom (2d) defeats the general rule
(1g). When there is a logical conflict between a pair of axioms, the weaker of
the two is discarded. More details of OSHOQP(D) and its reasoning problems
could be found in the unabridged version of this paper [4]

3 Architecture

OSHOQP(D) gives us an expressive language to build ontology from au-
tonomous, distributed, and possibly inconsistent ontology modules. Wiki@nt is
the implementation of an ontology editor based on OSHOQP(D) to support
collaborative ontology building by a community of autonomous domain experts,
organizations, or even software agents.

The name ”Wiki@nt” suggests that it has a wiki-like editing environment.
Wiki is originally a collaborative documentation writing/website building tool.
Typical wiki system includes a script language (usually a simplified subset of
HTML tags), a set of wiki pages written in the script language and shown in
translated HTML pages, a RCS version control system to record modification of
contents, an user profile and concurrent conflict management system to enable
multiple user editing the same contents, a content navigation system such as
showing link-in and link-out pages, and a simple-to-use, browser-based editing
environment to generate or modify content on the fly.

We find that those features are quite desirable in a collaborative ontology ed-
itor. While most widely-used ontology editors, such as Protege and OilEd, work
very well for developing a single ontology module, they do not lend themselves
to collaborative ontology building. This is due to the lack of a built-in formal-
ism to support modular ontology representation, and the lack of support for
communication and cooperation among multiple individuals in editing a shared
ontology consisting of multiple, independently developed modules. To overcome
those deficiencies, we propose using wiki to edit OSHOQP(D) ontology. An
ontology module is composed of one or more wiki pages; multiple users can edit
the same content, with version control and transaction management; ontology
are loaded into or uploaded from a set of wiki pages and managed by an ontology
repository. Figure 1 shows the architecture of Wiki@nt.
3.1 Wiki Engine
A wiki engine should do the tasks of

5

Jena Ontology

Model

Wiki
File(s)

DB

or

C

D

E

F

G

H

Users

Wiki Storage

K

AgnetInf

Agents

Users or Agents

I J

Import/Export

L

Fig. 1. The Architecture of Wiki@nt

– Provides a web interface for ontology editor and browser.
– Translates the ontology markup script to HTML for the web browser.
– Manages the storage of wiki pages, in plain file or database.
– Provides version control. When a modification for an axiom is submitted,

the previous version is stored and could be restored when the committed
version is found incorrect or impropriate.

– Provides transaction management.
– Generates reference report for wiki pages. Terms be used in an axiom group,

and other groups that referring this group, are listed for browsing purpose.
– Generates a RSS feed for ontology repository updates.

The wiki engine we utilized is based on the JSPWiki(http://www.jspwiki.org)
and implemented in Java and JSP.
3.2 Agent Management
Each participant in Wiki@nt is considered as an agent. Agent is assigned with
different privileges, such as ontology administrator and package manager. Agent
could join the editing of any existing ontology module or create new module.

Although our current design of Wiki@nt does not include concrete design of
software agents, we do reserve an RPC interface that enables agents to commu-
nicate with Wiki@nt. The reason is while fully automatic ontology construction
or mapping are still impossible, software agents can assist humans in several
aspects of collaborative ontology development e.g., finding useful concepts and
relations among concepts from original data sources. Small pieces of ontologies,
such as consistent concept (term) in data or concurrence of two concepts, can
be generated by software agents. The results may be subjected to review of do-
main experts, or even other software agents. Thus, in principle, it is possible for
software agents to participate in collaborative ontology building using Wiki@nt.
3.3 Ontology Markup Script

We defined a set of markup script tags to correspond to the syntax of the on-
tologies. When a wiki page is under editing, its wiki markup script is loaded and
translated to user friendly text, such as HTML web page. The syntax is a ex-
tension to OWL to support package and partial order on axioms. Wiki markup
script is a human readable syntax equivalent to the N-Triple syntax. N-Triple
syntax is an alternative to the RDF/XML syntax and each line in N-Triple
serialization is a triple statement with subject, predicate and object.

6

For example, axiom SubClassOf(Dog,Carnivore) in the Animal Ontology
could be represented by N-Triple syntax as: <http://mydomain.org/animal#Dog>
<http://www.w3.org/2000/01/rdf-schema#subClassOf> <http://mydomain.org/
animal#Carnivore>, or in short form <animal:Dog> <rdfs:subClassOf> <animal:Carnivore>.
It’s wiki script is [animal:Dog] [rdfs:subClassOf][animal:Carnivore]

Each axiom is assigned a URI (uniform resource identifier) as label. Thus, for
example, http://mydomain.org/animal/package1#Dog represents Dog v Carnivore
in package(1), Animal Ontology.

User can create a new page or modify the source script of an existing page.
The editing action is assisted by several wizards (such as class creating wizard)
and a browser (eg. Show subclass and superclass of the class in question).

3.4 Memory Management
While most of the popular ontology editors have in-memory model for edited on-
tology, Wiki@nt doesn’t maintain in-memory model for each resident ontology
for several reasons: An in-memory model limits the scalability of the system with
respect to both the axioms number in one ontology and the number of ontolo-
gies in the Wiki@nt ontology repository; In-memory model implicitly assumes
the existence of a global ontology during the ontology development process and
requires monotonic behavior of the ontology - neither of these assumptions is
desirable in a collaborative ontology building scenario. In short, creating a cen-
tralized ontology model in memory defeats the very purpose of having a modular
ontology

Note that that even when the size of the ontology in question is huge, usu-
ally only a small fraction of its axioms are involved during an editing action.
Hence, we store the ontology as a set of separate, possibly distributed blocks
in Wiki@nt. Each block is serialized to external storage when it’s not being ac-
tively edited, and being loaded into the memory only if it’s edited or referred.
A (local or remote) partial ontology model will be dynamically loaded into local
memory in a reasoning process only if it is needed. The partial model could be a
package, a small part of a package, or even an axiom. This is inspired by widely
used techniques of database memory management where partial content of the
database is dynamically loaded and unloaded to allow manipulation of of a much
larger volume of data than can fit in limited memory.

Another technique to reduce memory burden on Wiki@nt server is to build
the dynamically loaded model on client side instead of server side. This is reason-
able since the dynamically loaded model is just a local-interested part of whole
ontology. Technically, this is done by offering a Java Applet interface to read
and update Wiki@nt pages.

3.5 Modularization of Ontology
Ontology stored in Wiki@nt is managed on package level and block level. A
package is a logic module for an ontology, usually from a single participant.
An ontology could be composed by several packages, and one package could be
reused by multiple ontologies.

A block is a set of related axioms inside a package, and will be physically
mapped to a wiki page. A package will include one or more such blocks(pages).

7

Although different decompositions of an ontology package are logically equiva-
lent, the size of each ontology block will affect the convenience and efficiency of
ontology editing and reasoning. It should not be too big (i.e. the whole package),
or too small (e.g., a single triple). In Wiki@nt, we choose axiom groups as ontol-
ogy blocks. Each axiom group contains triples with same subject. For example,
the axiom groups in Animal Ontology package(1) will be Dog, Carnivore, eats,
and billy. Restrictions and anonymous classes, are assigned to the terms from
where they are referred. Each axiom group is translated to wiki markup script
and stored as a wiki page. An ontology could be stored distributedly in multiple
pages, physically in file or database, and could be dynamically, partially loaded
when necessary.

3.6 Ontology exporting/importing
When an ontology is needed e.g., for reasoning, we export wiki pages as a single
ontology file or read an ontology file into Wiki Ontology Repository. The relevant
portion of an ontology is extracted or assembled from the wiki pages. We use the
Jena toolkit to create the in-memory model and as parser/writer for ontology
files.

Each loaded ontology is assigned a unique name, eg. http://mydomain.org/animal/,
and it’s member packages, eg. http://mydomain.org/animal/package1, are reg-
istered to that ontology. It’s also possible that packages from different ontologies
could be reassembled into a new ontology, thus provide a flexible way for ontology
reuse and integration.

3.7 Reconcile the Inconsistency
Inconsistency among modules should be resolved when integrate those modules.
In Wiki@nt, we assume each package should be consistent. A partial order can be
specified on package level, eg. [Package1] [wiki:stronger][Package], which means
all axioms in Package1 are stronger than Package2; it can also be specified on
axiom level, like [Package1:1g] [wiki:stronger][Package2:2d].

The specification of the partial order < among modules and axioms may be
based on principles of:

– reliability of the source of module/axiom
– the social order of the author of module/axiom
– A more recent module/axiom may be preferred over an earlier one;
– exceptions are stronger than the general rules.

Wiki@nt defined two default defeating rules if user not specifies otherwise.
First, ut assigns higher priority to local package axioms relative to axioms from
imported packages in cases where a local package can be seen as an extension
or an exception to a general ontology. Other partial order assignment policies
is based on the social order of the agents in the Wiki@nt community, such as
ontology administrator, package manager and common user.

3.8 Transaction Management
Transaction management is to ensure consistency of module and protect critical
resource from multiple access. It is widely used in DBMS and certain ontology

8

editor, such as OntoEdit [14]. However,OntoEdit only allow locking of concept
hierarchy.

Wiki@nt denies the write-access of agents to a page and related pages if it is
locked by some other agents. Following strategies are used for determining what
pages should be locked:

– If a concept is under editing/locking, its superclasses in the class hierarchy
will be locked.

– If a property is under editing/locking, its superproperties in the property
hierarchy will be locked.

– If a instance is under editing/locking, its belonging class will be locked.
– If a concept, property or instance is under editing/locking, all other concepts,

properties or instances in the same page(axiom group) will be locked.
– If a package is state as being locking, all importing package will be locked.

Locking could be propagated by recursively apply above-mentioned strate-
gies.

4 Summary and Discussion

4.1 Related Work
Collaborative Ontology Editor A number of ontology editors have been re-
ported in the literature [6,11]. However, most existing ontology editors including
the most widely used ontology editors Protege and OilEd provide little support
for collaborative ontology development. Representative editors that support col-
laborative ontology editing include CODE [8], KAON [5], OntoEdit [14], On-
tolingua [7], and WebODE [1] . Most of them provide concurrent access control
with transaction oriented locking, and in some cases, even rollback. However,
none of the existing ontology editors, to the best of our knowledge, provides
principled approaches for manipulating independently developed, semantically
heterogeneous ontology modules or for reconciling logical inconsistencies between
such modules.

One advantage of Wiki@nt over reported editors is its truly distributed nature
for storage of ontology modules. While most editors requires in-memory model
for current-editing ontology, Wiki@nt dynamically load partial model only when
it is necessary, and/or share the memory burden between the server and clients.

Another distinct feature of Wiki@nt is its wiki-based design thus enable it
borrow many well-stablished feature of wiki system, each as user-friendly and
easy-to-use interface, version control, user management, page locking, translating
from script to HTML, and persistent storage in relational database.

Collaborative Knowledge Base Construction Some collaborative knowl-
edge base construction projects, although not focused on ontology building, ad-
dress similar problems. Nooron(http://www.nooron.org) is a knowledge pub-
lishing system and has a wiki for ontology browsing. MnM [15] is an annotation
tool which provides both automated and semi-automated support for annotating
web pages with semantic contents. MnM integrates a web browser with an ontol-
ogy editor and provides open APIs to link to ontology servers and for integrating

9

information extraction tools. However, it doesn’t have concurrent access control.
FoaF(http://www.foaf-project.org/) is an acronym for ”Friend of a Friend” , an
experimental project and vocabulary for the Semantic Web. The project is open
and allows participants to add their own information. The result is an RDF based
knowledge base containing contact and acquaintance information about the par-
ticipants. WikiPedia (http://en.wikipedia.org/) is a wiki-based open-content
encyclopedia that is editable by participants. Articles in WikiPedia are written
in natural language, and the relation between items is not formal. Neverthe-
less, articles can be seen as concepts and links between them seen as properties
among them, in a informal sense.Open Directory Project or called DMOZ
(http://www.dmoz.org/) is an online, open, collaborative taxonomy building
project for web catalog. Now it has a taxonomy tree of over 590,000 categories
and over 4 million classified sites. The relations between DMOZ concepts is strict
”subClassOf”.

Although these projects lack formalized and full-fledged ontologies, they offer
interesting demonstrations of the feasibility of collaborative ontology develop-
ment. Wiki@nt proposed in this paper is inspired by the success of DMOZ and
WikiPedia, and aims to provide support for such efforts using a formal ontology
language to facilitate machine interpretable annotations of data.

4.2 Summary and Outlook

In this paper we have described

– The ontology representation formalism to support modularity and axiom
order.

– A distributed ontology representation and storage methodology based on
wiki.

– A Light-weight ontology editor to support collaborative ontology building.
– Important issues in wiki-based ontology editing, such as transaction manage-

ment, memory management, agent management, modularization of ontology
and inconsistency reconciliation.

Some interesting directions for future work include:

– Incorporation of more advanced transaction management and incorporation
of safe mechanisms for handling simultaneous editing and modification of
ontologies

– Investigation of useful policies for assigning partial order among axioms, in-
cluding those that are base on machine learning or probabilistic approaches.

– Applications of collaborative ontology building environments for informa-
tion integration from autonomous, distributed, semantically heterogeneous
information sources.

– Detailed study of scalability of Wiki@nt, test it with big ontologies such as
WordNet.

Acknowledgments

This research is supported in part by grants from the NSF (0219699) and the
NIH(GM 066387) to Vasant Honavar

10

References

1. J. C. Arpirez, O. Corcho, M. Fernandez-Lopez, and A. Gomez-Perez. Webode: a
scalable workbench for ontological engineering. In Proceedings of the international
conference on Knowledge capture, pages 6–13. ACM Press, 2001.

2. F. Baader and B. Hollunder. Embedding defaults into terminological knowledge
representation formalisms. Technical Report RR-93-20, 1993.

3. J. Bao and V. Honavar. Ontology language extensions to support localized se-
mantics, modular reasoning, and collaborative ontology design and ontology reuse.
Technical report, TR00000341, Computer Sicence, Iowa State University.

4. J. Bao and V. Honavar. Collaborative ontology building with wiki@nt - a multi-
agent based ontology building environment. Technical report, TR00000343, Com-
puter Sicence, Iowa State University, 2004.

5. E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik, D. Oberle,
C. Schmitz, S. Staab, L. Stojanovic, N. Stojanovic, R. Studer, G. Stumme, Y. Sure,
J. Tane, R. Volz, and V. Zacharias. Kaon - towards a large scale semantic web. In
K. Bauknecht, A. M. Tjoa, and G. Quirchmayr, editors, E-Commerce and Web
Technologies, Third International Conference, EC-Web 2002, Aix-en-Provence,
France, September 2-6, 2002, Proceedings, volume 2455 of Lecture Notes in Com-
puter Science, pages 304–313. Springer, 2002.

6. M. Denny. Ontology building: A survey of editing tools. Technical report, O’Reilly
XML.com, November 06, 2002.

7. A. Farquhar, R. Fikes, W. Pratt, and J. Rice. Collaborative ontology construction
for information integration, 1995.

8. P. Hayes, R. Saavedra, and T. Reichherzer. A collaboration development environ-
ment for ontologies. In Proceedings of the Semantic Integration Workshop, Sanibel
Island, Florida,, 2003.

9. S. Heymans and D. Vermeir. Using preference order in ontologies, 2002.
10. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to

OWL: The making of a web ontology language. Journal of Web Semantics, 1(1),
2003.

11. Ontoweb. Deliverable 1.3: A survey on ontology tools.
12. J. A. Reinoso-Castillo, A. Silvescu, D. Caragea, J. Pathak, and V. G. Honavar. In-

formation extraction and integration from heterogeneous, distributed,autonomous
information sources - a federated ontology-driven query-centric approach. In Pro-
ceedings of the IEEE International Conference on Information Reuse and Integra-
tion, 2003.

13. D. V. S. Heymans. A defeasible ontology language. In e. a. E. R. Meersman, Z. Tari,
editor, On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and
ODBASE : Confederated International Conferences CoopIS, DOA, and ODBASE
2002, Lecture Notes in Computer Science, volume 2519, pages 1033–1046. Springer-
Verlag Heidelberg, 2002.

14. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit:
Collaborative ontology development for the semantic web. In Proceedings of the
first International Semantic Web Conference 2002 (ISWC 2002), June 9-12 2002,
Sardinia, Italia. Springer, LNCS 2342, 2002.

15. M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna.
Mnm: Ontology-driven tool for semantic markup. In S. Handschuh, N. Collier,
R. Dieng, and S. Staab, editors, Proceedings Workshop on Semantic Authoring,
Annotation and Knowledge Markup (SAAKM 2002), pages 43–47, 2002.

