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Abstract 
 

Frequent itemset mining (FIM) is an essential part of 
association rules mining. Its application for other data 
mining tasks has also been recognized. It has been an 
active research area and a large number of algorithms 
have been developed. In this paper, we propose another 
pattern growth algorithm which uses a more compact 
data structure named Compressed FP-Tree (CFP-Tree). 
The number of nodes in a CFP-Tree can be up to half less 
than in the corresponding FP-Tree. We also describe the 
implementation of CT-PRO which utilize the CFP-Tree 
for FIM. CT-PRO traverses the CFP-Tree bottom-up and 
generates the frequent itemsets following the pattern 
growth approach non-recursively. Experiments show that 
CT-PRO performs better than OpportuneProject, FP-
Growth, and Apriori. A further experiment is conducted 
to determine the feasible performance range of CT-PRO 
and the result shows that CT-PRO has a larger 
performance range compared to others. CT-PRO also 
performs better compared to LCM and kDCI that are 
known as the two best algorithms in FIMI Repository 
2003. 
 
1. Introduction 
 

Since its introduction in [1] the problem of efficiently 
generating frequent itemsets has been an active research 
area and a large number of algorithms have been 
developed for it; for surveys, see [2-4]. Frequent itemset 
mining (FIM) is an essential part of association rules 
mining (ARM). Since FIM is computationally expensive, 
the general performance of ARM is determined by it. The 
frequent itemset concept has also been extended for many 
other data mining tasks such as classification [5, 6], 
clustering [7], and sequential pattern discovery [8]. 

The data structures used play an important role in the 
performance of FIM algorithms. The various data 
structures used by FIM algorithms can be categorized as 
either array-based or tree-based. An example of a 
successful array-based algorithm for FIM is H-Mine [9]. It 
uses a data structure named H-struct, which is a 

combination of arrays and hyper-links. It was shown in  
[9] that H-struct works well for sparse datasets as H-Mine 
outperforms FP-Growth [10] on these datasets (note that 
both H-Mine and FP-Growth follows the same pattern 
growth method). However, the hyper-structure is not 
efficient on dense datasets and therefore H-Mine switches 
to FP-Growth for such datasets.  

FP-Growth [10] shows good performance on dense 
datasets as it uses a compact data structure named FP-
Tree. FP-Tree is a prefix tree with links between nodes 
containing the same item. A tree data structure is suitable 
for dense datasets since many transactions will share 
common prefixes so that the database could be compactly 
represented. However, for sparse datasets the tree will be 
bigger and bushier, and therefore its construction cost and 
traversal cost will be higher than array-based data 
structures. 

The strengths of H-Mine and FP-Growth were 
combined in the recent pattern growth FIM algorithm 
named OpportuneProject (OP) [11]. OP is an adaptive 
algorithm that opportunistically chooses an array-based or 
a tree-based data structure depending on the sub-database 
characteristics. 

In this paper, we describe our new data structure 
named Compressed FP-Tree (CFP-Tree) and also the 
implementation of our new FIM algorithm named CT-
PRO that was first introduced in [12]. Here we report the 
compactness of CFP-Tree with FP-Tree at several support 
levels on the various datasets generated using the 
synthetic data generator [13]. The performance of CT-
PRO is compared with Apriori [14, 15], FP-Growth [10], 
and OP [11].  

Sample datasets such as real-world BMS datasets [3] or 
UCI Machine Learning Repository datasets [16] do not 
cover the full range of densities from sparse to dense. 
Some algorithms may work well for a certain dataset but 
may not be feasible when the dimensions of the database 
change (i.e. number of transactions, number of items, 
average number of items per transaction etc.). Therefore, a 
further study has been done in this paper, to show the 
feasible performance range of the algorithms. The more 
extensive testing of the algorithms is carried out using a 
set of databases with varying number of both transactions 



and average number of items per transaction. For each 
dataset, all the algorithms are tested on supports of 10% to 
90% in increments of 10%. The experimental results are 
reported in detail. 

To show how well CT-PRO compares with algorithms 
in FIMI Repository 2003 [17], two best algorithms from 
the last workshop, LCM [18] and kDCI [19], are selected 
for comparison. The result shows that CT-PRO 
outperforms these and therefore all others. 

The structure of the rest of this paper is as follows: In 
Section 2, we introduce the CFP-Tree data structure and 
report the results of experiments in evaluating its 
compactness. In Section 3, we describe the CT-PRO 
algorithm with a running example. We discuss the 
complexity of CT-PRO algorithm in Section 4. The 
performance of the algorithm on various datasets is 
compared against other algorithms in Section 5. Section 6 
contains conclusions of our study. 

  
2. Compressed FP-Tree Data Structure 
 

In this section, a new tree-based data structure, named 
Compressed FP-Tree (CFP-Tree), is introduced. It is a 
variant of CT-Tree data structure that we introduced in 
[20] with the following major differences: items are sorted 
in descending order of their frequency (instead of 
ascending order, as in CT-Tree) and there is a link to the 
next node with the same item node (while links are not 
present in CT-Tree). The CFP-Tree is defined as follows: 
 
Definition 1 (Compressed FP-Tree or CFP-Tree). A 
Compressed FP-Tree is a prefix tree with the following 
properties: 
1. It consists of an ItemTable and a tree whose root 

represents the index of the item with the highest 
frequency and a set of subtrees as the children of the 
root. 

2. The ItemTable contains all frequent items sorted in 
descending order by their frequency. Each entry in 
the ItemTable consists of four fields, (1) index, (2) 
item-id, (3) frequency of the item, and (4) a pointer 
pointing to the root of the subtree of each frequent 
item.  

3. If I = {i1, i2, … ik} is a set of frequent items in a 
transaction, after being mapped to their index-id, 
then the transaction will be inserted into the 
Compressed FP-Tree starting from the root of a 
subtree to which i1 in the ItemTable points. 

4. The root of the Compressed FP-Tree is the level 0 of 
the tree. 

5. Each node in the Compressed FP-Tree consists of 
four fields: node-id, a pointer to the next sibling, a 
pointer to the next node with the same id, and a count 
array where each entry corresponds to the number of 

occurrences of an itemset. If C = {C0, C1,… Ck} is a 
set of counts in the count array attached to a node 
and the index of the array starts from zero, then Ci  is 
the count of a transaction with an itemset along the 
path from the node at level i to the node where Ci is 
located.                              ������� 

 
The following lemma provides the worst-case space 

complexity of a CFP-Tree.  
 

Lemma 1. Let n be the number of frequent items in the 
database for a certain support threshold.  The number of 
nodes of the CFP-Tree is bounded by 2n-1, which is half of 
the maximum for a full prefix tree.       

Rationale. If IF = {iF1, … iFn} is a set of distinct items in a 
CFP-Tree where iF1, iF2,…iFn are lexicographically 
ordered. The maximum number of nodes under subtrees 
iF1, iF2, … iFn  is 2n-1, 2n-2…20 respectively. Since the CFP-
Tree is actually the subtree iF1 then the maximum number 
of nodes of the CFP-Tree is 2n-1.               ��� 

 
Compared to FP-Tree, CFP-Tree has some important 

differences, as follows: 

1. FP-Tree stores the item id in the tree while, in CFP-
Tree, item ids are mapped to an ascending sequence 
of integers that is actually the array index in 
ItemTable.  

2. The FP-Tree is compressed by removing identical 
subtrees of a complete FP-Tree and succinctly storing 
the information from them in the remaining nodes. 
All subtrees of the root of the FP-Tree (except the 
leftmost branch) are collected together at the leftmost 
branch to form the CFP-Tree.. 

3. Each node in the FP-Tree (except the root) consists 
of three fields: item-id, count and node-link. Count 
registers the number of transactions represented by 
the portion of the path reaching this node. Node-link 
links to the next node with the same item-id. Each 
node in the CFP-Tree consists of three fields: item-id, 
count array and node-link. The count array contains 
counts for item subsets in the path from the root to 
that node. The index of the cells in the array 
corresponds to the level numbers of the nodes above. 

4. FP-Tree has a HeaderTable consisting of two fields: 
item-id and a pointer to the first node in the FP-Tree 
carrying the nodes with the same item-id. CFP-Tree 
has an ItemTable consisting of four fields: index, 
item-id, count of the item and a pointer to the root of 
the subtree of each item. The root of each subtree has 
a link to the next node with the same-item-node. Both 
HeaderTable and ItemTable store only frequent 
items.  

Figure 1 shows the FP-Tree and the CFP-Tree for a 
sample database. In this case, the FP-Tree is a complete 



tree for items 1-4. In this example, the number of nodes in 
the FP-Tree is twice that of the corresponding CFP-Tree. 
However, most datasets do not have such an extreme 
characteristic as in this example. 

Figure 2 shows the compactness of CFP-Tree 
compared to FP-Tree on several synthetic datasets at 
various support levels (the characteristics of the datasets 
are explained later in Section 5.2). CFP-Tree has a 
smaller number of nodes compared to FP-Tree in all 
cases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 

3. CT-PRO Algorithm 
 

In this section, a new method that traverses the tree in a 
bottom-up strategy, and implemented non-recursively, is 
presented. The CFP-Tree data structure is used to 
compactly represent transactions in the memory. The 
algorithm is called CT-PRO and it has three steps in it: 
finding the frequent items, constructing the CFP-Tree, and 
mining. Algorithm 1 shows the first two steps in CT-PRO. 
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Figure 2: Compactness of CFP-Tree Compared to FP-Tree on Various Synthetic Datasets at Various 
Support Levels 
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Figure 1: FP-Tree and CFP-Tree 
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 Tid     Items   
  1     3  4  5  7  
  2     1  3  4  5  
  3     1  4  5  7 
  4     1  3  4 
  5     1  3  4 

Algorithm 1 CT-PRO Algorithm: Step 1 and Step 2 

input  Database D, Support Threshold σ 
output CFP-Tree 
 
1 begin 
2  // Step 1: Identify frequent items  
3  for each transaction t ∈ D 
4      for each item i ∈ t 
5         if i ∈ ItemTable 
6            Increment count of i 
7         else 
8            Insert i into GlobalItemTable with count = 1 
9         end if  
10      end for 
11  end for 
12  Sort GlobalItemTable in  
    frequency descending order 
13  Assign an index for each frequent item in the  
  GlobalItemTable 
14  // Step 2: Construct CFP-Tree 
15  Construct the left most branch of the tree 
16  for each transaction t ∈ D 
17   Initialize mappedTrans 
18      for each frequent item i ∈ t 
19       mappedTrans = mappedTrans ∪ GetIndex(i) 
20      end for 
21   Sort mappedTrans in ascending order of item ids 
22   InsertToCFPTree(mappedTrans) 
23  end for 
24 end 
25 Procedure InsertToCFPTree(mappedTrans) 
26  firstItem := mappedTrans[1] 
27  currNode := root of subtree pointed by  
    ItemTable[firstItem] 
28  for each subsequent item i ∈ mappedTrans 
29   if currNode has child represent i 
30    Increment count[firstItem-1] of the child node 
31   else 
32    Create child node and set its  
    count[firstItem-1] to 1 
33    Link the node to its respective node-link 
34   end if 
35  end for 
36 end 

 
Suppose the user wants to mine all frequent itemsets 

from the transaction database shown in Figure 3a with a 
support threshold of two transactions (or 40%). First, we 
need to identify frequent items by reading the database 
once (lines 3-11). The frequent items are stored in 
frequency descending order in the GlobalItemTable (line 
12). In a second pass over the database, only frequent 
items are selected from each transaction (see Figure 3b), 
mapped to their index id in GlobalItemTable on-the-fly, 
sorted in ascending order of their index id (see Figure 3c) 
and inserted into the CFP-Tree (see Figure 3d). The 

pointer in GlobalItemTable also acts as the start of the 
links to other nodes with the same item ids (indicated by 
the dashed lines in Figure 3d). For illustration, at each 
node we also show the index of the array, the transaction 
represented at each index entry and its count. In the 
implementation of CFP-Tree, however, only the second 
column that represents the count is stored.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: CFP-Tree for the Sample Dataset 
 

The mining process in CT-PRO is shown in Algorithm 
2 and illustrated by the following example. 

Example 1. Let the CFP-Tree, as shown in Figure 3d, be 
the input for the mining step in CT-PRO and suppose the 
user wants to get all the frequent itemsets with minimum 
support of two transactions (or 40%). 

Figure 4 shows the LocalCFP-Tree and 
LocalFrequentPatternTree at each step during the mining 
process. CT-PRO starts from the least frequent item 
(index: 5,  item: 7)  in  the GlobalItemTable (line 2). Item 
7 is frequent and it will be the root of the 
LocalFrequentPatternTree (line 3). Then CT-PRO creates 
a projection of all transactions ending with index 5. This 
projection is represented by a LocalCFP-Tree and only 
contains locally frequent items. Traversing the node-link 
of index 5 in the GlobalCFP-Tree identifies the local 
frequent items that occur together with it. There are three 
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(d) Global CFP-Tree 
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nodes of index 5 and the path to the root for each node is 
traversed counting the other indexes that occur together 
with index 5 (lines 13-23). In all, we have 1 (2), 2 (1), 3 
(1) and 4 (2) for index 5. As indexes 1,4 (item id: 4,5) are 
locally frequent, they are registered in the LocalItemTable 
and assigned new index ids (see Figure 4a). They also 
become the child of the LocalFrequentPatternTree’s root 
(lines 5-7). Together, the root and its children form 
frequent itemsets with length two. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: Local CFP-Tree during Mining 
Process 

 
After local frequent items for the projection have been 

identified, the node-link in the GlobalCFP-Tree is re-
traversed and the path to the root from each node is 
revisited to get the local frequent items occurring together 
with index 5 in the transactions. These local frequent 
items are mapped to their index in the LocalItemTable on-
the-fly, sorted in ascending order of their index id and 
inserted into the LocalCFP-Tree (lines 24-33). The first 
path of index 5 returns nothing. From the second path of 
index 5, a transaction 14 (1) is inserted into the 
LocalCFP-Tree and another transaction 14 (1) from the 
third path of index 5 also is inserted. In total, there are two   

Algorithm 2 CT-PRO Algorithm: Mining Part 

input  CFP-Tree 
output Frequent Itemsets FP 
 
1 Procedure Mining 
2     for each frequent item i ∈ GlobalItemTable  
  from the least to the most frequent 
3   Initialize LocalFrequentPatternTree  
   with i as the root 
4   ConstructLocalItemTable(x) 
5   for each frequent item j ∈ LocalItemTable  
6    Attach i as a child of x 
7   end for 
8   ConstructLocalCFPTree(x) 
9   RecMine(x) 
10   Traverse the LocalFrequentPatternTree  
      to print the frequent itemsets 
11  end for 
12 end 
13 Procedure ConstructLocalItemTable(i) 
14  for each occurrence of node i in the CFP-Tree 
15   for each item j in the path to the root 
16          if j ∈ LocalItemTable 
17             Increment count of j 
18          else 
19             Insert j into LocalItemTable with count = 1 
20          end if  
21   end for 
22  end for 
23 end 
24 Procedure ConstructLocalCFPTree(i) 
25  for each occurrence of node i in the CFP-Tree 
26   Initialize mappedTrans 
27   for each frequent item j ∈ LocalItemTable  
   in the path to the root 
28       mappedTrans = mappedTrans ∪ GetIndex(j) 
29      end for 
30   Sort mappedTrans in ascending order of item ids 
31   InsertToCFPTree(mappedTrans) 
32  end for 
33 end 
34 Procedure RecMine(x)    
35  for each child i of x 
36   Set all counts in LocalItemTable to 0 
37   for each occurrence of node i in  
   the LocalCFPTree 
38    for each item j in the path to the root 
39             Increment count of j in LocalCFPTree 
40    end for 
41   end for 
42   for each frequent item k ∈ LocalItemTable  
43    Attach k as a child of i 
44   end for 
45   RecMine(i) 
46  end for 
47 end 
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occurrences of transaction 14. Indexes 1 and 4 in the 
GlobalItemTable  represent  items  4  and  5  respectively. 
The indexes of items 4 and 5 in the LocalItemTable are 1 
and 2 respectively and so the transaction 14 is inserted as 
transaction 12 in the LocalCFP-Tree. As the item index in 
the GlobalItemTable and LocalItemTable are different, 
the item id is always maintained for output purposes. 

Longer frequent itemsets, with length greater than two, 
are extracted by calling the procedure RecMine (line 9). 
For simplicity, we have described this procedure (lines 
34-47) using recursion but, in the program, it is 
implemented as a non-recursive procedure. Starting from 
the least frequent item in the LocalItemTable, (line 35), 
the node-link is traversed (lines 37-41). For each node, the 
path to the root in the LocalCFP-Tree is traversed 
counting the other items that are together with the current 
item. For example, in Figure 4a, traversing the node-link 
of node 2 will return the index 1 (2) and, since it is 
frequent, an entry is created and attached as the child of 
index 2 in the LocalFrequentPatternTree (lines 42-44). 
All frequent itemsets containing item 7 can be extracted 
by traversing the LocalFrequentPatternTree (line 10): 7 
(2), 75 (2), 754 (2), 74 (2). 

The process is continued to mine the next item in the 
GlobalItemTable in the GlobalCFP-Tree with indexes 4, 
3, 2 and finally, when the mining process reaches the root 
of the tree of Figure 3d, it outputs 4 (5).  

One major advantage of CT-PRO compared to FP-
Growth is that CT-PRO avoids the cost of creating 
conditional FP-Trees. FP-Growth needs to create a 
conditional FP-Tree at each step of its recursive mining. 
This overhead adversely affects its performance, as the 
number of conditional FP-Trees corresponds to the 
number of frequent itemsets. In CT-PRO, for each 
frequent item (not frequent itemsets), only one LocalCFP-
Tree is created and traversed non-recursively to extract all 
frequent itemsets beginning with the frequent item. 
 
4. Time Complexity 
 

In this section, the best-case and worst-case time 
complexity of CT-PRO algorithm is presented. Let I = {i1, 
i2, …., in} be the set of all n items, let transaction database 
D be {t1, t2, …, tm}, and let v be the total number of items 
in all transactions.  

 

Lemma 2. In the best-case, the cost of generating frequent 
itemsets is O(v + n). 

Proof. The best-case for the CT-PRO algorithm occurs 
when there is no frequent item. The algorithm has to read 
v items in all transactions and add the count of n items. 
The count of all n items are stored in the ItemTable and 
checked to determine whether there is any frequent item 
or not. If there is no frequent item, the process stops.      ��� 
 

Lemma 3. In the worst-case, the cost of generating 
frequent itemsets is  

(v + n)+ (v + 2n-1) + ∑
=

n

k 2

((2(n-k)–1)(2(n-k)) + 2(k-2)) = O(22n). 

Proof. The worst-case happens when all n items are 
frequent and all combinations of them are present in m 
transactions. CT-PRO has three steps: finding frequent 
items, constructing the CFP-Tree, and mining. The cost of 
finding frequent items has been provided by Lemma 2. 
The worst case for the GlobalCFP-Tree corresponds to a 
situation where all the possible paths exist. In 
constructing the GlobalCFP-Tree, all the transactions in 
the database are read (the cost is v) and inserted into the 
tree (the total number of nodes is 2n-1). For the mining 
process, for each frequent item fk where 2 ≤ k ≤ n, 2(k-2) 

nodes in the GlobalCFP-Tree are visited to construct a 
LocalCFP-Tree.   The  LocalCFP-Tree  has   (2(n-k)–1)   
paths that correspond to, at most, 2(n-k)  candidate 
itemsets. So the worst case mining cost is: 

 ∑
=

n

k 2

((2(n-k)–1)(2(n-k)) + 2(k-2)).  

Therefore, the total worst-case cost of CT-PRO is  

(v+n)+(v+2n-1)+∑
=

n

k 2

((2(n-k)–1)(2(n-k)) + 2(k-2)) = O(22n)      

 
5. Experimental Evaluation 
 

This section contains three sub-sections. In Section 5.1, 
we compare CT-PRO against other well-known algorithms 
including with Apriori [14, 15], FP-Growth [10] and 
recently proposed OpportuneProject (OP) [11] on the 
various datasets available at FIMI Repository 2003 [17]. 
In Section 5.2, we report the result of more 
comprehensive testing to determine the feasible 
performance range of the algorithms. Finally, in Section 
5.3, we compare CT-PRO with the two best algorithms in 
the FIMI Repository 2003 [17], LCM [18] and kDCI [19].  
 
5.1. Comparison with Apriori, FP-Growth and 

OpportuneProject 
 

Six real datasets are used in this experiment including 
two dense datasets: Chess and Connect4; two less dense 
datasets: Mushroom and Pumsb*; and two sparse datasets: 
BMS-WebView-1 and BMS-WebView-2. The first four 
datasets are originally taken from UCI ML Repository 
[16] and the last two datasets are donated by Blue Martini 
Software [3]. All the datasets are also available at FIMI 
Repository 2003 [17]. 

We used the implementation of Apriori created by 
Christian Borgelt [21] by enabling the use of the prefix 



tree data structure. As for FP-Growth, we used the 
executable code available from its authors [10]. However, 
for comparing the number of nodes of FP-Tree to our 
proposed data structure, we modified the source code of 
FP-Growth provided by Bart Goethals in [22]. For 
OpportuneProject (OP), we used the executable code 
available from its author, Junqiang Liu [11]. 

All the algorithm were implemented and compiled 
using MS Visual C++ 6.0. All the experiments (except 
comparisons with algorithms in the FIMI Repository 2003 
website [17]) were performed on a Pentium III PC 866 
MHz with 512 MB RAM and 110 GB Hard Disk running 
on MS Windows 2000. All the reported runtime used in 
our charts is the total execution time, the period between 
input and output. It also includes the time of constructing 
all the data structures used in all programs. 

Figure 5 shows the results of the experiment on various 
datasets. All the charts use a logarithmic scale for run time 
along the y-axis on the left of the chart. We did not plot 
the results in the chart if the runtime was more than 
10,000 seconds. For a comprehensive evaluation of the 
algorithm’s performance, rather than showing where our 
algorithm performed best at some of the support levels, all 
the algorithms were extensively tested on various datasets 
with a support level of 10% to 90% for dense datasets 
(e.g. Connect4, Chess, Pumsb*, Mushroom), a support 
level of 0.1% to 1% for the sparse dataset BMS-WebView-
1, and a support level of 0.01% to 0.1% for the sparse 
dataset BMS-WebView-2. As the average number of items 
increases and/or the support level decreases, at some 
point, every algorithm ‘hits the wall’ (i.e. takes too long to 
complete). 

CT-PRO outperforms others at all support thresholds 
on the Connect4, Chess, Mushroom and Pumsb* datasets. 
On the sparse dataset BMS-WebView-1, CT-PRO is a 
runner-up, after OP, with only small performance 
differences (0.4 seconds to 0.49 seconds at a support level 
of 0.1% and 5.18 seconds to 7.69 seconds at 0.06%). 
Below the support level of 0.06%, none of the algorithms 
could mine the BMS-WebView-1 dataset. On the sparse 
dataset BMS-WebView-2, a remarkable result is obtained. 
Apriori, which is known as a traditional FIM algorithm, 
outperforms FP-Growth at all support levels. CT-PRO is 
the fastest from a support threshold of 1% down to 0.4% 
and becomes the runner-up, after OP, at a support level of 
0.3% down to 0.1% with small performance differences. 

From these results, we can claim that, on dense 
datasets, CT-PRO generally outperforms others. On sparse 
datasets, the high cost of the tree construction reduces CT-
PRO to runner-up. However, as the gap is very small, we 
can say that CT-PRO also works well for sparse datasets. 

 
 
 

5.2. Determining the Feasible Performance 
Range 

 

As mentioned earlier, sample datasets such as real-
word BMS datasets [3] and the UCI Machine Learning 
Repository [16], which also are available at the FIMI 
Repository 2003 [17], have their own static characteristics 
and thus do not cover the full range of densities. An 
algorithm that works well for one dataset may not have the 
same degree of performance on other datasets with 
different dimensions. Dimensions, here, could be the 
number of transactions, number of items, average number 
of items per transaction, denseness or sparseness, etc. In 
this section, a more comprehensive evaluation of the 
performance of various algorithms is presented. 

We generated ten datasets using the synthetic data 
generator [13]. The first five datasets contained 100 items 
with 50,000 transactions, and an average number of items 
per transaction of 10, 25, 50, 75, and 100. The second five 
datasets contained 100 items with 100,000 transactions, 
also with an average number of items per transaction of 
10, 25, 50, 75, and 100. CT-PRO, Apriori, FP-Growth 
and OP were tested extensively on these datasets at a 
support level of 10% to 90%, in increments of 10%. 

Figure 6 shows the performance comparisons of the 
algorithms on various datasets. The dataset name shows 
its characteristics. For example, I100T100KA10 means 
there are 100 items, and 100,000 transactions with an 
average of 10 items per transaction. The experimental 
results show that the performance characteristics on 
databases of 50,000 to 100,000 transactions are quite 
similar. However, the runtime increases with the number 
of transactions. 

The Apriori algorithm is very feasible for sparse 
datasets (with an average number of items in each 
transaction of 10 and 25). Its performance is good, as it 
consistently performs better than FP-Growth at all support 
levels. Although Apriori is slower than CT-PRO and OP 
using the two sparse datasets, its runtime is still acceptable 
to the user. (It needs only 60 seconds to mine the 
I100T50KA25 dataset at the support level of 10%). 
However, on the datasets with an average number of items 
per transaction of 50, 75, and 100, Apriori performs worst 
and it can only mine down to a support level of 30%, 
50%, and 70% respectively. These results confirm that, 
for dense datasets, if the support levels used are low, 
Apriori is infeasible. 

FP-Growth performs worst at all support levels on the 
datasets with a low average number of items per 
transaction (i.e. 10 and 25). The fact that FP-Growth does 
not outperform Apriori on these two datasets shows that 
Apriori is more feasible than FP-Growth for sparse 
datasets.    However,  FP-Growth   performs  significantly 
better than Apriori for the larger average number of items 
in transactions. 



 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Both CT-PRO and OP have larger feasible 
performance ranges compared to the other algorithms. OP 
does not perform well on the sparse datasets 
I100T50KA10 and I100T100KA10. Its performance was 
even worse than Apriori on this dataset. However, it 
performs better than Apriori and FP-Growth on other 
datasets. On the datasets with an average number of items 
per transaction of 50, 75, and 100, FP-Growth, CT-PRO 
and OP can mine down to a support level of 20%, 40%, 
and 50% respectively.  

CT-PRO can be considered the best among all other 
algorithms  as  it  generally    performs    the  best  at  most 
support levels. However, as the support level gets lower, 
its performance is similar to OP. Only at a support level of 
10%, OP occasionally runs slightly faster than CT-PRO 
(e.g. at a support level of 10% on the I100T50KA25 
dataset). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3. Comparison with Best Algorithms in the 
FIMI Repository 2003  

 
For comparison with the best algorithms in the FIMI 

Repository 2003 [17], we ported our algorithm CT-PRO 
to a Linux operating system and compared it with their 
two best algorithms: LCM [18] and kDCI [19]. We 
performed the experiments on a PC AMD Athlon XP 
2000+ 1.6 GHz, 1 GB RAM, 2 GB Swap with 40GB Hard 
Disk running Fedora Core 1. All programs were compiled 
using g++ compiler. 

Figure 7 shows the performance comparisons of 
algorithms that were submitted to FIMI 2003 on Chess 
and Connect4 datasets. The figures are taken from [17]. 
On Chess dataset, kDCI is the best at a support level of 
90% to a support level of 70%. Below that, LCM 
outperforms  others.  On  Connect4  dataset,  at  a  support  
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Figure 5: Performance Evaluation of CT-PRO Against Others on Various Datasets  
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Figure 6: Performance Evaluation on Various Synthetic Datasets  



level of 95% to a support level of 70%, kDCI is the best. 
Below that, LCM outperforms others. We can conclude 
that for higher support levels, kDCI is the best, but for 
lower support levels, LCM is the best. These best two 
algorithms are compared with CT-PRO.  

 The kDCI algorithm [19] is a multiple heuristics 
hybrid algorithm that able to adapt its behaviour during 
the execution. It is an extension of the DCI (Direct Count 
and Intersect) algorithm [23] by adding its adaptability to 
the dataset specific features. kDCI is also a resource aware 
algorithm which can decides mining strategy based on the 
hardware characteristics of the computing platform used. 
Moreover, kDCI also used counting inference strategy 
which originally proposed in [24]. 

The LCM (Linear time Closed itemset Miner) 
algorithm [18] uses the parent-child relationship defined 
on frequent itemsets. The search tree technique is adapted 
from the algorithms for generating maximal bipartite 
cliques [25, 26] based on reverse search [27, 28]. In 
enumerating all frequent itemsets, LCM uses hybrid 
techniques involving occurrence deliver or diffsets [29] 
according to the density of the database. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 
 
 
 

Figure 7: Performance Comparisons of 
Algorithms available in the FIMI 2003 Repository 

on Chess and Connect4 Datasets [17] 
 

Figure 8 shows the performance comparisons on Chess 
and Connect4 datasets. From these results, CT-PRO 
always outperforms others at high support levels. For 
lower support levels, the performances of these three 
algorithms are similar. Since LCM and kDCI are the best 
algorithms in FIMI Repository 2003 on Chess and 
Connect4 datasets, we can conclude that CT-PRO 
outperforms all other algorithms available in FIMI 
Repository 2003 [17] on Chess and Connect4 datasets. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 8: Performance Comparisons of CT-PRO, 
LCM and kDCI on Chess and Connect4 Datasets 

 
6. Conclusions 
 

In this paper, we have described a new tree-based data 
structure named CFP-Tree that is more compact than FP-
Tree used in FP-Growth algorithm. Depending on the 
database characteristics, the number of nodes in an FP-
Tree could be up to twice as many as in the corresponding 
CFP-Tree for a given database. CFP-Tree is used in our 
new algorithm named CT-PRO for mining all frequent 
itemsets. CT-PRO divides the CFP-Tree into several 
projections represented also by CFP-Trees. Then CT-PRO 
conquers the CFP-Tree for mining all frequent itemsets in 
each projection. 

CT-PRO was explained in detail using a running 
example and the best-case and worst-case time complexity 
of the algorithm also was presented. Performance 
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comparisons of CT-PRO against other well-known 
algorithms, including Apriori [14, 15], FP-Growth [10] 
and OpportuneProject (OP) [11] also were reported. The 
results show that CT-PRO outperforms other algorithms at 
all support levels on dense datasets and also works well on 
sparse datasets. 

Extensive experiments to measure the feasible 
performance range of the algorithms are also presented in 
this paper. A synthetic data generator is used to generate 
several datasets with varying number of both transactions 
and average number of items per transaction. Then the 
best available algorithms including CT-PRO, Apriori, FP-
Growth and OP are tested on those datasets. The result 
shows that CT-PRO generally outperforms others. 

In addition, to relate our research to the last workshop 
on frequent itemset mining implementations [17], we 
selected two best algorithms (LCM and kDCI) from FIMI 
Repository 2003 and compared their performance with 
CT-PRO. It was shown that CT-PRO performed better 
than the others. 
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