
Supporting Enterprise Integration through a Unified
Enterprise Modeling Language

Giuseppe Berio1, Víctor Anaya2, and Ángel Ortiz2

1 Dipartimento di Informatica, Università di Torino, C.so Svizzera 185,10149 Torino, Italy
berio@di.unito.it

2 Research Center on Production Management and Engineering, Technical University of
Valencia, Camino de Vera s/n 46022, Valencia, Spain

{vanaya, aortiz}@cigip.upv.es

Abstract. This paper presents a Unified Enterprise Modeling Language
(UEML) and a set of mappings which support translating models represented
under an Enterprise Modeling Language into another Enterprise Modeling Lan-
guage. These mappings also permit to integrate (i.e.compose) different models
represented in different enterprise modeling languages into a unique model.
Additionally, UEML is a meta-model that represents the (abstract) syntax of a
Unified Enterprise Modeling Language (UEML 1.0). This paper presents the
foundations of the work performed during the UEML project funded by IST
Programme of the European Commission 5th Framework. The rationale, the ba-
sic principles and the undertaken approach followed to define UEML 1.0.
These basic principles and the approach are justified in terms of data integra-
tion and database schema integration.

1 Introduction

In order to reduce costs and lead times, and to improve the quality (and the range) of
the offered services or products, enterprises take part in organisational paradigms, for
instance, EE (extended enterprise) and VE (virtual enterprise) organisations, where
they cooperate by exchanging flows of information & knowledge, material & ser-
vices, and money ([3]).

Since the 80’s, two main approaches to Enterprise Integration (EI) have matured:
(i) the integration of software applications that support the functionality of business
processes; ii) the definition of Enterprise Models (EMs) by means of Enterprise Mod-
elling Languages (EMLs) and integration of such models, for understanding, validat-
ing and effectively achieving EI.

Enterprise modelling is the art of externalising the internal knowledge of an enter-
prise by the generation of EMs ([9]). Thus, EMs empower both the EI and an enter-
prise analysis (for instance economic analysis, organisation analysis, qualitative or
quantitative time analysis, cost and resource needs). In this sense, enterprise model-
ling supports the phases and tasks within the context of methodologies for enterprise
engineering and integration, fundamental components of Enterprise Reference Archi-
tectures ([6]) such as CIMOSA ([1], [7]), PERA ([12]), GRAI ([5]).

Enterprises manage and use enterprise models through Enterprise Modelling Tools
(EMTs). The current landscape shows the existence of a lot of enterprises that used to
implement in-house enterprise modelling tools or to buy several tools for supporting
different types of analysis and other usage. Each EMT has a proprietary EML, and
may be coupled with a proprietary enterprise modelling process ([10]).

When two enterprises use different EMLs and they want to exchange EMs there
are some problems which facets are ([16]):

− Differences in the (abstract) syntax of the EMLs: a EML used by a company dif-
fers syntactically from that employed by other enterprises even within the same
business domain; for instance, two enterprises that model with IEM ([17]) and
EEML ([2]) languages respectively.

− Coverage and expressivity of the EMLs: EMLs have different focus, coping with
different purposes.

− Differences in semantics of “similar” constructs: sometimes enterprises use the
same constructs but they associate distinct meanings.

On the other hand, whenever the same EML is used with various and distinct pur-

poses or because of the subjective nature of modelling, different models represented
in an EML are probably difficult to be integrated. Problems arised are:

− Scope: when two artifacts seem to represent the same meaning but this happens
only partially

− Coverage and granularity: models seem to embrace the same domain but it is not
true.

− Modelling conventions

− Synonym terms: distinct terms share the same meaning.

− Homonym terms: same terms with different meanings depending on the context..

− Encoding: values encoded in different formats (e.g, dates in dd/mm/yy vs
mm/dd/yy).

In our opinion, these two dimensions (the first, mostly related to languages and the

second, mostly related to models) have to be approached separately because each one
comprises many kinds of complex problems and also because they differ in the scope
(very broad for languages because languages should provide constructs for describing
varieties of situations in most of enterprises, narrower for models because models
usually apply to specific enterprises and situations1).

When enterprises pretend to share or combine some of their enterprise models, or
whenever various kinds of analysis should be performed on these models, one possi-

1 We do not consider the problem of “generic reusable models” also called “partial models” in

the EM literature.

ble approach is to enable (partial) translations of models across distinct languages
and tools of the enterprises. These translations should be model-independent.

Whenever an enterprise takes part in a network of enterprises the number of coex-
isting EMLs, is likely to increase. Therefore, translations between couples of lan-
guages, also called peer-to-peer translation (bidirectional arrows in Figure 1), are
possible, though difficult and costly to carry out, and not suitable within networks of
enterprises where fast changes of partners are usual. The other disadvantage of peer-
to-peer translations is related to the “maintenance of a global consistency” due to a
clear lack of global, unique and consistent vision about the knowledge shared be-
tween the enterprises (each EML does not cover all enterprise aspects as it is shown
in Figure 1 where three EMTs i.e. MOOGO, eMAGIM and METIS embrace respec-
tively resource monitoring, decision support and enterprise planning).

Figure 1. Language-to-language translations

Therefore, to reduce dramatically the number of interfaces (peer-to-peer transla-

tions) needed to communicate a set of enterprises, and to increase the achievement of
a “global consistency”, it is really useful to define an intermediate federator language
(depicted in Figure 2) which eventually allows to represent a unique, consistent and
modular vision on the shared (or integrated) knowledge of the whole set of enter-
prises. Thus, such a language, generally called UEML (Unified Enterprise Modelling
Language), does not substitute existing EMLs, as its target is to provide effective
support for enterprise model translation and integration. In this sense, a UEML
should be equipped with standard translation mechanisms to and from existing
EMLs. Furthermore, this UEML permits enterprises to retain their EMLs without
forcing them to use the UEML itself.

UEML integration-platform

Figure 2. Translations of EMs by using a UEML

However, the UEML is only one of the needed components for effectively achiev-

ing model translation and integration. Specifically, this UEML is a way to approach
integration problems within the language dimension. A list of current and real busi-
ness problems in which a UEML can play a central role is ([19]):

- Integration of information systems encoding fragmented non sharable en-
terprise knowledge.

- Achieving a coordination of business processes.
- Achieving a common view in terms of business operations.
- Poor interoperability of process modeling and management tools.
- Insufficient coverage by most languages of required modeling views.
- Diverse visual representations.

2 Towards (a) UEML

How to build effectively such a UEML? There are various answers to this question
but some facts need to be taken into account:

a. most of the EMLs are not equipped with formal definition of the semantics of
their constructs; therefore it is not obvious (or maybe impossible) to state and to
prove (formally) that a language construct is represented (or translated) into a
construct belonging to some other language;

b. whenever EMLs are equipped with some formal semantics, the semantic preserv-
ing relationships are not unique between distinct languages; therefore, establishing
these relationships is difficult as in the previous case (a); the main difference be-
tween (a) and (b) is that in (b) it may be possible to prove formally that these rela-
tionships are really semantics preserving;

c. whenever some semantic preserving relationships between EMLs have been for-
mally proved, this is not enough for making these semantic preserving relation-
ships as acceptable in term of the modelling domain; in other words, a formal
proof of some semantic preserving relationships is not enough for justifying that
two distinct constructs are similar/equivalent (or not similar/equivalent) in term of
the modelling domain (sometime referred to as “real world semantics”([20])).

Figure 3 below provides two relationships between two EMLs where the construct
“Resource” in GRAI ([5]) may be related to constructs “Role” and/or “Resource” in
EEML ([2]).

Figure 3. Two EMLs can be related with distinct relationships

relationships
EEML:Role

EEML:Resource
GRAI:Resource

The UEML will be therefore the result of reasonable choices concerning relation-
ships between languages. These choices may evolve, i.e. changing or increasing in
the number, because it may appear interesting both new relationships between EMLs
and new EMLs. As a consequence, any possible choice should be well identified and
documented, together UEML itself. This is the reason for defining a “Strategy for
UEML”2, Section 4, which represents an attempt for providing a well structured con-
text for making choices about the UEML. The basic principles underlying this “Strat-
egy for UEML” are explained in Section 3.

3 Defining (a) UEML: key points

As any EML, UEML is equipped with a structure (abstract syntax) represented by the
set of constructs and links between them, and some meaning associated to each con-
struct (i.e. construct semantics) ([18]). When translating knowledge represented in
one EML to another EML, it is important to define some commonality between con-
structs (referred in the remainder as the semantic correspondences between con-
structs) belonging to each language. In this sense, UEML should comprise, at least,
constructs common to the most representative existing EMLs.

UEML handles the integration problems enumerated in Section 1, essentially
within the language dimension, in the following ways:

− Differences in the (abstract) syntax of the languages: UEML is founded in the
agreement concerning the structure (i.e. the Constructs) of the knowledge (i.e. the
Concepts underlying the Constructs) being exchanged or translated. The way for
expressing this (abstract) syntax is a class model and specifically (just for conven-
ience) a UML class model ([8]) which is conveniently called UEML meta-model
(because it models the syntax of a modelling language).

− Coverage and expressivity of the EMLs: the decision to be taken is related to what
kind and to which extent of knowledge should be shared by using UEML; in this
case, the following “equation” has been defined

UEML3 = Common Concepts + (some of) Non Common Concepts;

This “equation” well represents the UEML as a federator component usually
containing what it is shared among various components (see also Section 4, step
f).

2 The name “Strategy for UEML” is not the most appropriate. However, in this paper, we

maintain the name originally given in the UEML project. Probably, in further developments,
the name may be modified to “Methodology for UEML”.

3 We prefer to distinguish carefully between the construct and the concept underlying the con-
struct which explicitly refers to “meaning” of the construct: in fact, for instance, while two
constructs may be distinct, the underlying concepts can be the comparable (or equivalent).

− Differences in semantics of “similar” constructs: this is the most difficult type of
problem and it is related to the definition of common concepts. A part of the com-
plexity comes up because the meaning (i.e. underlying concepts) of most EMLs
constructs is provided by text expressed in natural language: natural language is
ambiguous, words are vague and interpretation depends on both the context and
the person reading/writing the text. Then, using these texts for finding semantic re-
lationships between constructs belonging to distinct languages is hardly difficult
and quite subjective. To cope with similar problem, previous works concerning
techniques for database schema integration ([15]) suggest to use examples (i.e.
data or instances belonging to entities or relational table etc.); the purpose is to
identify and verify clearly the “intentional relationships between concepts” by us-
ing the evidence of available examples of such concepts. The stated analogies
[11][18] between languages and databases are now explicitly shown in Table 1 be-
low (including some samples).

Table 1. Analogies between modeling languages and databases

Database
Glossary

Modelling Language
Glossary

Samples of Model,
Model artefacts and

Meta-model
Data (in-
stances)

Model artifacts “Mount”, “Employee”,
“Robin”

Database (a set
of related in-
stances)

Model (a set of related
model artefacts)

{“Mount”, “Dismount”,
“Mechanical Part”, “Em-
ployee”, “Robin”, “Ed-
gar”}

Database
Schema

Meta-model (representing a
way for providing an ab-
stract syntax of a language
i.e. an abstract syntax for its
constructs)

Activity, ObjectClass,
Role, Object

Therefore, in the UEML project, we defined a complex scenario (comprising a set of
models and related model artifacts) playing the role of databases and instances, by
using three distinct modelling languages i.e. IEM, EEML and GRAI. Meta-models
for each of these languages were also built. Afterwards, as it happens within the data-
base world, we were interested in comparing these meta-models based on models and
model artefacts,part of the scenario. Based on such comparisons, in the simpler case
of two constructs with their underlying concepts C1 and C2 respectively in EML1
and EML2, we found the following types of semantic correspondences (or relation-
ships)

1) C1 = C2
2) C1 ⊇C2
3) C1 ⊆ C2

4) Otherwise4, in the set of models C1 ∩ C2 ≠ ∅.

For instance, the first semantic correspondence (1) can be paraphrased as: by look-

ing into the available models, represented in EML1 and EML2 respectively, the
model artifacts represented through the concept C1 are also represented by C2 and
vice-versa.

In the general case, a common concept C can be introduced if C1 ∩ C2 ≠ ∅ and, in
this case, if possible, mappings might be used for better characterising their semantic
correspondences through two predicates Φ1 and Φ2 such that

Φ1 (C1) ρ Φ2 (C2) (1)

where ρ is ‘=’ or ‘⊇’ or ‘⊆’.
The formula (1) is what can also be found in the peer-to-peer data integration ap-

proach [14].
Without loosing in generality, a common concept C can be defined by the follow-

ing set of semantic correspondences, which characterises, in the data integration lit-
erature, the GLAV approach [13]:

C ⊇ Φ1 (C1). (2)

C ⊇ Φ2 (C2). (3)

These equations provide C as the best approximations of Φ1 (C1) and Φ2 (C2). This
approximating concept C is closer to Φ1(C1) and Φ2 (C2) as the inclusion
‘⊇’ becomes the equivalence ‘=’ i.e.:

C = Φ1 (C1). (4)

C = Φ2 (C2). (5)

Therefore, common concepts in UEML can be introduced by using the kind of equa-
tions defined above.. All these equations can also be used for realizing standard
mechanisms for translations from an EML to UEML and vice-versa. However, this
point requires some attention because these equations are verified on specific scenar-
ios (i.e. specific models and model artifacts). Nevertheless, if these scenarios deal
model-independent translations, this approach is able to find and to justify them.

The approach is also able to manage situations in which one concept in a lan-
guage is related to more than one concept in another language. Indeed, more equa-
tions (1) involving a same concept are possible. The main problem is how to consider
this kind of situation for making a UEML. The early work concerning this problem
states that the key point is if the equations (1) whenever involving a same concept
should be used simultaneously or singularly. This early work identifies three situa-
tions:

- scenario models are not correct (this situation may not happen if models are
built by experts in the retained EMLs);

4 In this case, language meta-models may be reworked, introducing semantic enrichments as

for database schema integration ([15]).

- the concept involved in more equations (1) of a first language is overloaded
(i.e. that concept can be used for modeling “real world things” which are
represented through distinct constructs in another language i.e. those “real
world things” are probably distinguishable);

- distinct constructs in the second language are “distinct views” over some
“real world things” which have a unique representation in the first language.

4 Strategy for UEML

The UEML project was a pilot project to demonstrate the feasibility of a UEML
according to the objectives described in Section 1. Therefore, the results of the
UEML project were limited to the definition of a first version of the UEML (UEML
1.0) dealing with three EMLs: IEM ([17]), EEML ([2]) and GRAI/Actigrams ([5],
[4]), each of them supported by EMTs, respectively MOOGO, METIS and
eMAGIME. These tools have been supplied by three of the core UEML project
members: Fraunhofer IPK Berlin, Germany, Computas, Norway, and Graisoft SA,
France. The Strategy for UEML has been applied using these three EMLs. Besides,
standard translation mechanisms have been used for implementing standard ex-
changes between the three tools.

The ”Strategy for UEML”, that is, the procedure followed to define UEML, is
composed of the following steps (depicted in Figure 4):

a. It is defined a scenario (a specific description of a problem which plays the role of

the set of models and related model artifacts).
b. The scenario is modelled by using IEM, GRAI and EEML This task is performed

by experts on each of such three languages (however, modelling remains a subjec-
tive task).

c. Definition of the meta-models of the three languages using UML class diagrams:
IEM, GRAI and EEML. These meta-models represent the constructs and the links
among them. Each meta-model states what is possible to express with each lan-
guage (i.e. the language abstract syntax).

d. The meta-models of IEM, EEML and GRAI have been verified by UML experts.
e. The models built up on step (b) are composed of a set of model artefacts. Follow-

ing the principles described in Section 3, the semantic correspondences between
constructs of each pair of the three modelling languages, have been stated.

f. Common and also (some) non-common concepts of the three EMLs have been
identified (it should be noted criteria defined in Section 3 work well for identify-
ing common concepts; the remaining concepts can be classified as non common
but again in the context of the specific scenario; this means that two concepts can
be classified as distinct until new scenarios contradict their “non commonality”;
this also means that the result is always correct because we may include in the
UEML meta-model more distinct constructs that some other scenarios will reveal
their commonality).

g. The first version of UEML language has been defined by using the UML class
diagram (i.e. UEML 1.0 meta-model). This version takes into account both the
common and the non-common concepts,

h. The table of semantic correspondences between the UEML 1.0 meta-model and
each of the three meta-model languages.

i. A final verification (using the scenario itself) of the UEML 1.0 meta-model and
the found semantic correspondences with the three language meta-models has
been performed.

 Building Models in EEML and
Grai re-implementing the IEM
Model in the Scenario of
Application

Meta-modelling in UML of
IEM, Grai, EEML (especially
oriented to the Models re-
implementing the Scenario of
Application)

Comparison (identifying
Correspondences) between
couples of Models and
Generalisation to Meta-models

Definition of the first version of
the UEML meta-model in UML:
the UEML1.0 Meta-model

Definition of the New Correspondence
Table between UEML1.0 Meta-model
and each originating Meta-model

Validation of
Meta-models:
IEM, EEML,
Grai

Identification the
Common and non-
Common Concepts

Validation of the UEML1.0 Meta-model
and Correspondences against a subset of
the Scenario of Application

Figure 4. Strategy for UEML

The resulting UEML 1.0 meta-model (without attributes) is shown in Figure 5 be-

low.

Figure 5. UEML 1.0 metamodel

The Table 2 (output of step h) shown below provides the semantic correspon-
dences between the UEML 1.0 meta-model and the three language meta-models.
Such a table is based on the principles advocated previously in Section 3. In fact,
each row represents the equations characterising each common concept.

Table 2. Semantic correspondences

C Φ1 (C1) Φ2(C2) Φ3 (C3)

COMMON
CONCEPT GRAI IEM EEML

ACTIVITY Extended acti-
vity Action state Task

ROLE Not explicit IEM Object state Role
RESOURCE Resource Resource class Resource
INPUT/OUTPUT
FLOW

Input / Flow Ou-
put / Flow

Successor / Proces-
sElement

Flow (with is con-
trol flow = false)

CONSTRAINT
FLOW

Control / Flow
(with tri-
gger=false)

No direct
Flow (with is con-
trol flow = false
and Role)

CONTROL FLOW
Control / Flow
(with tri-
gger=true)

ControlSuccesor /
ProcessElement

Flow (with is con-
trol flow = true)

RESOURCE FLOW Resource / Flow
(with tri-gger =

ResourceSuccessor
/ Resource State Role (with Task)

false)
CONNECTION
OPERATOR Logical operator Connection Ele-

ment State
DecisionPoint (not
(Inport or Outport))

PORT Connector Port Decisionpoint (In-
port or Outport)

5 Conclusions

It has been shown the convenience of defining and using a UEML for supporting the
EI. We have discussed and justified the basic principles and the adopted approach
(“Strategy for UEML”). We have also presented the results of the undertaken ap-
proach, specifically the UEML 1.0 meta-model and semantic correspondences be-
tween the UEML 1.0 meta-model and the used EMLs i.e. IEM, EEML and GRAI.

The benefits of the “Strategy for UEML” are:
- to provide a well defined context for making “decisions” on how to make a

UEML by reusing existing EMLs;
- to be based on existing theories and approached in database schema integra-

tion and data integration;
- to suggest mechanisms for realizing model-independent translations through

a UEML between distinct EMLs.
The approach however needs to be refined because some points are not fully ex-

plored. Specifically, the definition of common and non common concepts, the use of
the equations, the mechanisms for standardised model-independent translations, the
relative complexity. Furthermore, alternative approaches to UEML should also be
taken into account much more than in the UEML project. During the UEML project a
number of needs where enterprise modelling plays a central role have been elicited
(in targeted workshops) but poorly used for further improvements of the UEML 1.0
meta-model. Future UEML probably should also be driven by these needs even if
they require a lot of work for their refinement.

References

1. AMICE: CIMOSA: Open System Architecture for CIM, Research Reports ESPRIT, 1, Pro-
ject 688/5288 AMICE. Springer-Verlag, 2nd revised and extended edition, 1993.

2. EXTERNAL. Extended Enterprise Resources, Networks and Learning, EC project, IST-
1999-10091, 2000.

3. Ortiz, A., Franco, R.D., Alba, M.: “V-CHAIN: Migrating from Extended to Virtual Enter-
prise within an Automotive Supply Chain”. PROVE’03 Proceedings. Processes and Founda-
tions for Virtual Organizations.

4. Doumeingts, G., Vallespir, B., Chen, D.: Decision modelling GRAI grid. In, P. Bernus, K.
Mertins, G. Schmidt (Eds.) Handbook on architecture for Information Systems, Springer-
Verlag, 1998.

5. Doumeingts, G., Vallespir, B. Zanettin, B., Chen, D.: GIM, GRAI Integrated Methodology -
A methodology for designing CIM systems, Version 1.0, Unnumbered report, LAP/GRAI,
University of Bordeaux 1, France, 1992.

6. GERAM. Generalized Enterprise Reference Architecture and Methodology Version 1.5,
IFAC-IFIP Task Force on Enterprise Integration, 1997.

7. Kosanke, K., Vernadat, F.B., Zelm, M.: CIMOSA: CIM open systems architecture - evoluti-
on and application in enterprise engineering and integration. Computers in Industry, special
issue, 40(2-3), 1999.

8. OMG: UML 1.5 specification, OMG, www.uml.org, 2002.
9. Vernadat, F.B.: Enterprise modelling and integration: principles and applications. Chapman

& Hall, 1996.
10. Petit M., et al: D1.1: State of the Art in Enterprise Modelling, UEML-IST–2001-34229,

www.ueml.org, 2002.
11. Petit, M.: Some methodological clues for defining a UEML. In Proc. of ICEIMT 2002

(Kosanke K., Jochem R., Nell J., Ortiz Bas A. (Eds.)), April 24-26 Polytechnic Univeristy
of Valencia, Valencia, Spain, Kluwer. IFIP TC 5/WG5.12, 2002.

12. Williams, T.J. et al: The Purdue Enterprise Reference Architecture, Computers in Industry,
24(2-3), 1994.

13. Calvanese, D., De Giacomo, G., Lenzerini, M.: Description logics for information integra-
tion. In Computational Logic: From Logic Programming into the Future (In honour of Bob
Kowalski), Lecture Notes in Computer Science. SpringerVerlag, 2002.

14. Calvanese, D., Damaggio, E., De Giacomo, G., Lenzerini, M., Rosati, R.: Semantic data
integration in P2P systems. In Proc. of the Int. Workshop on Databases, Information Sy-
stems and Peer-to-Peer Computing, 2003.

15. Parent, C., Spaccapietra, S.: Database integration: the key to data interoperability. In Papa-
zouglu M.P. Spaccapietra S. Tari (Eds), Advances in Object-Oriented Data Modeling. MIT
Press, 2000.

16. Klein, M.: Combining and relating ontologies: an analysis of problems and solutions. Pro-
ceedings of the IJCAI-01 Workshop on Ontologies and Information Sharing, Seattle, USA,
August 4-5, 2001.

17. Jochem, R., Mertins, K.: Quality-Oriented Design of Business Processes. Kluwer, Boston,
1999.

18. Berio, G., Petit, M.: Enterprise Modelling and the UML: (sometimes) a conflict without a
case. In Proc. of Concurrent Engineering Conference 03, July 26-30, Madeira Island, Portu-
gal, 2003.

19. Jochem, R.: Common Representation through UEML-Requirements and Approach. Interna-
tional Conference on Enterprise Integration and Modelling Technology. Enterprise Inter-
and Intra-Organizational Integration. Kluwer, Valencia, Spain, 2003.

20. Ushlod, M.: Where are the semantics in the semantic web? AI Magazine 24(3), 2003.

Acknowledgment

The authors would like to thank all the UEML IST-2001-34229 core members for
their scientific contribution to the work. This work is partially supported by the Com-
mission of the European Communities under the sixth framework programme
(INTEROP Network of Excellence, Contract N° 508011, <http://www.interop-
noe.org>).

