Perspectives on the scope and definition process
of the Unified Enterprise Modelling Language*

Michagl Petit and Patrick Heymans

Computer Science Department, University of Namur, Rue Grandgagnage 21,
B-5000 Namur, Belgium, {mpe,phe}@info.fundp.ac.be

Abstract. Interoperability of Enterprise Applications is a serious and
multi-facetted problem. One of the tasks of the recently-started IN-
TEROP Network of Excellence is to address this problem at the mod-
elling level through the elaboration of a Unified Enterprise Modelling
Language (UEML). In this paper, some methodological hints and an
embryonic mission statement are submitted to discussion with peers.

1 Introduction

Today’s “business trends are clearly towards the need for managing organiza-
tional and operational changes within companies in order to face global compe-
tition and fluctuating market conditions” [16]. This situation forces enterprises
to tackle a number of integration and therefore interoperability problems: inte-
gration of markets, integration between several development and manufacturing
sites, integration between suppliers and manufacturers, integration of design and
manufacturing, integration of multi-vendor hardware and software components.

“Things to be integrated and coordinated need to be modelled. Thus, En-
terprise Modelling (EM) is clearly a prerequisite for enterprise integration” [16].
However, the current status of the EM domain is characterized by a Tower of Ba-
bel situation in which many Enterprise Modelling Languages (EMLs) and tools
are used. All these languages and tools have different (but sometimes similar)
syntaxes, semantics, purposes and capabilities. Models of parts of the enterprise
expressed in the different languages are therefore hard to understand, compare
and combine. This situation hinders true enterprise integration, interoperability,
and shared enterprise knowledge.

The recently-started INTEROP project [1] considers that one part of the
solution is to define a common standard EML. Within its predecessor, the UEML
project [2], the initial definition of the so-called Unified EML (UEML) version
1.0 was performed. The work included a requirements analysis and a subsequent
definition of the language.

*This work is partially supported by the Commission of the European Communities
under the sixth framework programme (INTEROP Network of Excellence, Contract
508011) [1]



Due to the nature of the UEML project', UEML 1.0 allows mainly the mod-
elling of process aspects but leaves out other aspects (such as informational or
organisational aspects) and covers only a small set of the identified requirements.
It was defined by integrating three existing EMLs (namely subsets of GRAI [5],
EEML [9] and IEM [11]) by following a methodology based on methodologies
proposed in database integration [12].

Within INTEROP, UEML’s expressiveness will be extended beyond process
aspects and more requirements will be covered.

In this paper, basing on the experience in defining UEML and other modelling
languages (i.e. the Albert language [3,4]), we propose methodological guidelines
and initial ideas for defining UEML 2.0.

2 Methodological hints for UEML extension

Three important inputs for the definition of UEML 2.0 are (i) UEML 1.0 itself,
(ii) the list of UEML requirements and (iii) the methodology that was used for
elaborating UEML on the basis of existing languages.

Due to the goals and duration of the UEML project explained above some
of these results have limitations.

First, the requirements list, which was elaborated by collecting requirements
from a large number of EM actors, suffers from some weaknesses:

— it is weakly structured;

— it mixes requirements of different levels of detail;

— it does not attach rationales to requirements;

— it does not offer a big picture of what UEML is about;

— it seems to address requirements that are beyond the “reasonable” scope of
a UEML;

— it contains requirements that are not sufficiently clear or too complex and
need further refinement.

Consequently, it may be difficult to base the UEML 2.0 requirements on this
list of requirements and to get a consensus among the UEML designers and users
on what requirements UEML 2.0 has to address.

Secondly, although UEML 1.0 is a powerful process modelling language,
building it on only three languages is insufficient to claim that the language
is a reference or standard. Other EMLs should be considered, compared and
integrated into UEML. Currently, the three languages used come from the EM
community. Since many enterprise languages also come from the Ontology com-
munity some of them should also be considered for integration e.g. [6,15].

To address these problems, we propose the following more top-down method-

ology:

Two characteristics of the UEML project explain these limitations: its short du-
ration (15 months) and its objectives (investigating and demonstrating the feasibility
of using UEML for exchanging models among three EM software environments).



1. Start by defining a scope document (mission statement) for UEML 2.0. This
document would identify the main problems to be solved by UEML, the main
goals and non-goals of UEML needed to solve these problems, and the main
alternative solutions for elaborating an UEML (and their comparison with
respect to the goals and non-goals), as well as the main risks of proposing a
UEML (see Sect. 3);

2. Progressively refine top goals into more detailed requirements. This refine-
ment should use some existing goal refinement methodology (such as those
existing in software requirements engineering like i* [17]). The top goals
would then be decomposed progressively into simpler goals until the require-
ments from UEML project or new requirements are identified.

3. Analyse and select existing EM languages and ontologies that currently best
meet some of the requirements.

4. “Integrate” these languages and ontologies into UEML. For this, the method-
ology applied in the UEML project [12] can be enhanced and applied.

The methodology should also take advantage of the successes, difficulties
and failures of similar initiatives (e.g. UML). Existing requirements documents
written for similar purposes should also be considered (e.g. list of general re-
quirements for programming languages [14], requirements list for PSL [13], ...).

In the following section, we discuss some initial ideas for the first step of
the proposed methodology, namely, the scope definition. They are clearly all but
complete and should be further discussed with the INTEROP partners before
being elaborated.

3 Ideas for a UEML scope definition

3.1 Problems to be solved by UEML
The UEML should at least answer to the following two problems.
Problem 1. Tower of Babel situation (see Sect. 1).

Problem 2. Scope of modelling unclear Modelling of non-software artifacts
is not common practice while it has potentially many benefits e.g. understanding
and improving the enterprise and expressing assumptions on the environement
of software [8]

3.2 UEML goals and non-goals

In order to solve these problems, we suggest some goals:

Goal 1. UEML should promote and improve EM practices.

Goal 2. UEML should provide effective and efficient means for EML users to
achieve EM.



Goal 3. UEML should be considered the EM standard for EML users and
providers.

Goal 4. UEML should minimize adaptation/transition efforts and costs of cur-
rent enterprise EM users and providers.

Goal 5. UEML should foster the convergence of EML providers’ contributions.

What should UEML be or not be:

Goal 6. UEML should be an EML, a coordinated set of EMLs or a family of
related EMLs (e.g. through profiling). Based on the concept of language defined
in [7], each such EML should have:

— one or more concrete syntaxes, that is (i) one or more user-oriented syn-
taxes (graphical and/or textual) and (ii) one or more tool-oriented syntaxes,
including an exchange format.

— ONE abstract syntax aka meta-model (or several equivalent ones).

— ONE formally defined semantics (or several equivalent ones).

Goal 7. UEML should not be a mere exchange format (e.g. an XML-based
syntax for exchanging enterprise models).

Goal 6 will help to solve both problems 1 and 2. Goal 7 is required because
a mere exchange format (that is a tool-oriented language, hidden from the user)
would not help to solve problem 1. This would not be sufficient to encourage the
convergence of user-oriented languages.

UEML should additionally possess a number of qualities to insure its accep-
tance, which reduces problem 1 and 2:

Goal 8. UEML should be expressive: it should offer enough constructs to allow
expressing all reasonably needed EM concepts.

Goal 9. UEML expressiveness should be minimal: it should not offer more con-
structs than those reasonably needed for EM.

Goal 10. UEML should be natural: it should allow to express EM concepts in a
reasonably intuitive /natural way, that is, straightforwardly, without cumbersome
“coding”.

For more qualities see e.g. [10].

3.3 Risks associated to the definition of UEML

The definition of UEML as a standard EML could be compared e.g. to the defi-
nition of UML as a standard language for object-oriented modelling of software.
The UML experience suggests the following risks for UEML’s definition:

1. Definition of a unified language is a huge and tricky task;

2. The definition and evolution process of a language might endanger its qual-
ity. Important aspects to be defined are the composition of the consortium
defining UEML and the decision protocol used;

3. Acceptance by the community is uncertain.



4

Conclusion

In this paper, we underline important methodological issues for a reference EML,
one of the main tasks of the INTEROP project. We suggest to start the definition
process of the so-called UEML by a mission statement aimed at driving future
efforts. Parts of its content are proposed and submitted to discussion.

On the basis of this scope definition, candidate enterprise representation

languages and ontologies will have to be selected for integration in UEML.

References

10.

11.

12.

INTEROP project website. http://www.interop-noe.org/, April 2004.

UEML project website. http://www.ueml.org, April 2004.

Philippe Du Bois. The Albert II Language : On the Design and The Use of a
Formal Specification Language for Requirements Analysis. PhD thesis, Computer
Science Department, Facultés Universitaires Notre-Dame de la Paix, Namur, Bel-
gium, September 1995.

Yves Bontemps and Patrick Heymans. Turning high-level live sequence charts into
automata. In Proc. of ”Scenarios and State-Machines: models, algorithms and
tools” (SCESM) workshop of the 24th Int. Conf. on Software Engineering (ICSE
2002), Orlando, FL, May 2002. ACM. http://wuw.cs.tut.fi/"tsysta/ICSE/
papers/.

G. Doumeingts. GRAI: Méthode de Conception Des Systémes En Productique.
PhD thesis, University of Bordeaux I, France, 1984. in french.

Mark S. Fox and Michael Gruninger. Ontologies for enterprise integration. In
Michael Brodie, Mathias Jarke, and Michael Papazoglou, editors, Proc. of the Sec-
ond International Conference on Cooperative Information Systems — CooplS-94,
pages 82-89, Toronto (Canada), May 17-20, 1994.

D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all that stuff,
part i: The basic stuff. Technical Report MCS00-16, Faculty of Mathematics and
Computer Science, The Weizmann Institute of Science, 2000.

Michael Jackson. Some basic tenets of description. Software and Systems Modelling
Journal (Sosym), 1(1):5-9, 2002. http://www.sosym.org/.

. H.D. Jorgensen and S. Carlsen. Emergent workflow: Integrated planning and per-

formance of process instances. In Proc. Of Workflow Management’99. Miinster,
Germany, 1999.

J. Krogstie and A.Sglvberg. Information systems engineering: Conceptual modeling
in a quality perspective. Technical report, NTNU, January 2 2000.

Kai Mertins and Roland Jochem. Quality-Oriented Design of Business Processes.
Kluwer Academic Publishers, Boston/Dordrecht/London, 1999. ISBN 0-7923-8484-
9.

Michaél Petit. Some methodological clues for defining a unified enterprise mod-
elling language. In Kurt Kosanke, Roland Jochem, James G. Nell, and Angel Or-
tiz Bas, editors, Enterprise Inter- and Intra-Organisational Intergration - Building
an International Consensus. Kluwer Academic Publishers, kurt kosanke, roland
jochem, james g. nell and angel ortiz bas (editors) edition, 2003. ISBN 1-4020-
T277-5.



13.

14.

15.

16.

17.

Craig Schlenoff, Amy Knutilla, and Steven Ray. Unified process specification lan-
guage: Requirements for modeling process. Technical Report NISTIR 5910, Na-
tional Institute of Standards and Technology (NIST), Manufacturing Engineer-
ing Laboratory, Manufacturing Systems Integration Division, Gaithersburg, MD
20899, September 1996. http://www.mel.nist.gov/msidlibrary/doc/schlen96/
req-paper.pdf.

Ulf Schiinemann. Home-page of programming language design. http://www.cs.
mun.ca/~ulf/pld/, April 2004.

Mike Uschold, Martin King, Stuart Moralee, and Yannis Zorgios. The en-
terprise ontology. The Knowledge Engineering Review, 13, 1998. Special Is-
sue on Putting Ontologies to Use (eds. Mike Uschold and Austin Tate). Also
available from AIAI as ATAI-TR-195, http://www.aiai.ed.ac.uk/project/pub/
documents/1998/98-ker-ent-ontology’.ps.

Francgois B. Vernadat. Enterprise modeling and integration: principles and appli-
cations. Chapman & Hall, 1996.

E. Yu. Modelling Strategic Relationships for Process Reengineering. Ph.D. Thesis,
Univ. of Toronto, 1994.



