
Modeling and realizing interoperability

Manfred A. Jeusfeld , Willem-Jan van den Heuvel, Jeroen Hoppenbrouwers, Kees Leune,

Mike Papazoglou, Hans Weigand, Jian Yang

Infolab, Tilburg University,

P.O.Box 90153, 5000 LE Tilburg, The Netherlands
http://infolab.uvt.nl

Abstract. Interoperability between enterprise applications requires an understanding of the
obstacles to interoperability in order to provide methods for overcoming these obstacles. We
address the problem from different angles: first, we investigate the benefit of multi-lingual
ontologies to overcome language problems between users of an enterprise application. Second, we
propose a method to integrate legacy components into new enterprise applications. Third, we
research the impact service-oriented computing to enterprise application integration. Finally, we
present our results with agent-oriented platforms for integrating autonomous applications.

1. Ontologies for enterprise integration

Matching interfaces by routines for data conversion between applications are not solving the problem
of discovering the opportunity for application integration and for addressing semantic mismatches
between data and services. One aspect of the semantic mismatch is multi-linguality and heterogeneous
data representation. We have developed a scheme for representing data into multi-lingual ontologies
that allow to find back information from heterogeneous data sources independently from the original
data structures in the sources [1]. The method is based on the notion of attribute concepts like size,
color, price etc. These concepts are about properties of objects like products or even services. When a
new data source (or a new service) is added to the system, the property description of the new item are
linked to the abstract attribute concepts in the ontology. A user (or system) requiring to find the item
can use the terms in the ontology to locate the item. Since the ontology concepts have surrogate keys,
multiple natural language translations can be attached to them.
The link between data sources to the ontology is enriched by meta data about the data source supplier.
This allows tracing back any part of an answer to a location request back to the supplier of the original
information. The precision is to the tuple level and loss-less: the original data sources can be
reconstructed from the integrated representation and vice versa.
The approach has been successfully employed in the MEMO project [2], which produced a portal for
B2B commerce for vertically integrated industries. Specifically, the goal was to integrate product and
service catalogs from companies of several countries belonging to the same vertical market. Those
companies partially share ontologies on how to describe products and services. However, each role of a
company in the vertical supply chain induces a specialized sub-ontology that can differ from country to
country due to their cultural and legal heritage. This type of heterogeneity is a great obstacle to
application integration. For example, the concept of a fire resistance of a floor cover is has different
interpretations in different countries due to their national laws and standards. Our solution addressed
this problem by allowing to let multiple ontologies co-exist in the integrating system. The user of the
system has associated to her the ontologies that apply to her. Whenever she used the system, only her
ontologies are active and she only gets information back that is classified into these ontologies.
The approach has been realized using the ConceptBase system [3]. ConceptBase is a multi-user
repository system based on the Telos knowledge representation language [4]. Its key features are

• meta modeling: objects are instances of classes, classes are instances of meta classes, meta classes

are instances of meta meta classes etc. The abstraction hierarchy is virtually unlimited allowing to
model multiple representation schemes into a single uniform framework

• advanced query language: the query language is based on logical deduction. Save recursion over
negation is supported as well as aggregation functions. Answers can be returned in XML or other
text-based formats

2. Legacy integration

Web-services are rapidly becoming the de-facto technology for developing and integrating highly
distributed business applications that are capable of supporting cross-organizational business processes.
Web-services can be defined as self-describing, interoperable and reusable business components that
can be published, dynamically combined and invoked through the Internet, even when they reside
behind a company’s firewall.

Web Service Technology is facing a number of daunting obstacles before it can actually deliver its
tantalizing promises of massive reuse and seamless cross-enterprise integration. One of the most severe
obstacles is the integration of newly developed constellations of web services with existing enterprise
legacy systems. These systems are hard to maintain and adapt to new business requirements, but
support the value-adding business operations of many brick-and-mortar companies. Existing web-
service based solutions for legacy integration are based on the rather unrealistic assumption that legacy
systems can be wrapped and reused integrally without any major modification. In addition, they are
predominantly technology focused while largely neglecting business process semantics. Lastly, a
method for integrating cohesive fragments of legacy system and data with new web-services is
currently lacking. At the INFOLAB we have been developing a comprehensive method, named
BALES, that encompasses a wide range of techniques and a supporting prototypical toolset for
systematically designing and constructing web-service based, cross-organizational business
applications with wrapped legacy systems[13]. The method is business-process driven and supports the
notion of selective integration of semantically enriched portions of encapsulated legacy application
logic and corresponding data.

3. Service-oriented computing

Service-Oriented Computing (SOC) has been emerging as a new computing paradigm that utilizes
services as fundamental elements for developing loosely coupled distributed applications/solutions.
The platform neutral nature of SOC paradigm holds the promise for interoperability support based on
the way the distributed software applications are developed and deployed in the SOC environment. In
order for the realization of the full potential of SOC, many issues need to be addressed, which are best
presented and described in the Extended Service Oriented Architecture (ESOA) [5]. The ESOA is a
layered architecture that utilizes the basic SOA constructs as its bottom layer, on top of which it layers
a composition layer and a service management layer. We have been working on the ESOC architecture
that provides separate tiers for composing and coordinating services and for managing services in an
open marketplace by employing grid services, and use it to streamline and integrate our research
activities. Currently we are mainly focusing on the middle layer of the ESOC in the following two
areas:

• Service composition: the big challenge of service composition lies in the fact that the generation of
the composition must be dynamic in terms of service selection and composition construction; and the
result of composition must be configurable, manageable and reusable to meet the ever changing
business requirements. To support dynamicity, configurability, manageability, and reusability of
service composition, we have been working on the following projects:

o Business rule driven service composition: Service composition needs to be flexible in the way
that is defined, scheduled, and constructed. It also needs to adapt to changes so that
compositions do not need to be re-generated whenever changes occur. To support various types
of service composition, we first need to identify the rules and policies that determine the
structure of the composition and prescribe alternative services and provider selection. we then
need to separate the rules that govern the composition from the composition specifications.
This means developing a rule based mechanism that manages the entire life cycle of service
composition. Some initial results can be found in [6, 7]

o Model driven approach for service composition: The benefits of adapting system analysis and
design methodology in service composition is that we gain much more insights in the process
of service composition development so that we can maintain traceability between models and
design. In our MDA approach we use UML as the method for designing service compositions.
This will enable us to develop technology independent composition definitions, which can
subsequently be mapped to specific standard (e.g. BPEL) automatically. Furthermore together
with UML we use Object Constraint Language (OCL) to express business rules that can govern
and steer the process of service composition. Some results can be found in [8].

• Service transaction management: The aim of this project is to develop theory, mechanism, and

infrastructure for supporting collaborative transactions in the web service environment. This will
lead to a comprehensive framework providing: (1) high-level abstractions for specifying
consistency requirements in business context; (2) a mechanism for supporting basic transactional
behavior for business transactions, (3) a formal model for consistency and reliability verification,
and (4) supporting infrastructures for monitoring, maintaining, and managing consistency In this
framework, three levels of transactional properties will be investigated to achieve consistency and
reliability: Transactional capabilities of Web services, Transactional requirements and strategies
for Web service coordination, and Collaborative business process specific requirements for Web
service coordination. Some initial results can be found in [9].

4. Agent-oriented platforms

Agent-orientation is a new software engineering paradigm. An agent is a software module, just like
objects and components are. One major break with the object-oriented tradition is that the modules are
considered to be autonomous. This has consequences for the design. The main effort in the design
process is how to bring together modules (agents) that were developed independently from each other,
typically on the basis of different ontologies, and that will remain independent as well. In other words,
the focus is on the design of the coordination [11], rather than on the functionality of the isolated
components. The question how this coordination is to be achieved and maintained is precisely the main
question in interoperability.

In [10] an agent-oriented design method has been introduced that uses agreement and refinement. The
interoperability question cannot be addressed without considering the infrastructure, or “society” in
which the agents meet each other. What should be present, minimally, to make interoperability
possible in the first place? What coordination mechanisms should be supported? Reaching agreement
(against the background of a certain infrastructure) is another necessary capability for software entities
to achieve interoperability. This cannot be done without making explicit what is to be agreed upon. In
our research, we have explored this problem under the heading of contract-driven coordination [12].
An expressive formal logic language for contracts is described in [14]. The language is based on
deontic logic; this is because dealing with autonomous (rather than completely controllable) systems
implies that norms, goals and commitments are not always kept, and the interoperating systems should
be able to cope with these violations.

5. References

[1] M.A. Jeusfeld (2004): Integrating product catalogs via multiple-language ontologies. In Proc. EAI 2004
Workshop Enterprise Application, Oldenburg, February 12-13, 2004, online CEUR-WS.org/Vol-93, ISSN
1603-0073.

[2] M.P. Papazoglou, M.A. Jeusfeld, H. Weigand, M. Jarke: Distributed, interoperable workflow support for
Electronic Commerce. In Proc. GI/IFIP Conf. Trends in Electronic Commerce, Hamburg, Germany, June 3-5,
1998, Springer-Verlag, LNCS 1402, pp. 192-204.

[3] M. Jarke, R. Gallersdörfer, M.A. Jeusfeld, M. Staudt, S. Eherer: ConceptBase - a deductive object base for
meta data management. Journal of Intelligent Information Systems 4(2): 167-192, 1995.

[4] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos -- a language for representing knowledge
about information systems. In ACM Trans. Information Systems, 8, 4, 1990, pp. 325-362.

[5]: Mike P. Papazoglou and Dimitrios Georgakopoulos (2003): Introduction. In CACM 46 (10): 24-28, Special
Issue: Service-oriented computing.

[6] B. Orriens, J. Yang, and M.P. Papazoglou, “A Framework for Business Rule Driven Service Composition”. In
VLDB-TES2003, Sep, Berlin, 2003.

[7] Jian Yang and Mike P. Papazoglou, “Service components for managing the life-cycle of service compositions”.
Information Systems 29(2): 97-125 (2004).

[8] B. Orriens, J. Yang, and M.P. Papazoglou (2003): Model Driven Service Composition”. In Proc of 1st
international conference on service oriented computing (ICSOC2003), Trento, Italy.

[9] Mike P. Papazoglou: “Web Services and Business Transactions”. Journal of World Wide Web 6(1): 49-91
(2003).

[10] Weigand, H., Dignum, V., Meyer, J-J., Dignum, F.: Specification by Refinement and Agreement: Designing
Agent Interaction Using Landmarks and Contracts. In: Petta, P., Tolksdorf, R., Zambonelli, F. (Eds.):
Engineering Societies in the Agents World III: Proceedings ESAW’02, LNAI 2577, Springer-Verlag, 2003, pp.
257-269.

[11] Zambonelli F., Jennings, N., Wooldridge, M.: Organisational Abstractions for the Analysis and Design of
Multi-Agent Systems. In: Ciancarini P., Wooldridge, M. (eds.): Agent-Oriented Software Engineering, LNCS
1957, Springer-Verlag, 2001, pp. 235 – 251.

