
Using OWL-S to annotate services with ancillary
behaviour

Roxana Belecheanu, Mariusz Jacyno, Terry Payne

School of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ
{rab2, mj04r, trp}@ecs.soton.ac.uk

Abstract: This paper introduces the concept of services with ancillary behav-
iour and illustrates the use of OWL-S to semantically describe them. The OWL-
S syntax used reflects the dynamic and core-function independent nature of an-
cillary behaviour. The approach is illustrated on the case of a ubiquitous com-
puting system designed to offer care in the home of a cardiac patient. Here one
of the challenges is to ensure service availability, team awareness and transac-
tion atomicity. The concept of commitment is discussed as an example of ancil-
lary behaviour that can achieve these requirements.

1 Introduction

Service oriented applications often require that services which implement certain
core functions are accompanied by supporting functionality, like monitoring behav-
iour, commitment, authentication, encryption/decryption. This supporting functional-
ity is usually relevant only to the context of the core function, but does not always
play a direct role in the invocation of the core function. This paper introduces the
concept of ancillary behaviour to describe functionality that is additional to the core
service typically annotated in an OWL-S description, and which has the role of aug-
menting the service’s capability, or enhancing the QoS achieved by the core service.

The ancillary functionality of a web service can be either mandatory or optional.
Mandatory ancillary operations (e.g. authentication) must be executed in addition to
the service’s core functionality and the service cannot be invoked without the execu-
tion of these operations. Ancillary functionality contributes to the delivery of a service
either by providing a supporting role (enable the core service) or an enhancing role
(increase the value of the core service) [1].

A related but distinct concept that can also be introduced here is that of a higher-
order service. A higher-order service is one which determines a particular aspect of
the invocation of a core service without invoking the core service. For example, in or-
der to find out the cost of the invocation of a service for certain input parameters, a
costing service can be attached to the core service, whereby the invocation of the cost
function would not require the invocation of the core service.

2 An application example

An application example for the concept of services with ancillary behaviour is an
ubiquitous computing [4] system whereby a set of heterogeneous devices and their
applications establish connections between each other in a dynamic manner (i.e. de-
vices leaving and joining the system unexpectedly), in order to achieve certain tasks.
Due to the high variability of the Quality of Service of wireless data communications
(e.g. line rate, throughput, error rate) in such a system, there is also a need for dy-
namically discovering and composing the applications running on these connected
devices. Abstracting devices (physical) functionality as services (logical) functionality
and using OWL-S to semantically annotate these services can help achieve this flexi-
bility. Thus building interoperable service descriptions similar to the Semantic Web
Services is needed to accomplish tasks like service discovery, management, invoca-
tion and monitoring.

For example, in the case of a ubiquitous system designed to offer care in the home
of a patient, there may be the issue of having a limited number of devices, each pro-
viding services that take a finite time to execute, and that may have to be shared by
several contexts. Hence, no guarantees exist that any single service is available for in-
vocation at any given time. Therefore, a service centric application must ensure:

1. service availability: services which are critical for the patient care (e.g. heart
rate monitoring) must be available for execution at the desired time.

2. team awareness: services must be aware of the status of other services they
depend on.

3. atomic transactions: due to high power consumption of message transmission,
it is necessary to reduce the number of service requests, or to support a
mechanism whereby both core and supporting activities can be requested via a
single call (i.e. as one transaction).

3 Commitment based services

Commitment is an example of ancillary behaviour that can help achieve this type
of service interactions. The concept is used to enforce that the provider of a commit-
ment supporting service commits to perform an action for a requester. This has been
formalised within the theory of local and social agent behaviour [2], using concepts
from the Beliefs-Desires-Intentions model. Commitment has also been used to model
coordination protocols for business transactions [3], e.g. in an “atomic transaction”,
several services committed to one requester will succeed or fail as an atomic unit. A
common point of the two interpretations of commitment is that a protocol (e.g. opera-
tions like RequestCommitment, DischargeCommitment, ReleaseCommitment, etc.)
can be designed to allow services to check each other’s availability to perform a joint
task, thus building team awareness. The difference between the two commitment
models is that a committed service in agent theory will eventually perform the task,
but may accept other requests in the meantime, while a committed service in a trans-
actions model must be available to the requester immediately after commitment is
granted (a reservation-like interaction).

4 Describing ancillary service behaviour in OWL-S

Service ancillary behaviour has two salient characteristics:
1. It is dynamic, i.e. it involves communication with other services of which in-

stances can only be discovered at runtime; (hence it cannot be included in the
static description of the service’s process).

2. It is core function independent, i.e. it is common to a range of services with
different core functions.

For these reasons, ancillary behaviour has to be abstracted and described separately
from a given service’s core functionality, thus facilitating several different services
sharing the same ancillary behaviour. Ancillary behaviour description should be
loosely linked to the core service specification. The resulting workflow for both the
core and ancillary functionality can then be realized (through entailment) when an
agent reasons about the service, with respect to a usage context.

To illustrate how core services can be augmented by ancillary services, we take the
example of commitment as ancillary behaviour and an example of a core service from
the healthcare setting. Suppose HRMonitor_with_Commitment is a heart rate monitor-
ing service which supports commitment. To annotate it in OWL-S, we use the core
service instance GetHeartRate and augment it by: i) defining a CommitmentService
instance and ii) by linking the core service description with the ancillary service de-
scription. CommitmentService is the representation of a commitment protocol that en-
sures that the interaction with the HRMonitor_with_Commitment service occurs as
one transaction. The resulting workflow for this service must therefore be the se-
quence of the processes: RequestCommitment, GetHeartRate and DischargeCommit-
ment. Suppose that GetHeartRate is an atomic process:

<process:AtomicProcess rdf:ID="GetHeartRate">
 <hasOutput rdf:resource="ansConcepts#HeartRate"/>
</process:AtomicProcess>

To combine the core and ancillary workflows, we use the OWL-S Simple Process
class as an unbound service abstraction that can be dynamically linked to the
GetHeartRate service instance. The CommitmentService workflow can be written as:

<process:CompositeProcess rdf:ID="Commitment_Process">
 <process:composedOf>
 <process:Sequence>
 <process:Components>
 <process:AtomicProcess rdf:resource="#RequestCommitment"/>
 <process:SimpleProcess rdf:resource="#Core_Function"/>
 <process:AtomicProcess rdf:resource="#DischargeCommitment"/>
 </process:Components>
 </process:Sequence>
 </process:composedOf>
</process:CompositeProcess>,

whereby the Simple Process represents a step that must be replaced by a core process
before execution, thus allowing the annotation of the commitment as a function that is
common and can be attached to several core services. The CommitmentService thus
acts as a wrapper around the core function of any service that supports commitment.

Additional annotations are then added to the core GetHeartRate service to link it
with the ancillary commitment service definition: 1. the GetHeartRate process real-

izes the abstract Simple Process, thus stating that the ancillary service definition is ef-
fectively unbound, until reasoned about in context with the GetHeartRate service:

<process:AtomicProcess rdf:ID="GetHeartRate">
 <process:realizes rdf:resource="ansAncillary.owl#Core_Function"/>
</process:AtomicProcess>

 2. In order to distinguish between a committed and non-committed service during
discovery, (as typically a service is requested according to the functional parameters
of the core service), ANSAncillaryFunctionality is defined as a serviceParameter type
of property, in the profile of any ANS service:

<ANSServiceProfile rdf:ID=”HRMonitor_with_Commitment_Profile”>
 <profile:has_process rdf:resource=”#GetHeartRate”/>
 <ansProfile:ANSAncillaryFunctionality>
 <ansProfile:ANSAncillary>
 <profile:sParameter rdf:resource="ansAncillary#Commitment_Profile"/>
 </ansProfile:ANSAncillary>
 </ansProfile:ANSAncillaryFunctionality>
</ANSServiceProfile>

5 Further work

Further work aims to address issues which result from using this type of annota-
tion: first, discovering services with ancillary behaviour requires searching by core
functionality parameters, as well as by non-functional properties (i.e. sParameter), to
determine what ancillary services are also provided as part of the service description.
Secondly, the runtime composition of the workflows describing the core and ancillary
sub-processes into one executable workflow is necessary. The possibility to annotate
services with more than one type of ancillary behaviour must also be addressed.

Acknowledgements

This research is funded by DTI (UK) as part of the ANS (Autonomous Networked
System) project; other research partners are Imperial College and Lancaster Univ.

References

1. Baida, Z., Akkermans, H. and Bernaras, A., 2003., The configurable nature
of real-world services: analysis and demonstration, ICEC-Workshop.

2. P. R. Cohen and H. J. Levesque, Intention is choice with commitment, Arti-
ficial Intelligence, 42 (1990), pp. 213-261

3. Papazoglou, M.P., 2003. “Web Services and Business Transactions”,
WWW: Internet and Web Information Systems, 6, pp. 49-91.

4. Weiser, M, "The Computer for the Twenty-First Century," Scientific Ameri-
can, pp. 94-10, September 1991

