
Developing a Service-Oriented Architecture to

Harvest Information for the Semantic Web

Barry Norton, Sam Chapman and Fabio Ciravegna

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK
{B.Norton, S.Chapman, F.Ciravegna}@dcs.shef.ac.uk

Abstract. Armadillo is a tool that provides automatic annotation for
the Semantic Web using unannotated resources like the existing Web for
information harvesting, that is: combining a crawling mechanism with
an extensible architecture for ontology population. The latter is achieved
via largely unsupervised machine learning, boot-strapped from oracles,
such as web-site wrappers, and backed up by an ‘evidential reasoning’,
allowing evidence to be gained from the redundancy in the Web and
allowing the inaccuracies in information, also characteristic of today’s
Web, to be circumvented. In this paper we sketch how the Armadillo
architecture has been reinterpreted as workflow templates that compose
semantic web services and show how the porting of Armadillo to new
domains, and the application of new tools, has thus been simplified.

1 Introduction

The Semantic Web needs semantically-based document annotation to both en-
able better document retrieval and empower semantically-aware software agents.
Most of the current technology is based on human centred annotation, very of-
ten completely manual which can be incorrect and incomplete, deliberately or
through lack of skill, or can become obsolete. A major advantage of Armadillo [2]
is its ability to annotate large repositories in a largely unsupervised manner and
thereby make available to the Semantic Web the huge amount of information,
available only in human-oriented form, on the current Web.

Armadillo annotates by extracting information from different sources, boot-
strapped by ‘oracles’ i.e. relatively infallible authorities. ‘Evidential reasoning’
is used to validate the classifications of, and relations between, instances. This
evidence is then integrated and the knowledge entered into a repository.

Our aim in using a semantic web service (SWS)-based architecture is to
allow porting to a new domain by providing workflow templates, i.e. where some
subtasks are left as parameters, expressed in BPEL [5], where SWS’s achieving
these subtasks are described in OWL-S [4]. We claim that this allows the process
to be understood abstractly, and represented graphically rather than in code, and
that those points where services must be located and ‘plugged in’ are more easily
understood in terms of the OWL [8] concepts they relate. Furthermore direct
reuse of domain-specific and externally-authored functionality is facilitated.



2 Architecture

The act of porting Armadillo to a new ontology population task begins by pro-
viding a domain-specific ontology. The given ontology includes structural rela-
tionships which are transformed into a plan for population. The plan details
an order in which the concepts and relations will be explored by attaching a
direction to each relation. For each relation to be followed, from a concept A to
a concept B, the workflow shown in Figure 1 organises the following subtasks:
Crawling, Instance Recognition, Evidential Reasoning and finally Combination
and Storage. Crawling will systemically retrieve documents associated with an
instance of concept A; Instance Recognition will find candidate instances of B

with an implicit relation to that instance; Evidential Reasoning will find support
for both the classification and the relation discovered, which will be combined
and, if sufficient, cause both to be stored.

Fig. 1. Architecture

Enqueue
Med Prio

Doc
LoaderFinder

Reference

Enqueue
High Prio

Enqueue

[DocId]

3Queue<DocId>

[DocId]

DocId

Doc

Low Prio

Fig. 2. Crawling Task

Enqueue
Med Prio

Enqueue
High Prio

Enqueue

[URL]

3Queue<URL>

[URL]

URL

HTML

Low Prio

Caching Page
Finder
Link

Loader

Fig. 3. Example Crawling Instantiation

In the remainder of the paper we detail the template workflows which achieve
each of these subtasks in turn, composing generic services with others that a
developer must locate to accomplish clear strategies. For these the choice, aided
by semantic discovery [7], is between:

– generic services: wholly independent of domain and context;
– context-dependent services: where reuse depends on the context but not the

domain (e.g. the type of documents or repository used);
– domain-tailored services: parameterised to be tailored to a given domain;
– domain-trained services: encapsulate machine-learning which can adapt semi-

automatically to a given domain;
– domain-specific services: encapsulate techniques which are hard-coded for a

given domain (but might still be re-used across applications in that domain).



In the following we shall use a familiar example of the academic domain [2],
wherein we view instances of the ‘University’ concept as being provided by an
oracle and populate the ‘Academic’ concept, via the ‘employedBy’ relationship.
We use square brackets to represent lists over the contained type, and so [DocId]
is the type of a list of elements of type DocId. Angle brackets mean instantiation
of some generic (parameterised) service, so that 3Queue represents some generic
queue service that stores instances of some type notated DocId, at three different
priority levels, and supplies them to the consequent workflow one at a time.

2.1 Crawling

The general form of the ‘crawling’ task is shown in Figure 2. There are two
levels at which this abstract workflow is parameterised: the DocId and Doc

labels are actually type variables that must be instantiated at concrete types; the
DocLoader and ReferenceF inder tasks are service variables to be instantiated.

Figure 3 shows how we could achieve a concrete instantiation of this task.
First we choose instances for the type variables consistent with Web-oriented
technology, i.e., in this example, Doc = HTML and DocId = URL. We then
choose context-dependent services that meet the resulting signatures, i.e. pro-
ducing a page from a URL, and a list of URLs from a page, respectively.

2.2 Instance Recognition

The ‘instance recognition’ task can be realised by both domain-tailored, and
domain-trained services to find candidate instances of a given type B with an
implicit relation to the instance of A being investigated. This can be seen in Fig-
ure 4, where the B−Recogniser outline implies that multiple parallel implemen-
tations may be used. For instance in the example in Figure 5 we see that both
domain-tailored regular expression matching and domain-trained Amilcare [3]
will be used side-by-side, as could other Information Extraction tools.

Enqueue
Med Prio

Enqueue

2Queue<B>

Low Prio

Doc

[B]

B−Recogniser

[B]

[B]

Duplicate
Removal /

Consolidation

Fig. 4. Instance Recognition Task

HTML
Regex

Name
Patterns

PersonRecogniser

LearnApply

Enqueue
Med Prio

Enqueue

2Queue<Person>

Low Prio

HTML

[Person]

Amilcare

[Person]

[Person]

Cross−match &
3Store

Look−up

Fig. 5. Example Recognition Instantiation

The subsequent consolidation stage is typically domain-specific Information
Integration but reuse can be made; for instance from the ‘similarity metrics’
library, SimMetrics, which we have recently released [1]. The consolidated list of
candidate instances is then queued to be validated by ‘evidential reasoning’.



2.3 Evidential Reasoning

For each potential instance of the concept B from the queue this task will attempt
to find evidence to confirm its classification and relation to the original instance.
This may consist of several parallel services, each of which implements a strategy
that falls into one of two classes, as follow.

Contextual Reasoning considers each potential B instance in the context of
the A instance via which it was discovered. As seen in Figure 6, two services will
be used to find occurrences of the B instance in general and co-located with the
A instance respectively. A third service then produces a list of potential triples
relating these instances, with evidence supporting the relation. Figure 7 shows
a simple instance of this strategy where we ‘promote’ the candidate instance to
being an academic employed by the university based on co-located references on
the web, obtained by a Google wrapper which is domain-independent.

B

A−B Colocated
Reference
Oracle

B Reference
Oracle
[DocId]

[DocId]
Correlation
Reasoner

[(B, _, A), Evidence]

A

Fig. 6. Contextual Reasoning Task

Person

Search
[URL]

[URL]
Numerical
Correlation

GoogleGoogle
Search

University

[(Academic, employedBy, University), Probability]

Fig. 7. Example Contextual Instantiation

Relational Reasoning provides evidence for the candidate B instance being
correctly classified as such, based on other relations an oracle may find. In this
subtask, as shown in Figure 9, we may apply domain-tailored or domain-specific

technologies such as gazetteers and site wrappers, as well as domain-trained

relation extraction, as we are developing in the tool T-Rex.

B−C Relation
Oracle
[C]

Relational
Reasoner

(Evidence,
[C, [(B, _, C), Evidence]])

B

Fig. 8. Relational Reasoning Task

[Paper]
Mid−Range

Citeseer
Wrapper

Filter

Person

[Paper, [(Academic, _, Paper),
Probability]])

[Forename]
Gazetteer

Person

[Forename, [(Person, _, Forename),
Probability]])

Forename

String
Comparison

(Probability,(Probability,

Fig. 9. Example Relational instantiations

2.4 Combination and Storage

For the sake of brevity we do not consider, in this paper, the ‘combination’
and ‘storage’ tasks except to say that we have instantiated the Evidence type
variable as a probability and will use a statistical combination to provide a
higher-confidence result; other solutions are also accommodated.



3 Conclusions

We have illustrated how it is possible to make use of SWS’s in harvesting the
Web, and other corpora, to provide annotations for the Semantic Web. The
architecture presented is based on workflow and follows an IE-oriented strategy.
Initial approximations to both classification and implicit relation extraction are
followed by evidential reasoning based on both context and further relations.
In this way a wide variety of semantic web services may be accommodated and
porting is eased since, in many cases, users can avoid coding altogether, merely
using the workflow templates to guide semantic discovery and composition.

This architecture also provides many other benefits associated with service-
oriented architectures, such as speed-up from concurrency and distribution, an
automatic means to reuse of any code that does have to be written specifically
for a new domain, and the ability to provide services remotely to users with little
infrastructure. A more complete picture of the workflow template described here,
and the means by which it is currently implemented, is provided in the related
position paper [6].

References

1. Sam Chapman. SimMetrics. http://sourceforge.net/projects/simmetrics/.
2. Fabio Ciravegna, Sam Chapman, Alexiei Dingli, and Yorick Wilks. Learning to

harvest information for the semantic web. In Proceedings of the First European
Semantic Web Symposium, May 2004.

3. Fabio Ciravegna and Yorick Wilks. Annotation for the Semantic Web. Series Fron-
tiers in Artificial Intelligence and Applications. IOS Press, 2003.

4. Anupriya Ankolekar et al. DAML-S: Web service description for the semantic web.
In Proc. 1st International Semantic Web Conference (ISWC), 2002.

5. IBM et al. Business process execution language for web services version 1.1.
http://www-128.ibm.com/developerworks/library/ws-bpel, 2003.

6. Barry Norton. Proposed functional-style extensions for semantic web service com-
position. In Proc. 1st AKT Workshop on Semantic Web Services, 2004.

7. Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. Adding OWL-S to UDDI:
implementation and throughput. In Proc. 1st Intl. Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004), pages 6–9, 2004.

8. W3C. OWL web ontology language overview. http://www.w3c.org/TR/owl-features,
2004.

Acknowledgements

This work was carried out within the AKT project (http://www.aktors.org),
sponsored by the UK Engineering and Physical Sciences Research Council (grant
GR/N15764/01), and the Dot.Kom project, sponsored by the EU IST asp part
of Framework V (grant IST-2001-34038).


