
Proposed Functional-Style Extensions for

Semantic Web Service Composition

Barry Norton

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, S1 4DP Sheffield, UK

B.Norton@dcs.shef.ac.uk

In a related paper [9] we set out how various parts of a semantic web service-
based architecture for Armadillo[2], a harvesting tool for semantic annotation,
can be instantiated with information extraction and related language services.
We have constructed this as a workflow, illustrated as a whole on the following
page, in BPEL4WS [3], reasoning, as have several other authors [7], that even
while we should like to take advantage of semantic web service technology there
exist few, if any, generally available choreography solutions for OWL-S. As a
result we plan to take the lessons learned as input to an effort to implement and
extend a ‘coordination engine’ for OWL-S in the CASheW-s project[1].

The broad goals are to implement an engine in the programming language
Haskell [6] to which a workflow, expressed in an extended XML-encoded version
of OWL-S, can be communicated (over SOAP). This workflow will then be con-
verted to a process-algebraic representation in CaSE [10], a qualitatively-timed
CCS derivative, from which coordination engines have already been formed for
Microsoft COM via H/Direct [4]. Our plan is to use the GXS module of the
HAIFA framework [5] to allow the same kind of binding of SOAP services.

Our existing generalised dataflow model in CaSE [10] allows a semantics
for dataflows with loops, two loops can be seen over, and non-deterministic
agents, shown over as flow-graph style diamonds. Both of these features are
disallowed from the ‘Flow’ construct in BPEL (to construct the flow shown
over it is necessary to use more than one workflow, BPEL being insufficiently
algebraic), and the former syntactically restricted out of OWL-S, but very useful.

Our other major observation from BPEL was the frustrating need for use of
its extended XPATH language together with mutable variables - anathema to
the kind of analyses we should like to allow over designs. We have previously
proposed parametrically polymorphic functional language-like features as a more
suitable means to carry out transformation of XML-encoded data [8].

As well as allowing the binding of pure-functional Haskell operations at the
‘mediation’ level between services (as shown for instance in the second queue with
[B], a list of elements typed B, being transformed into (), the singleton type),
we should like to go further in adding operations to workflow primitives. Firstly,
we should like to bind Haskell functions to ‘If-Then-Else’ constructs, allowing
us to form an operation like ‘Trigger’ (in the two Queue services) directly from
a WSDL-described service without non-deterministic outputs. Furthermore, we
should like to bind functions to the ‘Split’ and ‘Join’ primitives so that informa-
tion can be propagated forward and consolidated through these features without
the use of global variables, as shown in the diagram.

B-

Doc Loader

A

LowPriority
Enqueue

3Queue<DocId>

HighPriority
Enqueue

DocId

B-Recogniser

Doc

Reference
Finder

[DocId]

Correlation
Reasoner

[DocId]

Relational
Reasoner

B Reference
Oracle

A-B
Colocated
Reference

Oracle

[B]

B

(Evidence, [((B, _, A), Evidence)])

([Evidence], [((B, _, A), Evidence)], [(C, [((B, _, C), Evidence)])])

Combination

()

(Evidence, [(C, [((B, _, C), Evidence)])])

[C]

B-C
Relation

Repository

MedPriority
Enqueue

Trigger

Doc

[B]

Duplicate Removal
and Consolidation

Queue
Enqueue Trigger

[B]

[B] ()

()

() ()

[DocId]

[DocId]

(Evidence, [((B, _, A), Evidence)],
 [(C, [((B, _, C), Evidence)])])

Acknowledgements

This work was carried out within the AKT project (http://www.aktors.org),
sponsored by the UK Engineering and Physical Sciences Research Council (grant
GR/N15764/01), and the Dot.Kom project, sponsored by the EU IST asp part of
Framework V (grant IST-2001-34038). Also to be acknowledged are the students
working on the CASheW-s project: Ravish Bhagdev, Xian Liu, Atheesh Sanka,
Andrew Hughes and Simon Foster whose HAIFA project is being continued here.

References

1. CASheW-s engine project. http://savannah.nongnu.org/projects/CASheW-s-engine.
2. Fabio Ciravegna, Sam Chapman, Alexiei Dingli, and Yorick Wilks. Learning to

harvest information for the semantic web. In Proceedings of the First European
Semantic Web Symposium, May 2004.

3. IBM et al. Business process execution language for web services version 1.1.
http://www-128.ibm.com/developerworks/library/ws-bpel, 2003.

4. Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. H/Direct:
A binary foreign language interface for Haskell. In Proc. 3rd ACM SIGPLAN
International Conference on Functional Programming (ICFP-98), ACM SIGPLAN
Notices. ACM Press, 1998.

5. Simon Foster. HAIFA : An interoperability framework for Haskell. MEng
Dissertation, Department of Computer Science, University of Sheffield, 2004.
http://www.dcs.shef.ac.uk/teaching/eproj/ug2004/abs/u1sf.htm.

6. Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge University
Press, 2003.

7. David J. Mandell and Sheila A. McIlraith. Adapting BPEL4WS for the Semantic
Web: The bottom-up approach to web service interoperation. In Proc. 2nd Intl.
Semantic Web Conference (ISWC2003), 2003.

8. Barry Norton. Eclipse as a development platform for semantic web services. Eclipse
Technology Exchange (eTX04), 18th European Conference on Object-Oriented
Programming (ECOOP-2004), 2004.
http://www.dcs.shef.ac.uk/∼barry/CASheW-s/Norton04.pdf.

9. Barry Norton, Sam Chapman, and Fabio Ciravegna. Developing a service-oriented
architecture to harvest information for the semantic web. In Proc. 1st AKT Work-
shop on Semantic Web Services.

10. Barry Norton, Gerald Luettgen, and Michael Mendler. A compositional semantic
theory for synchronous component-based design. In Proc. 14th Intl. Conference on
Concurrency Theory (CONCUR’03), volume 2761 of LNCS, 2003.

