
First AKT Workshop on Semantic Web
Services

AKT-SWS04
KMi, The Open University, Milton Keynes, UK

December 8, 2004

John Domingue, Liliana Cabral and Enrico Motta

Preface

Welcome to AKT-SWS04 the First AKT Sponsored Workshop on Semantic Web
Services. The purpose of this one day workshop is to bring together relevant members
of the AKT (Advanced Knowledge Technologies) project and the wider research
community associated with semantic web services. AKT is a six year UK, EPSRC
funded collaborative project between the Universities of Aberdeen, Edinburgh,
Sheffield, Southampton and the Open University. Over the last four years the AKT
community has carried out research on the complete life-cycle related to the creation,
deployment and maintenance of knowledge services - services which support the
creation and sharing of knowledge. During the course of this work a significant
number of technologies have been created – one of the highlights being the winning
of the Semantic Web Challenge at the International Semantic Web Conference in
2003.

Web services are reusable program components which can be invoked over the
internet through an XML based interface and, as such, have attracted considerable
interest from both academia and industry. Industrial interest has focused on using web
services for enterprise wide application integration and as a baseline for implementing
business processes. Research in semantic web services aims to apply semantic web
technology to automate or semi-automate the tasks associated with the development
and deployment of web service based applications. More specifically, to support the
tasks of discovery, mediation, composition and invocation.

Following our overall aim of bringing research communities together we have
structured this workshop to be relatively informal and to stimulate discussion as far as
possible. The morning of the workshop consists of ten short paper presentations. The
first two papers Treating ‘Shimantic Web’ Syndrome with Ontologies and Agent-
based Mediation in Semantic Web Service Framework look at how mismatches
between web services in terms of data representation and protocols can be resolved.
These are followed by two papers Orchestration of Semantic Web Services in IRS-III
and Interactive Composition of WSMO-based Semantic Web Services in IRS-III which
describe how semantic web services can be composed within The Open University’s
IRS III platform.

The final paper in the first session SWSDesigner: The Graphical Interface of
ODESWS outlines a semantic web services development environment based on the
UPML framework of tasks and problem solving methods. Tasks are also a key
component of the first paper after the break - Developing a Service-Oriented
Architecture to Harvest Information for the Semantic Web. Within this paper tasks are
used to support reusable workflow templates. Issues related to the explicit
represention of user’s requests to facilitate web service discovery are covered by
Integrating Preferences into Service Requests to Automate Service Usage.

At the boundaries of semantic web service based platforms XML based
representations have to be converted into and out of semantic representations. These
activities are called respectively lifting and lowering. Lowering in the context of IRS
III is described in OCML Ontologies to XML Schema Lowering.

The final two workshop papers are related to OWL-S which last month was the
subject of a member submission to W3C. The first Using OWL-S to Annotate Services
with Ancillary Behaviour proposes extensions to OWL-S to allow non core
functionalities and attributes of web services to be described. The second Integration
of OWL-S into IRS III outlines a tool which automatically translates OWL-S
descriptions into the WSMO based descriptions used in IRS III.

The afternoon starts with a panel Which Semantic Web Service Standards? In this
session panellists will describe the strengths and weaknesses of approaches based on
activities related to OWL-S, WSMO, SWSI and the IRS. After the panel session the
majority of the afternoon is dedicated to focused discussion groups. The workshop
closes with a demo session where participants will be able to examine a number of
semantic web service related tools in detail.

We are pleased that this workshop has attracted considerable interest outside of the
AKT consortium. In addition to our AKT partners, we are happy to welcome
participants from British Telecom, De Montfort University, the Digital Enterprise
Research Institute at Innsbruck, Essex County Council, Hewlett-Packard, the
University of Karlsruhe, the University of Leicester, the University of Manchester,
and Universidad Politécnica de Madrid.

We would like to thank all of our reviewer’s for carrying out their reviews within a
very short time scale. We would also like to thank Ben Hawkridge for arranging for
the workshop to be webcast. Finally, we would like to thank Jane Whild for the
enormous help that she has provided with the logistical aspects of setting up the
workshop.

John Domingue, Liliana Cabral, and Enrico Motta

Programme

9:15 - 9:30 Welcome by John Domingue

9:30 - 9:45 1. Treating “shimantic web” syndrome with ontologies
Duncan Hull, Robert Stevens, Phillip Lord, Chris Wroe, and Carole Goble

9:45 - 10:00 2. Agent-based Mediation in Semantic Web Service Framework
Renato de Freitas Bulcao Neto, Yathiraj Bhat Udupi, and Steve Battle

10:00 - 10:15 3.Orchestration of Semantic Web Services in IRS-III
Roberto Confalonieri, John Domingue and Enrico Motta

10:15 - 10:30 4. Interactive Composition of WSMO-based Semantic Web Services in IRS-III
Denilson Sell, Farshad Hakimpour, John Domingue, Enrico Motta and Roberto C. S. Pacheco

10:30 - 10:45 5. SWSDesigner: The Graphical Interface of ODESWS
Asunción Gómez-Pérez, Rafael González-Cabero and Manuel Lama

10:45 - 11:15 Coffee break

11:15 - 11:30 6. Developing a Service-Oriented Architecture to Harvest Information for the Semantic
Web
Barry Norton, Sam Chapman and Fabio Ciravegna

11:30 - 11:45 7. Integrating Preferences into Service Requests to Automate Service Usage
Michael Klein and Birgitta Konig-Ries

11:45 - 12:00 8. OCML Ontologies to XML Schema Lowering
Vlad Tanasescu, John Domingue and Liliana Cabral

12:00 - 12:15 9. Using OWL-S to annotate services with ancillary behaviour
Roxana Belecheanu, Mariusz Jacyno and Terry Payne

12:15 - 12:30 10. Integration of OWL-S into IRS-III
Farshad Hakimpour, John Domingue, Enrico Motta, Liliana Cabral and Yuangui Lei

12:30 - 13:30 Lunch and coffee

13:30 - 14:45 Panel: "Which Semantic Web Service standards?"
Terry Payne, Michael Stollberg, John Domingue and Steve Battle

14:45 - 15:45 Discussion Group 1 - MIAKT
Position Paper: MIAKT position paper, MIAKT component services

14:45 - 15:45 Discussion Group 2 - Applications
Position Paper: Web Service Support for Scientific Data Analysis
Other application papers: 1.

14:45 - 15:45 Discussion Group 3 - SWS Composition/Orchestration/Planning
Position Paper: Proposed Functional-Style Extensions for Semantic Web Service
Composition
Other Papers: 3, 4

15:45 - 16:00 Coffee break

16:00 - 17:00 Discussion Group 4 - MIAKT (cont.)

16:00 - 17:00 Discussion Group 5 - SWS Description
Position Paper: DIANE Service Description
Other Papers: 7, 9

16:00 - 17:00 Discussion Group 6 - SWS Mediation/Lifting/Lowering
Related Papers: 1, 2, 8

17:00 - 17:20 Feedback and Wrap up

17:20 - 18:00 Demo session with Cream Tea

Demo 1: OntoSearch
Demo 2: SWSDesigner
Demo 3: IRS-OWL-S Translator
Demo 4: Composition Interface for IRS-III
Demo 5: OCML-XSD lowering

Organisation

Steering Committee
John Domingue, KMi, The Open University - Chair
Enrico Motta, KMi, The Open University

Workshop Organisers
Liliana Cabral, KMi, The Open University

Program Committee
Steve Battle, HP Labs, UK
Fabio Ciravegna, University of Sheffield
Oscar Cocho, ISOCO, Spain
John Davies, BT, UK
Asuncion Gomez-Perez, UPM, Spain
Farshad Hakimpour, KMi, The Open University
Martin Kollingbaum, University of Aberdeen
Ruben Lara, DERI, Innsbruck, Austria
Mathew Moran, DERI, Galway, Ireland
Barry Norton, University of Sheffield
Terry Payne, University of Southampton
Dave Robertson, University of Edinburgh
Nigel Shadbolt, University of Southampton
Derek Sleeman, University of Aberdeen
Monica Solanki, De Monfort University, UK
Michael Stollberg, DERI, Innsbruck, Austria

Attendee name Affiliation
Marc Richardson British Telecom
Monika Solanki De Montfort University
Michael Stollberg DERI
Leticia Gutierrez Essex County Council
Rob Davies Essex County Council
Steve Battle Hewlett Packard Labs
Denilson Sell OU
Dileep Damle OU
Dnyanesh Rajpathak OU
Enrico Motta OU
Farshad Hakimpour OU
Gaston Burek OU
Jianhan Zhu OU
John Domingue OU
Liliana Cabral OU
Maria Varga-Veras OU
Michele Pasin OU
Neil Benn OU
Roberto Confalonieri OU
Tom Heath OU
Vanessa Lopez OU
Vladimir Tanasescu OU
Yuangui Lei OU
Michael Klein Universität Karlsruhe
Derek Sleeman University of Aberdeen
Edward Thomas University of Aberdeen
Martin Kollingbaum University of Aberdeen
Chris Walton University of Edinburgh
Dave Robertson University of Edinburgh
Stephen Potter University of Edinburgh
José Luiz Fiadeiro University of Leicester
Duncan Hull University of Manchester
Robert Stevens University of Manchester
Sean Bechhofer University of Manchester
Barry Norton University of Sheffield
Fabio Ciravegna University of Sheffield
Simon Foster University of Sheffield
Ayomi Bandara University of Southampton
David Dupplaw University of Southampton
Gary Wills University of Southampton
Hugh Glaser University of Southampton
Mariusz Jacyno University of Southampton
Mischa M Tuffield University of Southampton
Nick Gibbins University of Southampton
Paul H. Lewis University of Southampton
Roxana Belecheanu University of Southampton
Sebastian Stein University of Southampton
Srinandan Dasmahapatra University of Southampton
Stephen W Ball University of Southampton
Steve Harris University of Southampton
Terry Payne University of Southampton
Y.David Liang University of Southampton
Asunción Gómez-Pérez UPM
Rafael Gonzalez-Cabero UPM

Panelists Bios

Dr. Terry R. Payne is a lecturer at the University of Southampton, UK. He received
a BSc in Computer Systems Engineering from the University of Kent at Canterbury,
UK, and an MSc and PhD in Artificial Intelligence from the University of Aberdeen,
Scotland. He spent four years at the Robotics Institute at Carnegie Mellon University,
where he became involved in the DAML program. He is a co-author of the DAML-S
/ OWL-S Service Description Language, and a member of the Semantic Web Services
Language Committee (SWSL). Contact him at the School of ECS, University of
Southampton, Highfield, Southampton, SO17 1BJ; trp@ecs.soton.ac.uk;
http://www.ecs.soton.ac.uk/~trp/index.html.

Michael Stollberg, M.A., is a researcher at DERI – Digital Enterprise Research
Institute and a PhD student at the University of Innsbruck, Austria. His main research
fields are architectures for Semantic Web Services and mechanisms for discovery and
contracting. Michael Stollberg is project manager of the Semantic Web Fred project,
and is involved in DIP, an Integrated Project on the 6th framework concerned with
Semantic Web Services. Michael Stollberg is a founding member of the WSMO
working group, wherein he is responsible for dissemination and exploitation of
WSMO. Michael Stollberg is member of the DERI Business Development effort,
wherein he is responsible for developing a professional marketing and dissemination
strategy for DERI technologies.

Dr. Steve Battle gained his PhD in the area of Constraint Satisfaction Problem
solving, at the University of the West of England, Bristol, in 1996. Further research at
UWE involved the development of innovative distributed systems and mobile agent
technology within two EU projects; the FollowMe project (ESPRIT 25.338) and the
Traffic Engineering Network Data System (TRENDS – ESPRIT 20.791). After
joining Hewlett-Packard Labs in 1999 he continued this research in service-oriented
computing, working on the development of e-services for print. He is currently
engaged in the EU Semantic Web enabled Web Services Project, or SWWS (IST-
2002-37134), and is responsible for capturing semantically enriched descriptions of
web-services operated across HP

Dr. John Domingue is the Deputy Director of the Knowledge Media Institute at The
Open University, UK. Since the late 90s he has been investigating how knowledge
and internet technologies can support the creation and sharing of knowledge. His
main current work is centred on KMi's framework and platform for creating and
deploying semantic web services IRS III. He is the Scientific Director of the EU
funded Integrated Project on semantic web services DIP and is a co-Principle
Investigator on AKT. Dr. Domingue is also a chair of the WSMO working group.
More details on his work can be found at http://kmi.open.ac.uk/people/domingue/.

Table of contents

Treating “shimantic web” syndrome with ontologies ...1
Duncan Hull, Robert Stevens, Phillip Lord, Chris Wroe, and Carole Goble

Agent-based Mediation in Semantic Web Service Framework5
Renato de Freitas Bulcao Neto, Yathiraj Bhat Udupi, and Steve Battle

Orchestration of Semantic Web Services in IRS-III ...9
Roberto Confalonieri, John Domingue and Enrico Motta

Interactive Composition of WSMO-based Semantic Web Services in IRS-III13
Denilson Sell, Farshad Hakimpour, John Domingue, Enrico Motta and Roberto C. S. Pacheco

SWSDesigner: The Graphical Interface of ODESWS ...17
Asunción Gómez-Pérez, Rafael González-Cabero and Manuel Lama

Developing a Service-Oriented Architecture to Harvest Information for the Semantic
Web ..21
Barry Norton, Sam Chapman and Fabio Ciravegna

Integrating Preferences into Service Requests to Automate Service Usage...................26
Michael Klein and Birgitta Konig-Ries

OCML Ontologies to XML Schema Lowering ...30
Vlad Tanasescu, John Domingue and Liliana Cabral

Using OWL-S to annotate services with ancillary behaviour..34
Roxana Belecheanu, Mariusz Jacyno and Terry Payne

Integration of OWL-S into IRS-III...38
Farshad Hakimpour, John Domingue, Enrico Motta, Liliana Cabral and Yuangui Lei

Position Papers

MIAKT ...42
David Dupplaw, Srinandan Dasmahapatra, Bo Hu, Paul Lewis, Nigel Shadbolt

Web Service Support for Scientific Data Analysis ...45
Martin J Kollingbaum, Kun Cai, Timothy J Norman, Derek Sleeman, and Wamberto Vasconcelos

Proposed Functional-Style Extensions for Semantic Web Service Composition...........47
Barry Norton

The DIANE Service Description..50
Birgitta Konig-Ries and Michael Klein

Demo papers

OntoSearch: a Semantic Web Service to Support the Reuse of Ontologies52
Edward Thomas, Yi Zhang, Joe Wright, Craig McKenzie, Alun Preece, Derek Sleeman

Papers

Treating “shimantic web” syndrome with
ontologies

Duncan Hull, Robert Stevens, Phillip Lord, Chris Wroe, and Carole Goble

School of Computer Science, University of Manchester, Oxford Rd, Manchester, UK.

Abstract. This paper describes shimantic web syndrome, the use of
“shims” to align or mediate mismatching third party Web Services that
have closely related, but incompatible, inputs and outputs. The syn-
drome is illustrated using services from myGrid bioinformatics analyses.
An ontology driven treatment for managing this syndrome through semi-
automated service discovery and invocation is outlined. This treatment
is likely to be applicable to other domains.

1 Introduction

In the vision of Semantic Web Services, machine understandable descriptions
of data and Web Services facilitate their automated use. Yet, as ever, the devil
is in the detail. We observe the need to use shims to align Web Services to
make them useful or even to work at all. Shims align or mediate data that is
syntactically or semantically closely related, but not directly compatible. As an
example, we use Services from myGrid workflows that perform bioinformatics
analyses [1]. A significant proportion of the Web Services in these workflows
are shims, not directly relevant to the biological purpose of the workflow but
required to mediate between outputs and inputs of consecutive services.

Shims are an important part of this workflow because bioinformatics data
and services are autonomously created by different groups around the world.
Consequently, there is no universally accepted data model for describing the data
inputs and outputs that services operate upon. Standards like XML Schema, if
used at all, rarely describe more than primitive types like xsd:string [2]. These
are of limited use when mediating between services that operate on complex
structured types like GenBank1 and UniProt records2 or BLAST reports3.

Superficially, services that produce and consume xsd:string all match and
are compatible with each other. However, because xsd:string hides many differ-
ent complex data types, the degree of matching actually falls into three categories

1. Exact match: output and input are equivalent and compatible
2. Close match: some kind of shim required to align services and bridge gap
3. No match: either syntactic or semantic, services are incompatible
1 See http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
2 The UNIversal PROTein resource http://www.uniprot.org
3 see http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/information3.html

1

The second scenario, close matching, is common in bioinformatics and ex-
emplifies shimantic web syndrome, where many services are nearly compatible.
For example, a service producing a UniProt record (which contains a protein
sequence) and a BLAST service consuming protein sequences are nearly com-
patible and require shimming. An accessor shim (see Table 1) is required to
access the protein sequence from the UniProt record so that it can be passed to
BLAST for further analysis. Given the open nature of the Web and the auton-
omy of the data and service providers [3] this syndrome is unlikely to be cured
in the foreseeable future. What distinguishes our work from related projects in-
tegrating biological data on the semantic web is, firstly we aim to accommodate
autonomous Web Services in an open world. Secondly, some of these services do
not, and may never, use XML for their data, but pass around strings encap-
sulating many legacy proprietary file formats. Finally, our motivating examples
are taken from real live scenarios using complex data where automation can be
dangerous or impossible.

In this paper, we characterise the shimming problem and introduce the po-
tential role of semantic description of services that aim to plug the gap left by
the absence of effective, domain specific type systems in aligning third party
services.

2 The shimming problem

Shims are symptomatic of integrating implicitly typed bioinformatics data. They
are analogous to the shims in the physical world – thin strips of metal used to
align pipes or rails. In bioinformatics, shims align data by performing some of
the operations normally facilitated by a type system. Some example shims are
shown in Table 1. Our shims are subclasses of WSMO4 mediators, probably
wwMediators [4]. However, an important difference is that the deployment and
invocation of some bioinformatics shims may be difficult to fully automate, be-
cause their safe use can be context dependent. The semantic translator is
one example of this.

We feel the shim metaphor is a useful one for describing and understanding
the software components currently required to integrate and understand bioin-
formatics data. Our definition for a shim is software that transforms between
closely related data (either syntactically or semantically) in order to join outputs
and inputs of two components, in this case Web Services. As shims are hard to
precisely define, we think of shims as a set of symptoms of integrating weakly
or implicitly typed (both semantically and syntactically) data. Characterising
shims is the first step in working towards novel treatments for “shimantic web”
syndrome; which is not peculiar to bioinformatics. In an open world such as the
Web, it is likely that the majority of services will need some kind of shim in
order to align them with the user’s needs.

4 http://www.wsmo.org

2

Shim type Input Operation Output Description

Dereferencer Identifier or
Pointer

Dereference The dereferenced re-
source

GenBank ID replaced
with GenBank record

Syntax
translator

Data represented
in concrete repre-
sentation, x

Translate Data represented in
an alternate concrete
representation, y

SeqRet translates be-
tween representations
of sequence data.

Semantic
translator

DNA sequence Translate Protein sequence Translate DNA into
protein

Mapper Unique identifier Map Unique Identifier Maps between IDs.
E.g. GenBank to
EMBL

Parser Record Parse Abstract syntax tree Parse BLAST report.

Iterator A set Iterate A member of a set Iterate over members
of a given set

Comparer Two or more sets Diff Set of differences Comparing BLAST
reports notifies of
new sequences

Accessor Record Access Subset of record Access a subset
Table 1. Examples of shims taken from the myGrid project. This partial classification
is based on inputs, outputs and the task or operation performed.

3 Semantic approaches to type systems

The capabilities of a type system would alleviate some problems that shims cur-
rently address. Being able to coerce, access, infer, reflect and cast data would all
be easier if bioinformatics data were more explicitly typed. However, creating a
type system for a distributed, dynamic and complex domain like bioinformatics
is a non-trivial task fraught with many technical and social pitfalls. Registries of
Web Services such as BioMOBY [5] have succeeded because they have allowed
data providers to register services quickly with only minimal typing. We cannot
expect all bioinformatics data to be typed both semantically and syntactically
in order to allow smoother mediation. Some systems [6] impose an internal type
system on top of third party services via XML. While providing a working solu-
tion, we feel that such an approach is less scalable and restricts the number of
services available. In the myGrid project, we have adopted an approach of using
third party services in their native form.

In the myGrid project we have created an ontology to describe bioinformatics
data and services [7] and we are currently extending this model to specifically
tackle this syndrome by describing the shim services, the data they process and
the main bioinformatics services that the shim services mediate between. The
ontology describes the existence of data types without the detailed description of
structure, and can map to XML schemas when and where they exist. It describes
services semantically so that we know that the output “UniProt record” and
input “protein sequence” are closely related and can be mapped between using
an accessor shim, (see Table 1) to access the protein sequence contained in the
UniProt record. This process currently requires human intervention; however,

3

with the help of an ontology, these sorts of transformations can be supported
and the user guided to make biologically sensible workflows.

We intend to use the ontology when constructing workflows to recognise
service mismatches and identify what kind of shim is required. With this infor-
mation, a suitable shim or shims could be automatically retrieved from a library.
Our goal is to make shim management more transparent to the user. By describ-
ing the transformations shims perform, the user composing the workflow can be
abstracted away from the details of mediating the underlying services.

4 Conclusion

We have used bioinformatics as our example of shimantic web syndrome, but we
suggest this problem will be found throughout the development of applications
using autonomous Web Services. There is a high probability that third party
services will not exactly match the user’s needs but will be closely related; this
is when a shim will be needed. We propose to treat the syndrome as follows

1. Describe and classify shims using an ontological model
2. Create a library or factory of shim services
3. Use model to identify closely related, but mismatching services
4. Semi-automate discovery and invocation of shims, using the above.

Whichever semantic web architecture is used, successful adoption by the
bioinformatics community will require mechanisms for describing, discovering
and composing shim services that currently make mediation possible.

References

1. Robert D. Stevens, Hannah J. Tipney, Chris Wroe, Tom Oinn, Martin Senger,
Phillip W Lord, Carole A. Goble, Andy Brass, and May Tassabehji. Exploring
Williams-Beuren Syndrome Using myGrid. In Intelligent Systems for Molecular
Biology, Glasgow, UK., volume 20, 2004. ISSN 1367-4803.

2. Phillip Lord, Sean Bechhofer, Mark D. Wilkinson, Gary Schiltz, Damian Gessler,
Duncan Hull, Carole Goble, and Lincoln Stein. Applying semantic web services to
bioinformatics: Experiences gained, lessons learnt. 2004. Proceedings of the 3rd
International Semantic Web Conference, Hiroshima, Japan.

3. Lincoln Stein. Creating a bioinformatics nation. Nature, (417):119–120, May 2002.
4. Massimo Paolucci, Naveen Srinivasan, and Katia Sycara. Expressing WSMO Medi-

ators in OWL-S. International Semantic Web Conference 2004, W6:120–134, 2004.
Workshop notes VI: Semantic Web Services.

5. M Wilkinson and M Links. BioMOBY: An Open Source Biological Web Services
proposal. Briefings in Bioinformatics, 3(4):331–341, 2002.

6. Shawn Bowers and Bertram Ludäscher. An ontology-driven framework for data
transformation in scientific workflows, 2004. Intl. Workshop on Data Integration in
the Life Sciences (DILS’04), March 25-26, 2004 Leipzig, Germany, LNCS 2994.

7. Chris Wroe, Robert Stevens, Carole Goble, Angus Roberts, and Mark Greenwood.
A Suite of DAML+OIL Ontologies to Describe Bioinformatics Web Services and
Data. International Journal of Cooperative Information Systems, 12(4):197–224,
June 2003.

4

Agent-based Mediation in Semantic Web Service Framework

Renato de Freitas Bulcão Neto1, Yathiraj Bhat Udupi2, and Steve Battle3

1 University of S̃ao Paulo, S̃ao Carlos SP 13560-970, Brazil,
rbulcao@icmc.usp.br

2 North Carolina State University, Raleigh NC 27695, USA,
ybudupi@csc.ncsu.edu

3 Hewlett Packard Laboratories, Bristol BS34 8QZ, UK
steve.battle@hp.com

Abstract. In a semantic web service scenario clients and services should inter-
operate by allowing a service to be delivered via different protocols and data
formats. This paper describes a novel solution to protocol and data mediation
through a goal-driven, agent-mediated interaction with web services described
by OWL-S ontologies. Our contributions include: (i) an OWL-S compiler which
mediates between two OWL-S service description interfaces and outputs a script
containing a set of executable Nuin plans, and (ii) an agent-based mediator built
upon Nuin framework that executes these plans in a event-driven fashion.

1 Introduction

There is a need for richer knowledge-based product and service descriptions to enhance
the existing business interactions over the Internet. Current approaches to web-service
description (e.g. WSDL) are strongly tied to the message syntax and protocol. This pa-
per describes how we enrich the current web-services model with semantic support for
goal-driven, agent-mediated interaction with web-services described by OWL-S ontolo-
gies [1]. We present a case study about a software product marketplace for vendors who
lack a comprehensive sales infrastructure. A service request made using SOAP-based
interactions with the web service enables the client to place an order. In the existing ap-
plication hard-coded java applets enable the user to communicate with the web-service.
For a user with a browser it is simpler to have a web-friendly, resource-oriented inter-
action [2]. The information in the client request is encoded in the request URL query
string. This is unlike posting an explicit request message. This poses a mediation prob-
lem, where we need to enable clients and services to interoperate by allowing a service
to be delivered via different protocols and data formats. There are two perspectives on
the mediation problem, first is protocol mediation: how do we describe one service in
terms of another and ensure that it achieves the same goals. The second is data me-
diation: how do we achieve independence from the syntax of the specific messages
allowing us to map from one message format to another.

Our approach is set out in theweb service modelling framework (WSMF)[3] and it
caters to the main objectives of WSMF. It supports rich, declarative service descriptions,
which separates the design of the service functionality from its delivery and provides
for a framework in which those descriptions are used. Mediation is achieved within

5

an agent-based framework moving from the syntactic domain of messages into a rep-
resentational framework based on semantic web technologies (RDF and OWL). This
agent-based mediator assists the client in achieving specific goals, which seen as key to
identifying the tasks and actions to be performed by the service.

Contribution. Our first contribution is the development of an OWL-S compiler which
mediates between two different OWL-S service descriptions derived from therequester
(the client), and theservice providerinterface and outputs an executable Nuin script [4].
Nuin is an agent-framework with emphasis on the building of Semantic Web agents.
Our second contribution is the development of the agent-based mediator built upon the
Nuin framework that executes the script generated from the compiler in an event-driven
fashion. These approaches to solving the mediation problem help us overcome the main
barriers toe-business process automation.

2 Agent-Based Mediation

This section describes agent-based mediation and event-driven plans, and is demon-
strated by an example scenario.

2.1 The Agent Framework in the BDI Architecture

The agent framework which animates the WSMF can be described in terms of abelief-
desire-intention(BDI) architecture [4]. Various elements of the conceptual architecture
are mapped into agent beliefs, desires and intentions.Beliefscorrespond to the back-
ground knowledge of the agent held in its knowledge base (updated with message con-
tent at run-time) and its accompanying ontology.Desiresinclude information about the
client goals, comprising of the information in the service request which is based on
the OWL-S profile (including important service parameters). Theintent of the user is
conveyed to the agent through individual requests at the user interface. This way the
agent translates the desires and intents of the user into tasks and actions at the provider
interface.

The agent executes the various Nuin plans that perform the required protocol and
data mediation. These plans coordinate activities across the various plug-in compo-
nents that support communication with the client and the service provider. Figure 1(a)
describes the agent architecture. Theweb plug-inof the agent mediator functions as an
adapter between a web server and the agent, lifting HTTP requests into RDF and map-
ping responses back into HTML. Theservice plug-inof the agent acts as an adapter to
an invocation client for the SOAP web services. Alift moduleprovides an interpretation
of the message content and a translation to or from a common representational form,
RDF model, based on XML schema [5]. A request message gets dropped from RDF
into XML and conversely responses are lifted from XML back into RDF.

2.2 Protocol Mediation by Process Planning with the OWL-S Compiler

Compilation is an off-line process that generates the Nuin plans required to mediate
between the requester and the provider interfaces, and is performed by the OWL-S
compiler. Both interfaces include OWL-S service descriptions including descriptions
of inputs, outputs, preconditions, unconditional effects, service parameters, etc. The

6

����

����	
����

���������������������

�����

����������

�	
������

������

	������

���������

�
��

�����������

�����������������

�����������

����������������������������

�����������������

�����������

����������������� 	������������
	������������

�� ����!���������
���

�����������������!�

�� ����!���������
���

�����������������!� ��!�������������
���

�����������������!�

��!�������������
���

�����������������!�
"��������

���������!���

"��������

���������!���

�
�!
����

�!
��� ��!���

��!���

��
�����������

��!����

#�������!����$

����������

#��!����!����$

����������

#%!�!������!����$

����������

#��!����!����$

��������������

#��!����!����$

������������

�

&
'

&�'

�����	��

������

()*(������

!��!�!�+ ��,

&!' &"'

&#' &$'

Fig. 1. (a) Agent mediation architecture. (b) An example of event-driven intent invocation.

service descriptions at both interfaces need not have a one-to-one mapping between
them. Where the immediate effects of actions at the two interfaces do not correspond
exactly, we define composite processes that have the required combined effect. Also, an
abstract business process modelrepresents the abstract view of the provider interface.
This model is imported by the concrete processes of the two interfaces. The primitive
parts of the abstract process are of typeOWL-S SimpleProcessallowing us to describe
a business process independently of its realization.

The OWL-S compiler reads the above descriptions and outputs a set of executable
Nuin plans. The compiled output is modular in that each plan corresponds to an atomic,
composite or simple process. Each atomic process corresponds to an invocation or re-
ceipt of a message (that may require a response). Each composite process corresponds
to a breakdown of the plan into smaller tasks. Nuin supports backtracking enabling us
to back out of a plan where the preconditions do not hold. Simple processes realized in
different ways at the two interfaces, create the bridge necessary for protocol mediation.
They are the point where the agent recognises the user intent and then forms its own
intent to act.

2.3 Data Mediation using Mapping Rules

The agent-based mediator equipped with aRules plug-inperforms data mediation,
which realizes the mapping between the incoming and outgoing message content and
their common ontological conceptualizations. Mapping rules are applied to the con-
tent stored in the knowledge base representing previously received and lifted message
content. The rules plug-in is based on the Jena rules engine and the mapping rules are
expressed in the Jena rules language [6].

7

2.4 Event-driven Intent Invocation

The agent plans are designed to allow for event-driven triggering of plans. At the re-
quester interface, the web plug-in extracts the query parameters and raises an event that
signals the receipt of the message. The event triggers a plan corresponding to an atomic
process which, in effect, recognises the event as a user action. In turn the atomic pro-
cess plan signals the user action with another event. This event may trigger composite
process plans that recognise more complex actions. At the point where the occurrence,
or recognition, of a process on the user-side corresponds to an equivalent process avail-
able on the provider-side, the agent can form the intent to act. Once the invocation of
a process against the provider has completed it it necessary to complete the user-side
action by returning the appropriate HTTP response. This is viewed as a continuation of
the action that raised the original event.

Figure 1(b) describes a scenario of the invocation of an atomic process at the reques-
ter-side interface being translated to a composite process with its component atomic
processes in the provider-side interface. The user simply wants to add an item to his
shopping basket; toAddToOrder. Step (1) is an event that alerts the agent to the user
action to add an item to the order. It will include an input that identifies the required
product. We see that theAddToOrdersimple process is realized in different ways on
the requester and provider sides. They are processes with equivalent effects. At step (2)
the agent forms its own intent toAddToOrderat the provider interface. This happens
to be a composite process plan, invoked from the simple process plan. This invokes the
individual atomic process plansaddLineToOrderand getOrderSummaryin steps (3)
and (4) respectively. Note that given the intention toAddToOrderin step (2) we drive
the process in a top-down way. However, prior to recognising an intention we drive the
process from the bottom-up.

3 Conclusion

This paper described an agent-based solution to protocol and data mediation following
the major objectives set out by the WSMF: services, mediation, ontology, and goals.
We have shown how OWL-S service descriptions may be used within an agent-based
framework to support this ontology-based mediation.

References

[1] OWL-S Coalition. OWL-S 1.0 Release. At http://www.daml.org/services/owl-s/1.0/, 2003.
[2] R. T. Fielding.Architectural Styles and the Design of Network-based Software Architectures.
PhD dissertation, University of California, Irvine, USA, 2000.
[3] D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF.
At http://informatik.uibk.ac.at/users/c70385/wese/, 2002.
[4] I. Dickinson and M. Wooldridge. Towards Practical Reasoning Agents for the Semantic Web.
In International Joint Conference on Autonomous Agents and Multi-Agent Systems, pages 827–
834, Melbourne, Australia, 2003.
[5] S. Battle. Round-tripping between XML and RDF. InInternational Semantic Web Conference,
At http://iswc2004.semanticweb.org/posters/PID-BRRGVFRE-1090254811.pdf, 2004.
[6] HP Labs Semantic Web Team. Jena Semantic Web Framework. At http://jena.sourceforge.net/,
2003.

8

*This work is supported by the DIP (Data, Information and Process Integration with Semantic
Web Services) and AKT (Advanced Knowledge Technologies) projects. DIP (FP6 - 507483)
is an Integrated Project funded under the European Union's IST programme. AKT is an In-
terdisciplinary Research Collaboration (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number GR/N15764/01. The AKT IRC
comprises the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and the Open
University.

Orchestration of Semantic Web Services in IRS-III*

Roberto Confalonieri1,2, John Domingue1 and Enrico Motta1

1Knowledge Media Institute, The Open University, Milton Keynes, UK
{r.c.confalonieri, j.b.domingue, e.motta}@open.ac.uk

2Department of Computer Science, Università di Bologna, Bologna, Italy
confalon@cs.unibo.it

Abstract. In this paper we describe our orchestration model for IRS-III. IRS-III
is a framework and platform for developing WSMO based semantic web ser-
vices. Orchestration specifies how a complex web service calls subordinate web
services. Our orchestration model is state-based: control and data flow are de-
fined by and in states respectively; web services and goals are modeled as ac-
tivities and their execution triggers state changes. The model is illustrated with
a simple example.

1 Introduction

Web services are the new way of interacting with and using the web; users are ex-
pected to seek for appropriate web services that help them to achieve their goals. This
process of manual search may be automated if web services are augmented with se-
mantic descriptions and infrastructures for supporting them are developed [�3]; IRS-III
[�2] is a framework and implemented infrastructure which supports the creation of
semantic web services according to the WSMO ontology [�6].

Web service interfaces play an important role in the composition and execution of
web services. Choreography describes the interaction process between web services.
Orchestration represents the workflow steps of a composite web service fulfilling its
capability as its decomposition. Whilst choreography for IRS-III has been almost
defined [�1], orchestration has not.

In this paper we present an ontology for modeling the orchestration of a composite
web service in IRS-III and an interpreter that executes it. The model is in OCML [�4].

The paper is organized as follows: Section 2 briefly overviews orchestration.
Section 3 describes our model and implementation issues through a simple example.
Section 4 contains conclusions and describes future work.

2 Orchestration

Orchestration is a process-centric view of the interactions between the composite
web service and the sub services that it relies upon. It includes complex process se-

9

Orchestration of Semantic Web Services in IRS-III

mantics (loops, conditions, fork...) and/or workflow steps that are outsourced to exter-
nal services. In a nutshell orchestration describes how the service works from the
provider's perspective, i.e. how a service makes use of other services represented by
activities in order to achieve its capability [�5, �7]. This can be done in two ways: the
specific sub services are fixed in the activities at design-time (static composition);
activities are dynamically bounded by declaring them as goal descriptions on the basis
of any goal-service discovery mechanism (automatic composition). An activity is
expected to use a particular interface for the sub services it binds at run-time; the in-
terface contains details about services it uses to solve the goal currently being proc-
essed. Heterogeneity mismatches between the used interface and the one needed have
to be resolved through mediation.

3 State-based orchestration in IRS-III

We choose a state machine representation for the orchestration of semantic web
services in IRS-III. In our approach states define the control flow, transitions represent
activities and activity execution triggers state change. An activity can be a web service
(simple or composite) or a goal as IRS-III supports capability-driven invocation of
web services.

According to the WSMO standard model, a web service interface description is
composed of choreography and orchestration; an orchestration has a problem solving
pattern (fig.1).

currency-converter-orchestration (orchestration)
 has-problem-solving-pattern :value currency-converter-psp

currency-converter-psp (problem-solving-pattern)
 has-start :value currency-converter-psp-start
 has-end :value currency-converter-psp-end

Fig. 1 Orchestration definition of the currency converter composite web service

In our orchestration ontology a problem solving pattern consists of a set of classes
modeling states and activities, with a start-state and end-state classes connected by
control construct state classes. Start-state and end-state represent respectively the
entry and exit data flow points for the data of the composite web service being orches-
trated (fig.2).

currency-converter-psp-start (start-state)
 has-input-role :value has_source_currency
 :value has_target_currency
 :value has_amount
 has_source_currency :value(wsmo-orchestration-role-value
 currency-converter-web-service ‘has_source_currency)
 has_target_currency :value (wsmo-orchestration-role-value
 currency-converter-web-service ‘has_target_currency)
 has_amount :value (wsmo-orchestration-role-value
 currency-converter-web-service ‘has_amount)
 has-later-state :value exchange-rate-sequence-state

10

Roberto Confalonieri, John Domingue and Enrico Motta

currency-converter-psp-end (end-state)
 has-output-role :value has-currency-conversion
 has-currency-conversion :value (wsmo-orchestration-role-value
 multiply-activity ‘multiply-output)

Fig. 2 Start-state and end-state definitions of the currency converter orchestration; input and
output-role value slots reflect input and output-role of the currency converter web service

Control states are wrappers for activities (fig.3) and they represent the control flow
as an execution path in the model. We’ve defined three control construct states:

• sequence-state: the sequence construct is the elementary unit of orchestration
as web services and goals are represented by activity in sequence-states;

exchange-rate-sequence-state (sequence-state)
 has-activity :value exchange-rate-activity
 has-later-state :value multiply-sequence-state

multiply-sequence-state (sequence-state)
 has-activity :value multiply-activity
 has-later-state :value currency-converter-psp-end

Fig. 3 Sequence state definitions of the currency converter orchestration: the currency-
converter web service is composed by two activities to be executed in sequence; the in-
terpreter selects the next state through the has-later-slot

• conditional-state: the conditional construct checks if a certain condition is
true or false and selects the appropriate execution branch; the condition is an
OCML relation, namely a kappa-expression, which ranges on either outputs
of previous activities or inputs of the composite web service orchestrated;
loops as do-while and repeat-until can be represented in terms of the condi-
tional state;

• fork+join-state: the fork+join construct consists of concurrent execution of a
bag of activities whose results have to be joined.

The data flow, i.e. how the data are used before and after the execution of activi-

ties, is defined in the activity classes by means of has-input-role and has-
output-role value slots (fig.4).

multiply-activity (activity)
 activity-type :value multiply-goal
 activity-ontology :value wsmo-multiply
 has-input-role :value multiply-input1
 :value multiply-input2
 has-output-role :value multiply-output
 multiply-input1 :value (wsmo-orchestration-role-value
 currency-converter-psp-start ‘has_amount)
 multiply-input2 :value (wsmo-orchestration-role-value
 exchange-rate-activity ‘has_exchange_rate)
 multiply-output :type number

Fig. 4 Multiply activity definition as a goal: the multiply-output slot is a relation for the out-
put data flow in the model; exchange-rate activity definition is similar

11

Orchestration of Semantic Web Services in IRS-III

We have adopted a consumer-pull convention for data. The data are stored locally
and the consumer later retrieves the data needed through a wsmo-orchestration-role-
value OCML function (fig.4). Web services may have heterogeneous input and output.
For their composition either to the binding a mediation mechanism for the data is
required. The aforementioned function therefore plays a double role in the model:

• data binding: the first argument of the function specifies which activity or
state class the current activity relies upon,

• data mapping: the second argument of the function specifies the output-role
needed and the evaluation of the function assigns a value to the input-role of
the current activity.

A composite web service invocation results in instances of the appropriate orches-

tration classes being created at runtime. The OCML model is interpreted by an orches-
tration engine written in Common Lisp. The interpreter in a straightforward way reads
state by state, instantiates the state it is currently processing and invokes the appropri-
ate handler. At instantiation time the input-roles needed for the current activity are
retrieved; each handler is responsible for executing, monitoring the activity and stor-
ing its result properly before selecting the next state. The “storage” is represented by
an OCML relation of the form (output-role instance-class-name output-
role-value) asserted as a fact to the orchestration ontology at runtime (fig.4).

4 Conclusions and Future Work

The orchestration engine is stateless as the web services in IRS-III; our model does
not satisfy the orchestration requirements outlined in [�5] as our intention was first to
be able to run a composite web service in IRS-III. Our plan is to investigate more on
semantic aspects related on the automatic composition following an approach based
on parametric design; to add fork and join control construct, to make the engine state-
full and to integrate orchestration with the choreography model presented in [�1].

References

1. Domingue, J., and Galizia, S. Towards a Choreography in IRS-III. Proc. of the Workshop
on WSMO Implementations (WIW 2004) Frankfurt, Germany, September 29-30, 2004.

2. Domingue, J., et al. IRS-III: A Platform and Infrastructure for Creating WSMO-based
Semantic Web Services. Proc. of the Workshop on WSMO Implementations (WIW 2004)
Frankfurt, Germany, September 29-30, 2004.

3. McIlraith, S., Son, T. C., and Zeng, H. Semantic Web Services. IEEE Intelligent Systems,
Mar/Apr. 2001, pp.46-53.

4. Motta, E. An Overview of the OCML Modelling Language. KEML98.
5. Peltz, C. Web Service Orchestration and Choreography. IEEE Journal, Computer 36 (10).

46-52 October, 2003.
6. Web Service Modeling Ontology – Standard, available at: http://www.wsmo.org/2004/d2/
7. Orchestration in WSMO, available at: http://www.wsmo.org/temp/d15/v0.1/20040529/

12

Interactive Composition of WSMO-based Semantic
Web Services in IRS-III

Denilson Sell1,2, Farshad Hakimpour2, John Domingue2, Enrico Motta2 and
Roberto C. S. Pacheco1

1Stela Group and INE, Universidade Federal de Santa Catarina, Brazil
{denilson, pacheco} @stela.ufsc.br

2Knowledge Media Institute, The Open University, Milton Keynes, UK
{d.sell, f.hakimpour, j.b.domingue, e.motta} @open.ac.uk

Abstract. The discovery and integration of services in a composition are chal-
lenging tasks due to the lack of semantic in the Web services’ description.
WSMO community is working on developing ontologies and infrastructures to
support Semantic Web Services. In this paper, we present a tool that takes into
account WSMO descriptions to support a user-guided, interactive composition
approach whereby Web services are discovered and recommended to the users
according to the composition context. The generated composition is orches-
trated in IRS-III by our Java API for dataflow orchestration.

1 Introduction

Research on Web services composition is gaining a considerable attention motivated
by the need to support business interoperation and re-use or extension of available
services. Challenges related to the Web service composition include constant changes
in the business rules, high diversity and heterogeneity of Web services and the ad-hoc
character of each composition.

Semantic Web technology can support this complex task, whereby semantic de-
scriptions associated with each Web service can be used to filter and match the ser-
vices according to the users needs. In particular, IRS-III following the WSMO frame-
work [6], provides at the semantic level a distinction between goals (i.e. abstract
definition of tasks to be accomplished) and Web services (i.e. description of services
that can achieve a goal) and as a result support capability-driven service matching and
invocation [1]. Moreover, the clean distinction between goals and Web services in
IRS-III enables the specification of flexible n:m mapping between problems and
methods and a dynamic, knowledge-based service selection.

According to [2], the problem of composing Web service can be reduced to three
fundamental problems: 1) to prepare a plan dividing a complex task in sub-tasks; 2)
discover Web services that achieve the sub-tasks identified in the plan; and 3) moni-
tor and manage the execution and the interaction with the discovered Web Services.
The full automation of the Web service composition is still the objective of many
ongoing research activities [3], but supporting the user in the definition of the compo-

13

sition process can achieve accomplishing this objective in a semi-automatic fashion,
taking into account user’s non-functional expectations on a service composition.

In this paper, we introduce a graphical tool developed in Java that supports users
on the definition of dynamic compositions in IRS-III by recommending goals accord-
ing to the context at each step of a composition. The generated composition is per-
formed by our Java API for orchestration. Our approach is similar to those described
in [3], [4] and [5] in the sense that human holds the control of the definition of the
composition, but laborious work such as discovery of services according to the users
needs is assumed by the machine. However, our approach introduces additional fea-
tures such as dynamic invocation of Web services in the orchestration, control opera-
tor and mediation.

2 Defining a Composition

The Fig. 1 depicts the composition tool and some of its functionalities. The tool
guides users in a step-by-step composition process by selecting goals, mediators and
control flow operators. The composition starts with the selection of the first goal,
when the user receives a list containing all the goals defined in the IRS-III Server.
The user can select a goal scrolling the list or use the discovery functionality to search
for goals by defining some search criteria, as illustrated in the Fig. 2.

a

b

d
c

Fig. 1. An example of composition defined in our tool. Users right click over a component and
select the desired action (a). In each step of the composition, users receive recommendations of
services according to the automatic match of inputs and outputs of goals (b). Users also can
define mediators (c) or call the discovery functionality (d).

In the subsequent steps, users can define whether they want to add goals that will
receive the result or feed input to the previously selected goals. Each goal can have

14

more than one feeding source, for instance, a goal that have three inputs can have one
input fed by the main flow of the composition and the remaining inputs fed by other
goals. Users can also define the values for the inputs of the selected goals in design or
orchestration time. Finally, users can add If-Then-Else control operators to the com-
position. This interactive process is supported by the tool, which in each step recom-
mends goals by matching the inputs and outputs of the goals that were previously
selected considering also the subsumption of the input and output types

One important characteristic of our approach is that the tool enables users to select
mediators to map and perform transformations between goals. Those mediators (i.e.
WSMO Mediators [6]) can solve mismatches between different parties in the data,
protocol and process levels. In addition, users can select a Goal invocation mediator
(GInv Mediator) that can bind and handle any other transformation required between
the inputs and outputs of goals. The GInv mediator is not part of the WSMO specifi-
cation but specific added to IRS-III to support flexible mappings in our composition
model (see [1] for a complete description of the extensions implemented in IRS-III).

The adoption of mediators gives more flexibility to users, since it is inevitable to
select services defined and implemented by different parties while building a compo-
sition (in fact, this is a basic requirement to support business interoperation). There-
fore, we do not restrict the list of goals that the user can select in each step of the
composition, allowing users to define mediators that could perform required trans-
formations between goals.

Fig. 2. The Goal Discovery functionality. Users can define search criteria using a logical op-
erator and identifying properties and correspondent values. The search criteria is translated to
an OCML expression, processed against the IRS-III Server and presented to the user.

3 Orchestration of Composition

Once a composite service has been defined, the composition tool instantiate the work-
flow using our Java API for orchestration. In this process, the tool instantiates the
service components and control operators defined in the composition according to
their data dependencies using the constructors defined in our API for orchestration.
The API offers necessary features to build, validate and write a composite service to

15

IRS Server, as well as, loading a composition from the server and editing it. The
saved descriptions can be executed by the orchestration engine included in the API.

The API offers three categories of components to support compositions, namely
service components, control components and mediators. A service component is
actually a wrapper that keeps the necessary information about the goal to be achieved
and its binding mediators. The control components provide the capability to define
the control flow through the If-Then-Else operator. The mediator components bind
the service components and point to WSMO mediators described in IRS-III Server
for any data transformation required between service components.

The order of the execution will depends on the data provided to a service compo-
nent at the execution time and it will not be defined at the design time. A service
starts to execute when the necessary data is provided for its inputs. For a stateless
service, that means, if all inputs to the service are provided it will be executed. The
necessary means to define mediators are provided just as described above.

During the orchestration, the user is requested to enter values to feed input to the
goals where the inputs were not specified in design time and that are not fed by other
goals. The orchestration API relies on the IRS-III Server to achieve each goal defined
in the composition, which in turn, dynamically discovers the most appropriated Web
services that should be invoked according to their applicability conditions. Users can
monitor the status of the orchestration by examining the status bar provided in the
composition tool.

Acknowledgement

This research is supported in part by CNPq, Brazil, in the form of a scholarship held
by Mr. Sell. This work is also supported by the DIP (Data, Information and Process
Integration with Semantic Web Services) and AKT (Advanced Knowledge Tech-
nologies) projects.

References

1. Domingue, J., Cabral, L., Hakimpour, F., Sell, D. and Motta, E. IRS-III: A Platform and
Infrastructure for Creating WSMO-based Semantic Web Services. In: Proceedings of the
Workshop on WSMO Implementations (WIW 2004) Frankfurt, Germany, September 29-
30 (2004).

2. Sycara, K., Paolucci, M., Ankolekar, A.; Srinivasan, N.: Automated Discovery, Interac-
tion and Composition of Semantic Web Services. In: Journal of Web Semantics, Vol. 1,
Issue 1 (2003).

3. Sirin, E., Parsia, B., Hendler, J. Filtering and selecting semantic Web services with
interactive composition techniques. In: IEEE Intelligent Systems, Vol. 19, Issue 4 (2004)
42-49.

4. Kim, J., Spraragen, M., Gil, Y. An Intelligent Assistant for Interactive Workflow Compo-
sition. In: Proceedings of the International Conference on Intelligent User Interfaces (IUI-
2004) Madeira, Portugal, 2004.

5. Ponnekanti, S. R., Fox, A. SWORD: A developer toolkit for web service composition. In:
The Eleventh World Wide Web Conference, Honolulu, HI, USA, (2002).

6. WSMO Web Service Modeling Ontology – Standard, http://www.wsmo.org/2004/d2/

16

SWSDesigner: The Graphical Interface of ODESWS

Asunción Gómez-Pérez1, Rafael González-Cabero1, Manuel Lama2

1Departamento de Inteligencia Artificial, Facultad de Informática.
Campus de Montegancedo s/n, Universidad Politécnica de Madrid, 28660 Boadilla del Monte,

Madrid. Spain.
asun@fi.upm.es, rgonza@delicias.dia.fi.upm.es

2Departamento de Electrónica e Computación, Facultad de Física.

Campus Sur s/n, Universidade de Santiago de Compostela, 15782 Santiago de Compostela,
A Coruña.

lama@dec.usc.es

Abstract. ODESWS is a development environment to design Semantic Web
Services (SWS) at the knowledge level. ODESWS describe the service follow-
ing a problem-solving approach in which the SWS are modelled using tasks, to
represent the SWS functional features, and methods, to describe the SWS inter-
nal structure. In this paper, we describe the ODESWS graphical interface
(called SWSDesinger). This interface enables users to design SWS independ-
ently of the semantic markup language in which the service will be imple-
mented, and once the design has been export the service to an SWS implemen-
tation language.

Introduction

Currently, there are some proposals to edit/design SWS, but the main drawback of
these available editing tools is that they work at the representation level. Cosecuently,
these tools are language-dependent, like the WSMO Editor [1], this means that: (1)
SWS designed with these tools are less reusable; (2) the designs are more prone to
inconsistencies or errors; (3) the design can be constrained with the chosen language
characteristics. Also, many tools that claim to be SWS editors are no more than on-
tology editors, like the widely used option of OWL-S development with the OWL
plug-in for Protegé-2000 [2]. This option not only suffers from all the problems enu-
merated above, but also adds the problem of working with an ontology instantiation,
not with a SWS-like structure.

To solve these problems, we have proposed a framework, called ODESWS[3], for
the design of SWS at the knowledge level, which is language-independent. This
framework is based on: (1) a stack of ontologies that describe explicitly the different
features of SWS; (2) a set of axioms used to check the consistency and correctness of
the service descriptions; and (3) the assumption that a SWS are modeled as a prob-
lem-solving method (PSM) that describes how the service is decomposed into its
components, and which is the reasoning process that describes the service execution.

17

We also have implemented this framework, creating the ODESWS environment
[3][4].

In this paper we describe SWSDesigner, the user interface of the ODESWS envi-
ronment.

SWSDesigner, the ODESWS graphical interface

The design of SWSDesigner has been inspired in the classical modelling of the prob-
lem-solving methods, so it contains hierarchical trees of tasks-methods, input/output
interaction diagrams among the sub-tasks that compose a method, and diagrams to
specify the control flow that describes the coordination of the execution of the sub-
tasks. Taking this into account, in the SWSDesigner we distinguish the following
general components:
• Trees show the hierarchy of the knowledge components needed to define the

service, such as tasks, methods, and ontologies.
– Tasks and methods trees (right part of Figure 2) allow users to just create the

tasks and methods associated with a service, describing its functional features
in the case of tasks, and internal structure in the case of methods. Once tasks
and methods have been created, from these trees the user could drag the icons
representing a task or method and drop them in the diagrams as needed.

– Ontology trees (left part of Figure 2) show the concepts and attributes of the
ontology (or ontologies) used to specify the service input/output roles. Then,
the user could drag the icons representing a concept/attribute and drop them in
the diagrams that enable the specification of the input/output roles of both
tasks and methods.

• Views allow users to specify all the features of a service, and they are represented
as tabs (see the upper part of Figure 2):

– Service definition View is used to specify the functional and non-functional
features of a service, containing its input/output roles (interaction diagram),
pre/post-conditions (logical diagram), providers, commercial classification,
geographical location, and quality rating parameter.

 (a) (b)

Fig. 1. A method (a) is composed of a set of sub-tasks, which are solved by other methods; and (b) defines the
coordination of the execution of the sub-tasks (usually with workflows).

18

– Decomposition View (Figure 1 a) allows users to specify the decomposition of

the method (that solves the task associated with the service) into its sub-tasks,
which will be solved by other methods, and so forth. The user carries out this
specification by dragging the icons of the tasks and methods from the related
trees and dropping such icons into the view.

– Knowledge Flow View allows users to define the input/output interactions
among the sub-tasks of a method: the user, when requires, connects the output
of a sub-task to the input of other sub-task, and establish the mappings be-
tween the roles used in the definition of a sub-task (carried out in the service
definition view) and the roles named when such sub-task is used as an internal
component of a method. For example, City could be an input role of the task
Task_FindCinema and when that task is used as part of the method
Method_BuyMovieTicket, its input role could be named as selectedCity. In this
view, the user also defines the mappings between the roles of a method and
the roles of the task solved by that method: the role names of methods and
tasks could be different.

– Control Flow View (Figure 1 b) enables users to describe the control flow of
the method. The elements of this view are the sub-tasks of the method, which
are dragged-and-dropped from the task tree, and the workflow constructions
(if-then, while-until, split and join), which are introduced through a contextual
menu.

Once the user has designed the service following all the complementary views
provided by the SWSDesigner, it is necessary to translate that service from the
graphical representation into a semantic-oriented language such as OWL-S or
WSMO. To enable this translation, the SWSDesigner invokes the SWSInstanceCrea-
tor execution, which uses the graphical model of SWS to create the instances of the

Fig. 2. Knowledge Flow View of a method in SWSDesginer.

Tasks
Tree

Ontologies
Tree Knowledge

Flow
Diagram

Views
Tabs

19

SWS description ontologies. Then, SWSTranslator is invoked to translate these in-
stances into the language selected by the user (currently OWL-S).

Conclusions

The tools that currently enable users to design SWS depend on the capabilities of
representation and reasoning of a specific SWS-oriented language. Those tools are
constrained by the language expressiveness; the service must be designed using the
capabilities provided by the language in which will be expressed. Furthermore, users
usually introduce both errors and inconsistencies, which could be minimized using
tools that operate at the knowledge level.

To solve these problems we provide tools to facilitate the design SWS in a lan-
guage-independent manner. For it, we have developed the ODESWS conceptual
framework and the environment that supports such framework. Once the service is
completely designed using SWSDesigner it will be checked to detect inconsistencies
and/or errors that could be present in the user design. If they are not detected, user
will select the language in which the SWS will be expressed, and it will be automati-
cally created.

Acknowledgements

This work has been partially financed by the Esperonto project (IST-2001-34373) and
by a grant provided by the Community Autonomous of Madrid.

References

[1] Lausen, H., Felderer, M., and Roman, D., eds. (2004), “Web Service Modeling
Ontology (WSMO) Editor”, Available: http://www.wsmo.org/2004/d9/v01

[2] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, Mark A. Musen (2004)
 The Protégé OWL Plugin: An Open Development Environment for Semantic Web Appli-

cations Third International Semantic Web Conference - ISWC 2004
[3] A. Gómez-Pérez, R. González-Cabero and M. Lama (2004): ODE SWS: A framework for

designing and Composing Semantic Web Services. IEEE Intelligent Systems, 19(4):24-31.
[4] O. Corcho, M. Fernández-López, A. Gómez-Pérez, and M. Lama (2003): An environment

for Development of Semantic Web Services. Proceedings of the IJCAI-Workshop on On-
tologies and Distributed Systems, Acapulco, Mexico.

[5] A. Gómez-Pérez, R. González-Cabero, and M. Lama (2004): Development of
Semantic Web Services at the Knowledge Level. ECOWS. Erfurt, Germany.

20

Developing a Service-Oriented Architecture to

Harvest Information for the Semantic Web

Barry Norton, Sam Chapman and Fabio Ciravegna

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK
{B.Norton, S.Chapman, F.Ciravegna}@dcs.shef.ac.uk

Abstract. Armadillo is a tool that provides automatic annotation for
the Semantic Web using unannotated resources like the existing Web for
information harvesting, that is: combining a crawling mechanism with
an extensible architecture for ontology population. The latter is achieved
via largely unsupervised machine learning, boot-strapped from oracles,
such as web-site wrappers, and backed up by an ‘evidential reasoning’,
allowing evidence to be gained from the redundancy in the Web and
allowing the inaccuracies in information, also characteristic of today’s
Web, to be circumvented. In this paper we sketch how the Armadillo
architecture has been reinterpreted as workflow templates that compose
semantic web services and show how the porting of Armadillo to new
domains, and the application of new tools, has thus been simplified.

1 Introduction

The Semantic Web needs semantically-based document annotation to both en-
able better document retrieval and empower semantically-aware software agents.
Most of the current technology is based on human centred annotation, very of-
ten completely manual which can be incorrect and incomplete, deliberately or
through lack of skill, or can become obsolete. A major advantage of Armadillo [2]
is its ability to annotate large repositories in a largely unsupervised manner and
thereby make available to the Semantic Web the huge amount of information,
available only in human-oriented form, on the current Web.

Armadillo annotates by extracting information from different sources, boot-
strapped by ‘oracles’ i.e. relatively infallible authorities. ‘Evidential reasoning’
is used to validate the classifications of, and relations between, instances. This
evidence is then integrated and the knowledge entered into a repository.

Our aim in using a semantic web service (SWS)-based architecture is to
allow porting to a new domain by providing workflow templates, i.e. where some
subtasks are left as parameters, expressed in BPEL [5], where SWS’s achieving
these subtasks are described in OWL-S [4]. We claim that this allows the process
to be understood abstractly, and represented graphically rather than in code, and
that those points where services must be located and ‘plugged in’ are more easily
understood in terms of the OWL [8] concepts they relate. Furthermore direct
reuse of domain-specific and externally-authored functionality is facilitated.

21

2 Architecture

The act of porting Armadillo to a new ontology population task begins by pro-
viding a domain-specific ontology. The given ontology includes structural rela-
tionships which are transformed into a plan for population. The plan details
an order in which the concepts and relations will be explored by attaching a
direction to each relation. For each relation to be followed, from a concept A to
a concept B, the workflow shown in Figure 1 organises the following subtasks:
Crawling, Instance Recognition, Evidential Reasoning and finally Combination
and Storage. Crawling will systemically retrieve documents associated with an
instance of concept A; Instance Recognition will find candidate instances of B

with an implicit relation to that instance; Evidential Reasoning will find support
for both the classification and the relation discovered, which will be combined
and, if sufficient, cause both to be stored.

Fig. 1. Architecture

Enqueue
Med Prio

Doc
LoaderFinder

Reference

Enqueue
High Prio

Enqueue

[DocId]

3Queue<DocId>

[DocId]

DocId

Doc

Low Prio

Fig. 2. Crawling Task

Enqueue
Med Prio

Enqueue
High Prio

Enqueue

[URL]

3Queue<URL>

[URL]

URL

HTML

Low Prio

Caching Page
Finder
Link

Loader

Fig. 3. Example Crawling Instantiation

In the remainder of the paper we detail the template workflows which achieve
each of these subtasks in turn, composing generic services with others that a
developer must locate to accomplish clear strategies. For these the choice, aided
by semantic discovery [7], is between:

– generic services: wholly independent of domain and context;
– context-dependent services: where reuse depends on the context but not the

domain (e.g. the type of documents or repository used);
– domain-tailored services: parameterised to be tailored to a given domain;
– domain-trained services: encapsulate machine-learning which can adapt semi-

automatically to a given domain;
– domain-specific services: encapsulate techniques which are hard-coded for a

given domain (but might still be re-used across applications in that domain).

22

In the following we shall use a familiar example of the academic domain [2],
wherein we view instances of the ‘University’ concept as being provided by an
oracle and populate the ‘Academic’ concept, via the ‘employedBy’ relationship.
We use square brackets to represent lists over the contained type, and so [DocId]
is the type of a list of elements of type DocId. Angle brackets mean instantiation
of some generic (parameterised) service, so that 3Queue represents some generic
queue service that stores instances of some type notated DocId, at three different
priority levels, and supplies them to the consequent workflow one at a time.

2.1 Crawling

The general form of the ‘crawling’ task is shown in Figure 2. There are two
levels at which this abstract workflow is parameterised: the DocId and Doc

labels are actually type variables that must be instantiated at concrete types; the
DocLoader and ReferenceF inder tasks are service variables to be instantiated.

Figure 3 shows how we could achieve a concrete instantiation of this task.
First we choose instances for the type variables consistent with Web-oriented
technology, i.e., in this example, Doc = HTML and DocId = URL. We then
choose context-dependent services that meet the resulting signatures, i.e. pro-
ducing a page from a URL, and a list of URLs from a page, respectively.

2.2 Instance Recognition

The ‘instance recognition’ task can be realised by both domain-tailored, and
domain-trained services to find candidate instances of a given type B with an
implicit relation to the instance of A being investigated. This can be seen in Fig-
ure 4, where the B−Recogniser outline implies that multiple parallel implemen-
tations may be used. For instance in the example in Figure 5 we see that both
domain-tailored regular expression matching and domain-trained Amilcare [3]
will be used side-by-side, as could other Information Extraction tools.

Enqueue
Med Prio

Enqueue

2Queue

Low Prio

Doc

[B]

B−Recogniser

[B]

[B]

Duplicate
Removal /

Consolidation

Fig. 4. Instance Recognition Task

HTML
Regex

Name
Patterns

PersonRecogniser

LearnApply

Enqueue
Med Prio

Enqueue

2Queue<Person>

Low Prio

HTML

[Person]

Amilcare

[Person]

[Person]

Cross−match &
3Store

Look−up

Fig. 5. Example Recognition Instantiation

The subsequent consolidation stage is typically domain-specific Information
Integration but reuse can be made; for instance from the ‘similarity metrics’
library, SimMetrics, which we have recently released [1]. The consolidated list of
candidate instances is then queued to be validated by ‘evidential reasoning’.

23

2.3 Evidential Reasoning

For each potential instance of the concept B from the queue this task will attempt
to find evidence to confirm its classification and relation to the original instance.
This may consist of several parallel services, each of which implements a strategy
that falls into one of two classes, as follow.

Contextual Reasoning considers each potential B instance in the context of
the A instance via which it was discovered. As seen in Figure 6, two services will
be used to find occurrences of the B instance in general and co-located with the
A instance respectively. A third service then produces a list of potential triples
relating these instances, with evidence supporting the relation. Figure 7 shows
a simple instance of this strategy where we ‘promote’ the candidate instance to
being an academic employed by the university based on co-located references on
the web, obtained by a Google wrapper which is domain-independent.

B

A−B Colocated
Reference
Oracle

B Reference
Oracle
[DocId]

[DocId]
Correlation
Reasoner

[(B, _, A), Evidence]

A

Fig. 6. Contextual Reasoning Task

Person

Search
[URL]

[URL]
Numerical
Correlation

GoogleGoogle
Search

University

[(Academic, employedBy, University), Probability]

Fig. 7. Example Contextual Instantiation

Relational Reasoning provides evidence for the candidate B instance being
correctly classified as such, based on other relations an oracle may find. In this
subtask, as shown in Figure 9, we may apply domain-tailored or domain-specific

technologies such as gazetteers and site wrappers, as well as domain-trained

relation extraction, as we are developing in the tool T-Rex.

B−C Relation
Oracle
[C]

Relational
Reasoner

(Evidence,
[C, [(B, _, C), Evidence]])

B

Fig. 8. Relational Reasoning Task

[Paper]
Mid−Range

Citeseer
Wrapper

Filter

Person

[Paper, [(Academic, _, Paper),
Probability]])

[Forename]
Gazetteer

Person

[Forename, [(Person, _, Forename),
Probability]])

Forename

String
Comparison

(Probability,(Probability,

Fig. 9. Example Relational instantiations

2.4 Combination and Storage

For the sake of brevity we do not consider, in this paper, the ‘combination’
and ‘storage’ tasks except to say that we have instantiated the Evidence type
variable as a probability and will use a statistical combination to provide a
higher-confidence result; other solutions are also accommodated.

24

3 Conclusions

We have illustrated how it is possible to make use of SWS’s in harvesting the
Web, and other corpora, to provide annotations for the Semantic Web. The
architecture presented is based on workflow and follows an IE-oriented strategy.
Initial approximations to both classification and implicit relation extraction are
followed by evidential reasoning based on both context and further relations.
In this way a wide variety of semantic web services may be accommodated and
porting is eased since, in many cases, users can avoid coding altogether, merely
using the workflow templates to guide semantic discovery and composition.

This architecture also provides many other benefits associated with service-
oriented architectures, such as speed-up from concurrency and distribution, an
automatic means to reuse of any code that does have to be written specifically
for a new domain, and the ability to provide services remotely to users with little
infrastructure. A more complete picture of the workflow template described here,
and the means by which it is currently implemented, is provided in the related
position paper [6].

References

1. Sam Chapman. SimMetrics. http://sourceforge.net/projects/simmetrics/.
2. Fabio Ciravegna, Sam Chapman, Alexiei Dingli, and Yorick Wilks. Learning to

harvest information for the semantic web. In Proceedings of the First European
Semantic Web Symposium, May 2004.

3. Fabio Ciravegna and Yorick Wilks. Annotation for the Semantic Web. Series Fron-
tiers in Artificial Intelligence and Applications. IOS Press, 2003.

4. Anupriya Ankolekar et al. DAML-S: Web service description for the semantic web.
In Proc. 1st International Semantic Web Conference (ISWC), 2002.

5. IBM et al. Business process execution language for web services version 1.1.
http://www-128.ibm.com/developerworks/library/ws-bpel, 2003.

6. Barry Norton. Proposed functional-style extensions for semantic web service com-
position. In Proc. 1st AKT Workshop on Semantic Web Services, 2004.

7. Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. Adding OWL-S to UDDI:
implementation and throughput. In Proc. 1st Intl. Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004), pages 6–9, 2004.

8. W3C. OWL web ontology language overview. http://www.w3c.org/TR/owl-features,
2004.

Acknowledgements

This work was carried out within the AKT project (http://www.aktors.org),
sponsored by the UK Engineering and Physical Sciences Research Council (grant
GR/N15764/01), and the Dot.Kom project, sponsored by the EU IST asp part
of Framework V (grant IST-2001-34038).

25

Integrating Preferences into Service Requests

to Automate Service Usage?

Michael Klein1 and Birgitta König-Ries2

1 Institute for Program Structures and Data Organization, Universität Karlsruhe,
76128 Karlsruhe, Germany, kleinm@ipd.uni-karlsruhe.de

2 Institute of Computer Science, Friedrich-Schiller-Universität Jena, 07743 Jena,
Germany, koenig@informatik.uni-jena.de

1 Introduction

Today, web services are often used as a technology to integrate functionality of
different entities. However, one important potential of service oriented computing
is not exploited: the ability to form agile networks. Here, service requestors and
service providers are not fixedly tied together, rather, bindings to inefficient or
unavailable service providers are transparently replaced by bindings to more
appropriate providers at runtime. In such an architecture, the robustness and
efficiency would be increased dramatically.

The main reason why these networks are not a reality today is that current
technologies do not allow for automatic service selection and invocation; rather,
they require human interaction to decide on an appropriate service provider.
Obviously, this approach is not feasible in a system where service selection needs
to be carried out repeatedly at run time.

The most challenging prerequisite for automatic service description is an ap-
propriate service description language. This language needs to be able to capture
service offers and requests in sufficient detail to allow for automatic matchmak-
ing. In this paper, we argue that such a language needs to explicitly incorporate
user preferences into service requests.

2 Problems with the State of the Art

Many existing languages for service description use the same technique for de-
scribing requests and offers: the requesting application describes its desired func-
tionality by specifying an instance of the ”perfect” service. A generic matchmaker
compares this request to the published offer descriptions and calculates a simi-
larity as a value from the interval[0.0, 1.0] by using heuristical structural and/or
semantical similarity metrics. The service offer with the highest similarity is
invoked directly by the service requestor.

Much effort has been put into the development of intelligent similarity calcu-
lators. The most important approaches perform a comparison of the functional
parameters, perform a structural comparison of the description graphs, use logic
subsumption or use combined approaches [2–5].

? This work is partially funded by the Deutsche Forschungsgemeinschaft (DFG) within
SPP 1140. Some of the ideas in this paper have been published in [1].

26

:Service

:Profile :Booked

:CinemaTicket

:SeatInShow

2004-07-10

spiderman2
:Movie

presents

effect

entity

validFor

visible

date

cinema

Service Request :
I want a Service
which books me a
seat for Spider Man 2

time 20:00

hortonPlaza:Cinema

price
<= 8.00

:Service

:Profile :Booked

:CinemaTicket

:SeatInShow

2004-07-10

spiderman2
:Movie

presents

effect

entity

validFor

visible

date

cinema

cinerama6:Cinema

Service Offer:
I canbook youa ticket
for SpiderMan 2, this
saturday at 8:15 pm in
the Cinerama6.

time 20:15

Fig. 1. Request description as perfect service (left) and offer description (right).

However, these approaches only work well, if offer and request description are
exactly equal, so the matcher returns 1.0, or obviously different, so the matcher
returns 0.0. However, in intermediate situations, in which the offer differs some-
what from the request, it becomes very difficult for the matcher to assign the
value from (0, 1) that is appropriate, i.e., that reflects the requestor’s perception
of the usefulness of the service offered.

An example shall illustrate this. The request on the left of Figure 1 is specified
as one single instance3, which represents the requestor’s ideal service. He wants to
invoke a service reserving a seat for Spiderman 2. He also gives some information
about his perfect reservation: It should be in the cinema Horton Plaza, at a given
date and time and the ticket’s price should be 8 Euro or less.

On the other hand, we have a service provider which offers a nearly matching
service offer (see Figure 1 (right)). He offers to book a ticket for Spiderman 2,
but differs in some of the requested attributes4. The matcher now has to decide:

– The requestor wanted 20:00 as starting time, but the offered service can only
reserve a ticket for 20:15. Is this still a match or only a 90% match?

– The requestor wanted the Horton Plaza cinema, but the offer is a about the
cinema Cinerama 6. Is this still ok because they are in the same city5?

– The requestor wanted a price below 8 Euro, but the offer didn’t mention the
price. Is this a matching value of 0.0, or should some other value be assigned?

– What is more important for the offerer: A good price, a good time, a near
cinema? The matcher has to decide whether to take the average of the indi-
vidual matching values, their minimum or another function.

As we can see, the main problem lies in the fact that the preferences of
the requestor are not clear as they are not explicitly specified anywhere. This
matchmaker has to either use general, domain- and user-independent deviation
heuristics or simply perform a very strict, conservative matching. Each of these

3 We use a graphical, UML-like notation of the description.
4 Realistically, the provider would offer a more generic service like the booking of

arbitrary movie tickets. Our approach can handle this by introducing variables [1].
5 This information could be provided in the underlying ontology.

27

Generic Matcher

offers request

Personal
Matcher

offersa) b)

biased matching values from [0,1] unbiased matching values from [0,1]

request
(preference-
containing)

generates

heuristics

Fig. 2. Generic vs. personal matcher.

approaches leads to a biased matching process, i.e. the result of the match de-
pends on the matchmaker used. Thus, the requestor typically will not blindly
rely on its result but will want to choose one of the proposed services manually.
Thus, automatic service invocation is prevented.

3 Approach: Preference Integration

As shown in Section 2, only an unbiased matching process could be accepted
within an automatic service usage process. Such an unbiased matcher can only
become a reality, if the service request contains enough information for the
matcher to decide in deviation cases. This means, that the service request has
to include the client’s preferences.

Figure 2 illustrates this idea. We have to overcome the approach of a generic,
all-purpose matcher (left side). Such a matcher is biased. It is not able to calcu-
late reasonable matching results for service descriptions from arbitrary applica-
tion domains that can be used to automatically choose an appropriate service for
the requestor. Instead, we need preference-containing request descriptions that
can be used to generate a highly specialized, personal matcher (right side). Such
a matcher would be unbiased so that the requestor would agree to automatically
invoke the best matching service.

To achieve this goal, we propose to express requests as fuzzy declarative
sets of suitable services rather than as one specific instance representing the
perfect service. The degree of membership of a service offer to the fuzzy set
described in the service request expresses the requestor’s preference for this offer
and also its matching value. Requests are build up by using a limited set of well-
defined constructors, which leads to structured and computationally feasible
service requests. Consider as an example the request shown in Figure 3. Here,
sets are depicted as rectangles with a small cross line in the left upper corner.

Again, the requestor is looking for a ticket for Spiderman 2. In her request, she
specifies that she is not willing to see another movie or to see the movie on an-
other than the specified date. However, she is willing to accept a slightly later or
earlier time than her preferred starting time (expressed by the ~==[15min]20:00

condition for the time property of SeatInShow) and is also willing to attend a
show in a theater close to the one that is her first choice (expressed by the
similarity function near. Here, either a predefined function from the ontology

28

Service

Profile Booked

CinemaTicket

SeatInShowMovie

presents

effect

entity

validFor

visible

date

cinema

time

price Double

<= 8.00

Date

== 2004-07-10

Time

~==[15min] 20:00Cinema

near(hortonPlaza)

min(date, time^2,
cinema, visible)==spiderman2

Fig. 3. Preference-containing request.

can be used or the user specifies her own function). While she would prefer
not to pay more than 8 Euros, offers that do not specify a price should also
be considered as possible matches (based on the real world experience of the
user that cinema tickets seldom cost more than eight Euros). This is expressed
by the missing strategy assume fulfilled, which is depicted by the circle. The
connecting strategy min(cinema,visible,date,time^2) expresses how the in-
dividual matching values should be combined. Here, the requestor has stated
that the result has to be calculated by minimizing the results from the single
conditions where the time attribute is emphasized by the exponent 2. As a result,
this is a conjunctive connection. Given all this information, it is straightforward
to generate a personalized matcher that will be able to determine exactly how
well a service offer fulfills the requestor’s needs [6].

Our service description language, DIANE Service Description (DSD) [1, 7],
offers the means to express such requests. DSD and the corresponding matcher
have been implemented.

References

1. Klein, M., König-Ries, B.: Combining query and preference - an approach to fully
automatize dynamic service binding. In: Short paper at IEEE International Con-
ference on Web Services (ICWS 2004), San Diego, CA, USA (2004)

2. Paolucci, M., Kawmura, T., Payne, T., Sycara, K.: Semantic matching of web
services capabilities. In: Proc. of the Semantic Web Conf., Sardinia, Italy (2002)

3. Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A semantic web approach to
service description for matchmaking of services. In: Proc. of the Intl. Semantic Web
Working Symposium (SWWS), Stanford, CA, USA (2001)

4. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web
technology. In: Proc. of the Intl. WWW Conference, Budapest, Hungary (2003)

5. Sycara, K., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among
heterogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent
Systems 5 (2002) 173–203

6. Klein, M., König-Ries, B.: Coupled signature and specification matching for auto-
matic service binding. In: Proc. of ECOWS 2004, Erfurt, Germany (2004)

7. Klein, M., König-Ries, B., Müssig, M.: What is needed for semantic service descrip-
tions? Intl. Journal on Web and Grid Services (2005). Submitted for publication.

29

OCML Ontologies to XML Schema Lowering ?,??

Vlad Tanasescu1,2, John Domingue2, Liliana Cabral2

1 Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
vlad.tanasescu@epfl.ch

2 Knowledge Media Institute, The Open University, Walton Hall, Milton Keynes,
MK7 6AA, UK

{v.tanasescu, j.b.domingue, l.s.cabral}@open.ac.uk

Abstract. Ontologies are explicit specifications of a conceptualization
intended for logical processing. They are used to express meaning and to
apply it on otherwise less structured data. Nevertheless other models of
organization and structure of knowledge, like database models and XML
document definition standards, are widely used and valuable. In order to
extend ontology usage to multiple layers of an application, or to integrate
ontologies with pre-existing software, the use of these various means to
structure data could be necessary. We are therfore using metadata in
order to adapt an ontology to these use cases and provide the example of
automatically generating user interfaces for goal descriptions in IRS-III
[1] by extracting an XML schema from an ontology.

1 Introduction

The semantic web vision foresees the advent of automatic machine operable ser-
vices through the use of knowledge based technologies. An interesting class of
standardized services are web services, which are widely accepted if not yet mas-
sively used by the industry. Current web service implementations are, however,
relatively inflexible, and not powerful enough to support automatic discovery,
mediation and composition. Therefore ongoing research is investigating how se-
mantic web technology can alleviate this. The IRS-III (Internet Reasoning Ser-
vice) framework [1] supports the creation of semantic web services according
to the WSMO ontology [2], and extends it. Users of IRS-III directly invoke web
services via goals i.e. IRS-III supports capability-driven service execution. A goal
is described as a class in OCML (Operational Conceptual Modelling Language)
[3] and related to one or more web services through mediators, which provide

? This research was partially supported by the Advanced Knowledge Technologies
(AKT) project. AKT is an Interdisciplinary Research Collaboration (IRC), which
is sponsored by the UK Engineering and Physical Sciences Research Council under
grant number GR/N15764/01. The AKT IRC comprises the Universities of Ab-
erdeen, Edinburgh, Sheffield, Southampton and the Open University.

?? This work was also partially supported by the DIP (Data, Information and Process
Integration with Semantic Web Services) project. DIP (FP6 - 507483) is an Inte-
grated Project funded under the European Unions IST programme.

30

the required flexibility by allowing to specify mapping mechanisms between goal
input roles, output roles, and matching web services.

Ontologies, like the ones used in a goal description to define a capability, are
intended for logical inference, and are often loosely related to applications based
on them; therefore one has to provide some glue to allow diverse aspects of an
application to conform to an ontology; the problem of data consistency, of user
input for example, usually occurs and is hard to tackle in a generic way.

Our motivating example is to provide a consistent interface to IRS-III goals.
The input to these goals, i.e. the data one has to provide in order to expect
achievement of the goal, is defined in an OCML ontology, and uses data types
provided by it. For example an exchange rate goal will have three input roles:
has-source-currency, has-target-currency and has-amount, which represents the
amount which has to be converted from source to target currency.

The difficulty is that OCML types are used to describe the roles, i.e. pound
or euro are instances of a currency class. The enumeration of available currencies
is therefore well defined in the ontology and this constraint has to be reflected
in the actual web or Java goal access interfaces, task which is actually achieved
by the developer, in a disconnected and hence highly error-prone way.

2 Translating OCML ontologies to XML schema

The relation between ontologies and XML schemas (XSD [5]) has already been
described (for example in [4]): ontology languages are a means to specify do-
main theories while XML schemas provide integrity constraints for information
sources, but both provide vocabularies and structure for describing information
sources that are intended for exchange. However ontology modelling languages
like OCML do not offer rich collections of built-in data types for two main rea-
sons:

1. Providing clear semantics and reasoning support for a large collection of
complex data types is difficult.

2. The precise representation of a data type is often superfluous in a knowledge
modeling context, i.e. a date may be an important aspect of a domain but
various representations of it are not.

The XML schema type system has been inspired by language independent
data types as well as actual query and object-oriented programming idioms like
SQL or JAVA [5]. OCML is a frame-based, i.e. object-centered, knowledge repre-
sentation system, which also provides a relational view. These systems therefore
present similarities that we can exploit and a quite intuitive mapping appears
between the two (see table 1).

Unfortunately the XSD type system does not support multiple inheritance,
and even simple derived types can be only created either by restriction or by ex-
tension but not both at the same time. However this kind of modelling is mostly
useful for knowledge representation and have usually little role to play when
interacting with other software architectures. Moreover we are only interested

31

Table 1. OCML to XSD data types

OCML XSD

class complexType
slot element

string, float, ... simpleType

by the constraints allowed by an XSD definition, not by the reuse of the derived
XSD types since we are able to generate them on the fly. Therefore we chose to
treat these cases by defining a new type for every OCML class, inherited or not,
containing all the slots (local and inherited) as elements. Also there is actually
no planned support in our approach for classes defined in OCML intensionally
by logical expressions.

Still the result of this simple mapping is not very helpful from an applicative
point of view since we do not have any validation constraints yet, i.e. we do
not know, because it is not specified in the ontology, that for our purposes the
slot/element called has-amount must be smaller than a given value (otherwise
the program may crash, or the database will not be able to store the value, etc).

3 Constraint metadata applied to ontologies

Constraint information could simply be added to the ontology, however the ap-
plicative environment (Java program, web interface, database) may change while
the ontology is already shared in multiple contexts, therefore it is more appro-
priate to only attach this information to the ontology, without any modification,
hereby allowing for multiple views or aspects of it depending of the applica-
tive context. Without doing so constraints on a goal could be superfluous or
even conflicting depending on the context, e.g. the maximum value of a number
could be greater for a Java application than for a Web interface, while entirely
meaningless for the knowledge domain.

During the translation process we therefore use a metadata system to store
the constraints we chose to add to the ontology XSD representation for our
specific context dependent purpose. Our metadata system is composed of:

1. A naming convention mimicking the has-a tree-like structure of the ontology
and allowing to request information about a particular element of it (class,
slot or relation). For example:

’(transform classes EXCHANGE-RATE-GOAL HAS-AMOUNT)

2. A repository which can be anything from a DBMS to simple association
lists, able to store the information regarding a node according to the naming
structure, for example the required length of a string, as well as other relevant
information like OCML basic types mappings to XSD:

32

’((transform ((classes ((EXCHANGE-RATE-GOAL

((HAS-AMOUNT

((maxInclusive ((1000000)))))))))

(types ((float (("xs:decimal"))))))))

3. An access interface to the metadata repository that has to provide neces-
sary access functions as well as commodity ones required by the generation
program.

By using the metadata convenience (through the repository called mddb) we
can now easily map an OCML ontology to a constrained XSD schema:

Algorithm OCML2XSD(ontology, mddb)
1. for c ∈ classes(ontology)
2. do Create element complexType with attribute name = name(c)
3. Create sequence element
4. for s ∈ slots(c)
5. if s is a type referenced as basic in mddb
6. then create element simpleType
7. add base attribute with value specified in mddb
8. if s has attached constraints in mddb
9. then add the constraints as restriction elements
10. else create element with type attribute set to class(s)

It is straightforward to restrict this algorithm to the slots representing in-
put roles of an IRS-III goal. Then, by applying an XSL transformation to the
generated schema, we obtain a web interface with embedded validation.

4 Conclusion

We demonstrated the use of metadata applied to ontologies in order to adapt
them to practical application contexts, and used this technique to generate XML
schema from an OCML goal description in order to obtain a consistent validating
web interface. Metadata can be used to produce many applicative views of an
ontology, like SQL Data Definition Language statements for persisting ontology
instances, or JavaBeans template code to ease ontology driven enterprise appli-
cation building. In further work we aim to generalise this process by providing
a language for building generative mappings.

References

1. J. Domingue, L. Cabral, F. Hakimpour, D. Sell and E. Motta (2004). IRS-III: A
Platform and Infrastructure for Creating WSMO-based Semantic Web Services.
(WIW 2004)

2. Web Service Modeling Ontology Standard, http://www.wsmo.org/2004/d2/
3. E. Motta, An Overview of the OCML Modelling Language (KEML ’98)
4. M. Klein, D. Fensel, F. van Harmelen, and I. Horrocks, ‘The Relation between

Ontologies and XML Schemas’ (2001)
5. XML Schema - W3C Recommendations 28 October 2004,

http://www.w3.org/TR/xmlschema-0/ and http://www.w3.org/TR/xmlschema-2/

33

Using OWL-S to annotate services with ancillary
behaviour

Roxana Belecheanu, Mariusz Jacyno, Terry Payne

School of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ
{rab2, mj04r, trp}@ecs.soton.ac.uk

Abstract: This paper introduces the concept of services with ancillary behav-
iour and illustrates the use of OWL-S to semantically describe them. The OWL-
S syntax used reflects the dynamic and core-function independent nature of an-
cillary behaviour. The approach is illustrated on the case of a ubiquitous com-
puting system designed to offer care in the home of a cardiac patient. Here one
of the challenges is to ensure service availability, team awareness and transac-
tion atomicity. The concept of commitment is discussed as an example of ancil-
lary behaviour that can achieve these requirements.

1 Introduction

Service oriented applications often require that services which implement certain
core functions are accompanied by supporting functionality, like monitoring behav-
iour, commitment, authentication, encryption/decryption. This supporting functional-
ity is usually relevant only to the context of the core function, but does not always
play a direct role in the invocation of the core function. This paper introduces the
concept of ancillary behaviour to describe functionality that is additional to the core
service typically annotated in an OWL-S description, and which has the role of aug-
menting the service’s capability, or enhancing the QoS achieved by the core service.

The ancillary functionality of a web service can be either mandatory or optional.
Mandatory ancillary operations (e.g. authentication) must be executed in addition to
the service’s core functionality and the service cannot be invoked without the execu-
tion of these operations. Ancillary functionality contributes to the delivery of a service
either by providing a supporting role (enable the core service) or an enhancing role
(increase the value of the core service) [1].

A related but distinct concept that can also be introduced here is that of a higher-
order service. A higher-order service is one which determines a particular aspect of
the invocation of a core service without invoking the core service. For example, in or-
der to find out the cost of the invocation of a service for certain input parameters, a
costing service can be attached to the core service, whereby the invocation of the cost
function would not require the invocation of the core service.

34

2 An application example

An application example for the concept of services with ancillary behaviour is an
ubiquitous computing [4] system whereby a set of heterogeneous devices and their
applications establish connections between each other in a dynamic manner (i.e. de-
vices leaving and joining the system unexpectedly), in order to achieve certain tasks.
Due to the high variability of the Quality of Service of wireless data communications
(e.g. line rate, throughput, error rate) in such a system, there is also a need for dy-
namically discovering and composing the applications running on these connected
devices. Abstracting devices (physical) functionality as services (logical) functionality
and using OWL-S to semantically annotate these services can help achieve this flexi-
bility. Thus building interoperable service descriptions similar to the Semantic Web
Services is needed to accomplish tasks like service discovery, management, invoca-
tion and monitoring.

For example, in the case of a ubiquitous system designed to offer care in the home
of a patient, there may be the issue of having a limited number of devices, each pro-
viding services that take a finite time to execute, and that may have to be shared by
several contexts. Hence, no guarantees exist that any single service is available for in-
vocation at any given time. Therefore, a service centric application must ensure:

1. service availability: services which are critical for the patient care (e.g. heart
rate monitoring) must be available for execution at the desired time.

2. team awareness: services must be aware of the status of other services they
depend on.

3. atomic transactions: due to high power consumption of message transmission,
it is necessary to reduce the number of service requests, or to support a
mechanism whereby both core and supporting activities can be requested via a
single call (i.e. as one transaction).

3 Commitment based services

Commitment is an example of ancillary behaviour that can help achieve this type
of service interactions. The concept is used to enforce that the provider of a commit-
ment supporting service commits to perform an action for a requester. This has been
formalised within the theory of local and social agent behaviour [2], using concepts
from the Beliefs-Desires-Intentions model. Commitment has also been used to model
coordination protocols for business transactions [3], e.g. in an “atomic transaction”,
several services committed to one requester will succeed or fail as an atomic unit. A
common point of the two interpretations of commitment is that a protocol (e.g. opera-
tions like RequestCommitment, DischargeCommitment, ReleaseCommitment, etc.)
can be designed to allow services to check each other’s availability to perform a joint
task, thus building team awareness. The difference between the two commitment
models is that a committed service in agent theory will eventually perform the task,
but may accept other requests in the meantime, while a committed service in a trans-
actions model must be available to the requester immediately after commitment is
granted (a reservation-like interaction).

35

4 Describing ancillary service behaviour in OWL-S

Service ancillary behaviour has two salient characteristics:
1. It is dynamic, i.e. it involves communication with other services of which in-

stances can only be discovered at runtime; (hence it cannot be included in the
static description of the service’s process).

2. It is core function independent, i.e. it is common to a range of services with
different core functions.

For these reasons, ancillary behaviour has to be abstracted and described separately
from a given service’s core functionality, thus facilitating several different services
sharing the same ancillary behaviour. Ancillary behaviour description should be
loosely linked to the core service specification. The resulting workflow for both the
core and ancillary functionality can then be realized (through entailment) when an
agent reasons about the service, with respect to a usage context.

To illustrate how core services can be augmented by ancillary services, we take the
example of commitment as ancillary behaviour and an example of a core service from
the healthcare setting. Suppose HRMonitor_with_Commitment is a heart rate monitor-
ing service which supports commitment. To annotate it in OWL-S, we use the core
service instance GetHeartRate and augment it by: i) defining a CommitmentService
instance and ii) by linking the core service description with the ancillary service de-
scription. CommitmentService is the representation of a commitment protocol that en-
sures that the interaction with the HRMonitor_with_Commitment service occurs as
one transaction. The resulting workflow for this service must therefore be the se-
quence of the processes: RequestCommitment, GetHeartRate and DischargeCommit-
ment. Suppose that GetHeartRate is an atomic process:

<process:AtomicProcess rdf:ID="GetHeartRate">
 <hasOutput rdf:resource="ansConcepts#HeartRate"/>
</process:AtomicProcess>

To combine the core and ancillary workflows, we use the OWL-S Simple Process
class as an unbound service abstraction that can be dynamically linked to the
GetHeartRate service instance. The CommitmentService workflow can be written as:

<process:CompositeProcess rdf:ID="Commitment_Process">
 <process:composedOf>
 <process:Sequence>
 <process:Components>
 <process:AtomicProcess rdf:resource="#RequestCommitment"/>
 <process:SimpleProcess rdf:resource="#Core_Function"/>
 <process:AtomicProcess rdf:resource="#DischargeCommitment"/>
 </process:Components>
 </process:Sequence>
 </process:composedOf>
</process:CompositeProcess>,

whereby the Simple Process represents a step that must be replaced by a core process
before execution, thus allowing the annotation of the commitment as a function that is
common and can be attached to several core services. The CommitmentService thus
acts as a wrapper around the core function of any service that supports commitment.

Additional annotations are then added to the core GetHeartRate service to link it
with the ancillary commitment service definition: 1. the GetHeartRate process real-

36

izes the abstract Simple Process, thus stating that the ancillary service definition is ef-
fectively unbound, until reasoned about in context with the GetHeartRate service:

<process:AtomicProcess rdf:ID="GetHeartRate">
 <process:realizes rdf:resource="ansAncillary.owl#Core_Function"/>
</process:AtomicProcess>

 2. In order to distinguish between a committed and non-committed service during
discovery, (as typically a service is requested according to the functional parameters
of the core service), ANSAncillaryFunctionality is defined as a serviceParameter type
of property, in the profile of any ANS service:

<ANSServiceProfile rdf:ID=”HRMonitor_with_Commitment_Profile”>
 <profile:has_process rdf:resource=”#GetHeartRate”/>
 <ansProfile:ANSAncillaryFunctionality>
 <ansProfile:ANSAncillary>
 <profile:sParameter rdf:resource="ansAncillary#Commitment_Profile"/>
 </ansProfile:ANSAncillary>
 </ansProfile:ANSAncillaryFunctionality>
</ANSServiceProfile>

5 Further work

Further work aims to address issues which result from using this type of annota-
tion: first, discovering services with ancillary behaviour requires searching by core
functionality parameters, as well as by non-functional properties (i.e. sParameter), to
determine what ancillary services are also provided as part of the service description.
Secondly, the runtime composition of the workflows describing the core and ancillary
sub-processes into one executable workflow is necessary. The possibility to annotate
services with more than one type of ancillary behaviour must also be addressed.

Acknowledgements

This research is funded by DTI (UK) as part of the ANS (Autonomous Networked
System) project; other research partners are Imperial College and Lancaster Univ.

References

1. Baida, Z., Akkermans, H. and Bernaras, A., 2003., The configurable nature
of real-world services: analysis and demonstration, ICEC-Workshop.

2. P. R. Cohen and H. J. Levesque, Intention is choice with commitment, Arti-
ficial Intelligence, 42 (1990), pp. 213-261

3. Papazoglou, M.P., 2003. “Web Services and Business Transactions”,
WWW: Internet and Web Information Systems, 6, pp. 49-91.

4. Weiser, M, "The Computer for the Twenty-First Century," Scientific Ameri-
can, pp. 94-10, September 1991

37

1.
Integration of OWL-S into IRS-III

Farshad Hakimpour, John Domingue, Enrico Motta,
Liliana Cabral and Yuangui Lei

Knowledge Media Institute, The Open University, Milton Keynes, UK
{f.hakimpour, y.lei, j.b.domingue, e.motta, l.s.cabral}@open.ac.uk

Abstract. IRS-III is the first WSMO compliant system for supporting the Se-
mantic Web Services technologies and it is based on the IRS-II [3]. This paper
presents how we integrated the OWL-S [5] service description ontology to
IRS-III. We describe how the underlying model of IRS-III supports OWL-S.

1 Introduction
As Web Service technologies are evolving, the need for semantic description of the
services has also been increasing. There is a great deal of work on developing
specifications for describing Web Services, such as in OWL-S [5] and WSMO [1]. The
description of Web Services facilitates automatic matching of services with a service
request, automatic service composition, controlling and monitoring the execution of a
Web Service. IRS-III [3] is one of the few existing systems to support the Semantic
Web Services technologies. IRS-III complies with the WSMO ontology of Goal, Web
Services and Mediators [1]. WSMO is a developing specification mainly supported
and developed by European partners.1 IRS-III uses a version of WSMO ontology
defined in OCML (a knowledge representation language [4]) which also provides the
corresponding reasoning system. OWL-S provides a specification for describing
semantics of Web Services developed as part of DAML program. Supporting OWL-S
will extend the potential of the IRS-III and would also help us to explore the
similarities and the differences between OWL-S and WSMO ontology.

In this paper, we explain how ontologies describing a service in OWL-S specifica-
tion are mapped to the WSMO ontology and translated to OCML which is in turn suit-
able to be used by IRS-III. The rest of the paper is organized as follows. Section 2 in-
troduces the IRS-III, WSMO ontology and the OWL-S specification. In Section 3, we
describe how major features of the OWL-S Process are translated to Web Service de-
scriptions. Section 4 is dedicated to the technical details of OWL-S to WSMO transla-
tion, as well as OWL to OCML translation. Finally, in Section 5 we present a summary.

2 Background
IRS (Internet Reasoning Service) is a framework to support Semantic Web Services, in
which services can be described by their semantics, discovered, invoked and
monitored. IRS-III consists of three main components, IRS Server, IRS Publisher and
IRS Client. IRS Server stores and reasons with Web Service and Goal descriptions.
IRS Publisher generates wrappers for programs as Web Services. Invocation of Web

1.http://www.wsmo.org/
38

2.
Services via Goal descriptions is supported by the IRS Client.
The notions of Goal and Mediator are particular characteristic of IRS-III and

WSMO ontology. While a Web Service is a description of a method and concerned with
the specification of mechanisms and execution, a Goal is a general description of a
problem and concerned with describing a problem rather than mechanisms. As a result,
Goals are suitable for describing a service for a user whose concern is not the technical
details of the solution.

OWL-S [5] is based on a process ontology and benefits from developments in work-
flow technologies. OWL-S model is based on three major components ServiceModel,
ServiceProfile and ServiceGrounding. The most important of the three for IRS-III is the
ServiceModel which describes how a service works by describing its Inputs, Outputs,
Preconditions and Effects (IOPEs). It also specifies the component Processes of com-
posite services and their execution order. ServiceProfile foresees information that may
be required to search for a service, such as, ContactInformation, QualityRating, Service-
Category and other optional ServiceParameters. Furthermore, a Profile contains pointers
to the IOPEs of a Process. ServiceGrounding specifies the details of accessing a service,
such as communication protocol and message format. ServiceGrounding is not dis-
cussed in this paper, as we concentrate on the semantic description of services here.

3 OWL-S Process and Web Service
The core functional description of services in OWL-S appears in Process descriptions.
A Process is described mainly in terms of its functional parameters: Inputs, Outputs,
Preconditions and Effects (IOPEs). OWL-S also divides Processes into two types
AtomicProcess and CompositeProcess in the ProcessModel. CompositeProcesses are
further described by ControlStructures. We map Atomic Process and Composite
Process to a Web Services description in IRS-III. In case of a composite web service
the composition will be translated to the orchestration part of the Web Service
description.

Functional Parameters. Web Service description in IRS-III includes: has-input-
role and has-output-role that are also present in the OWL-S process description, as has-
Input and hasOutput. The Capability of a Web Service in IRS-III includes: has-precon-
dition, has-assumption, has-effect and has-postcondition. These roles are similar to
hasPrecondition and hasEffect in defined in OWL-S 1.0. Since OWL-S 1.1 (Beta ver-
sion) Effects are part of a new property called hasResult.

The distinction between preconditions and assumptions (as well as postconditions
and effects) are result of the distinction between the state in the information space and
state of the world. That is, preconditions and postcondions are conditions related to the
information space while assumptions and effects are related to the state of the world. At
the moment, we map the OWL-S preconditions to IRS assumptions.

On the other hand, OWL-S 1.1 provides extra parameters, namely, Local and Res-
Var. These parameters are used respectively in the Preconditions and Results. These pa-
rameters can be thought of as environment variables that represents states of the world.
By this interpretation, OWL-S 1.1 also distinguishes between the state of the informa-
tion space and the state of the world. However, this distinction is done at the level of
39

3.
parameters rather than the conditions.

Goals and Web Services. The IRS Web Service is suitable for representing a serv-
ice description as described by Process in OWL-S. However in IRS-III, the notion of
Goal refers to a general description of a problem and can be solved by different Web
Services. A Goal describes a problem to be solved and represents the knowledge re-
quired for matching the problem to a set of Web Service descriptions presented by pro-
viders. During the translation a user may decide whether a Goal based on the OWL-S
description should also be generated by the translator. While generating the Goal trans-
lator will also generate the necessary mediator to mediate between the Goal and the
Web Service. After the translation one can modify the generated Goal and mediator by
the IRS browser. Generation of a Goal allows service discovery based on the Goal de-
scription. If a user does not require to generate a Goal she may associate a Web Service
to an existing Goal, later by the IRS browser. That is, a translated OWL-S description
can be associated to any existing Goal.

There is a conceptual difference between the IRS-III and OWL-S. OWL-S views a
process (e.g. Amazon-book-selling-service) as an instance of class Process, while in the
IRS-III the translated result is defined as a subclass of Web Service. However, this dif-
ference has side effect on translation or other IRS-III functionality.2

Fig. 1. Similarity of the basic elements of OWL-S (in ovals) and WSMO (in boxes).

Atomic
Process

Composite
Process

Web
Service

Precondition
Precondition

Assumption

Effect
Postcondition

Effect

Input Input

Output Output

Simple
Process

Local
Choreography

Mediator

Goal

Profile

Orchestration
+

Composition. Describing Service compositions is an essential advantage of the reus-
ability of Web Services. The IRS-III composition model is currently under development
and the translator will soon be able to support translation of the composite processes.
However, we developed a translator from OWL-S 1.0 to the previous version of IRS
(i.e. IRS-II). OWL-S describes a composite process by means of Control Structures.
OWL-S Control Constructs are built as a set of Processes, such as a Sequence of proc-
esses or an iteration of a list of processes. The same is supported in IRS-II by means of
body of a PSM definition in OCML. As a result all control construct in OWL-S can be

2.This difference has started as of OWL-S version 1.0. In OWL-S 0.9 and before a Proc-
ess (e.g. BravoAir_Process) was defined as a subclass of Process rather than its instance.
40

4.
easily translated to OCML and used by IRS-II.
In General, IRS allows building a composition of Goals. This feature provides a cer-

tain level of dynamism in composing Web Services. Such dynamism can only be
achieved by SimpleProcesses in OWL-S. That means, Web Services executed in a com-
position can be discovered during the execution and should not be necessarily specified
during composing process.

4 Translation
The translator contains two components. Firstly, translation of OWL-S to the WSMO
ontology and secondly, translation of OWL to OCML. The common concepts in both
OWL-S and WSMO ontology are translated by the former component. However,
OWL-S service descriptions are in OWL language and contain many definitions in
OWL (e.g., concepts defining the input types of a Process). These definitions are
translated by the later component. The translator also validates the consistency of the
OWL-S service descriptions. For example, Profile is associated to Process descriptions
by means of the has_process property. We also validate the consistency of this
association with the hasProcess property of the ServiceModel for the Service. There are
a number of such validation that are performed on the service descriptions.

5 Summary
This paper describes how we mapped the OWL-S descriptions to WSMO. We
explained similarities and differences between OWL-S and the WSMO ontologies.
OWL-S uses the ProcessModel for modelling and describing Web Services, which is
similar to Web Service in the WSMO ontology. The functional parameters of OWL-S
Processes (IOPE’s) have similar concepts in the WSMO ontology. The paper discusses
how the separation of the Goal and the Web Services can add to the flexibility in
defining a composition of tasks.

Acknowledgement
This work is partly supported by and the AKT (GR/N15764/01) project sponsored by
the UK Engineering and Physical Sciences Research Council and the DIP (FP6 -
507483) project funded under the European Union’s IST programme.

References
1. Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF. In Electronic

Commerce: Research and Applications, Vol. 1, No. 2, (2002) 113-137
2. McGuinness D. L. and Harmelen F. V. (eds.): OWL Web Ontology Language Overview. ht-

tp://www.w3.org/TR/owl-features/ (2004)
3. Motta, E., Domingue, J., Cabral, L., Gaspari, M. IRS-II: A Framework and Infra-structure

for Semantic Web Services. In the Proceedings of The 2nd Int’l. Semantic Web Conf.
(ISWC2003), Fensel, D. et al. eds., Springer-Verlag, LNCS Vol. 2870, (2003) pp. 306-318

4. Motta, E.: Reusable Components for Knowledge Modelling: Case Studies in Parametric De-
sign Problem Solving, IOS Press (1999)

5. OWL Services Coalition, OWL-S: Semantic Markup for Web Services, white paper,
www.daml.org/services/owl-s/1.0, (Nov. 2003)
41

Position Papers

MIAKT

David Dupplaw, Srinandan Dasmahapatra, Bo Hu, Paul Lewis, Nigel Shadbolt

IAM Group, University of Southampton, Southampton, SO17 1BJ, UK
[dpd|sd|bh|phl|nrs]@ecs.soton.ac.uk,

WWW home page: http://www.aktors.org/miakt

Abstract. This paper briefly describes the work we have undertaken in
the MIAKT project to provide a generic architecture and user interface
for distributed multimedia knowledge management with the application
of supporting diagnosis of breast-cancer. Most of the domain-specific
functionality is provided by web-services and how these are made func-
tionally and practically accessible in a general way is a main concern to
the ongoing work in MIAKT, and this is the main focus of this position
paper.

The Medical Imaging and Advanced Knowledge Technologies (MIAKT) project
is a collaboration of a subset of the partners from the Advanced Knowledge
Technologies (AKT) and Medical Imaging and Signals (MIAS) interdisciplinary
research collaborations (IRCs). The project is concerned with the management
of the knowledge that is produced during breast cancer screening in an attempt
to support the collaborative meetings that occur during breast cancer diagnosis.
Medical staff from different disciplines come together at a Multi-Disciplinary
Meeting (MDM) to discuss cases where symptoms of cancer have already been
identified (symptomatic cases). These symptoms are detected using imaging,
such as x-rays, magnetic resonance imaging, ultra-sound or microscopic views of
the results of a biopsy. Together with historical patient records, interpretation
of these provides a diagnosis and therefore identifies the further treatment for
the patient.

The MIAKT project currently provides information management in a seman-
tically principled way, accessing knowledge bases through a generic architecture
loosely controlled by a generic client application. Functionality of the system is
disjoint from the client to provide flexibility and it provided through web-service
interfaces which are made available to the client through an enterprise server.

Currently, we have over 20 services available, all providing useful function-
ality to the MIAKT application of medical imaging. Very briefly, these include
retrieval services accessed through the Internet Reasoning Service (IRS) pro-
vided by the Open University, and, through a SOAP interface, natural language
generation and medical term lookup provided by The University of Sheffield,
image analysis provided by The Universities of Southampton and Oxford and
King’s College London, and Image Registration also provided by King’s College
London. Further details of these services will be made available at the workshop.

42

Fig. 1. The MIAKT framework

Trust and security issues are a major concern to medical practitioners who
may wish to employ systems such as these, so facing the challenge of providing
secure transactions with provenance, with some quality of service on trusted
services is a very necessary issue to tackle. Currently, access to the client user
interface is governed by username and password databases which means services
are available through the enterprise server to the client only if a user has logged
in. However, bypassing of both the client and the enterprise server is still possi-
ble because access to most of these services is currently unrestricted. The only
exception to this are the services provided by King’s College London whose fire-
wall is limited to accept connections only from our enterprise server. However,
this rather limits flexibility and the general use of the services and was also diffi-
cult to negotiate and setup. Both technical and logistical problems made it near
impossible to use GRID services directly. Possible ways to tackle this might be
with WS-Security [1], as used by the Artemis Project [3], or the extension to
that WS-Trust [2]

Once the framework is in place for secure, trusted services to be provided on
an ad-hoc basis to different applications, it becomes necessary for these to be
described and published in a way that makes it possible for these applications
to use them sensibly. Clearly the IRS has some of this functionality already,
although having a single point of access to services (that is not the administrat-
ing client or server) can be considered a disadvantage. The service’s publishing
method should ensure that some higher level semantics are provided that in-

43

dicate a service’s role with higher-level tasks (rather than input/output level
semantics).

The services in place in MIAKT are all stateless; that is, they all provide
a single output from a set of inputs as a black-box. This is important, as the
design of the architecture does not currently store state for services. Support
for asynchronous web-services currently does not exist, and so there is scope for
investigating how these could be implemented and subsequently integrated into
the architecture. Currently, expensive GRID services are initiated and return
immediately. They are then pinged by the client to retrieve their status once
they have started execution. WSGrid [4] has shown that with the addition of
client-side services to the architecture, asynchronous services can notify the client
on completion, and within a trusted architecture this could be accomplished
securely, while retaining programmatic control at the client.

Composition of services may provide a very useful tool for simplifying access
to complex services. Assuming the existence of a well described set of atomic ser-
vices, composition could take place automatically. For example, in the medical
domain an automatic suggested diagnosis could be generated from the composi-
tion of image segmentation, image analysis and lesion classification algorithms,
and the composition could automatically take account of the best-of-breed imple-
mentations that are available in each case. It may be necessary for more atomic,
less domain-dependent services to be published for this to be actually realised.

Although MIAKT is clearly a flexible architecture, the way in which areas
of the system are constructed needs to be addressed in order to realise the
architecture as a test-bed for service development; in particular the user interface
which currently requires extending to afford the integration of new services (with
the exception of image analysis or simple retrieval services). With the further
generalisation of this architecture it is possible it could be useful as a general
test-bed for the evaluation of service-based solutions.

References

1. WS-Security, IBM
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/.

2. WS-Trust, IBM
http://www-106.ibm.com/developerworks/library/specification/ws-trust/.

3. ARTEMIS Homepage, IT Innovation
http://www.it-innovation.co.uk/research/grid/artemis.shtml.

4. WSGrid, Peter Henderson, 2004
http://www.omii.ac.uk/news/wsgrid.ppt.

44

Web Service Support for Scientific Data Analysis

Martin J Kollingbaum⋆, Kun Cai⋆⋆, Timothy J Norman, Derek Sleeman, and
Wamberto Vasconcelos

Department of Computing Science, University of Aberdeen, AB24 3UE
{mkolling,kcai,tnorman,sleeman,wvasconc}@csd.abdn.ac.uk

1 Automated Scientific Analysis

The analysis of large data sets requires extensive computing resources and de-
tailed knowledge about the analysis process itself. E-Science and Grid computing
is an effort to provide computing resources for the scientific community and sup-
port collaborative research efforts. With the availability of integrated platforms
that allow seamless communication and collaboration between researchers and
access to distributed computing facilities, there is a strong case to add intelligent
applications on top of these infrastructures that support and inform research ac-
tivities and allow the automation of scientific workflows [1].

Providing an automated advice for scientists in their data analysis is not a
new concern. Previous work has been conducted in the machine learning do-
main. Kodatoff et al. [3] and Sleeman et al. [4] describe an advisory system for
this domain. The advisor uses a knowledge base that captures selection crite-
ria for various machine learning algorithms. The central element of this system
is a classification expert system, called Consultant, which interrogates the user
about features of the learning task and recommends algorithms based on this
information. Consultant shows the essential elements of an automated advisor
in the machine-learning domain: information about the learning task (including
characteristics of the data) is fed into a central knowledge base, which returns
specific advice.

The Consultant expert system is a typical “single-vendor” monolithic tool.
What we need today is an environment that accounts for the collaborative nature
of research. The Web can be used to establish an advisory system that can be
maintained by the research community. Consequently, the functionality of such a
system is not established by a single group (organisation, company) but emerges
from a collaborative effort of many people. This can be described as a “multi-
vendor” scenario.

2 Web Services

Web service technology has been used to design a web-based scientific advisor.
The move towards web services is driven by the requirement that it is main-

⋆ Funded by the EPSRC IRC in Advanced Knowledge Technologies GR/NI 5764
⋆⋆ Partially funded by the EPSRC Master Training Program in E-Commerce Technol-

ogy GR/N29709

45

2 Martin J Kollingbaum et al.

tainable by the research community. In its essence, it shows the same elements
as the original implementation: domain knowledge is captured as a set of rules
comprising the knowledge base, which is used to advise on the selection of a
specific algorithm. But it is not an advisor for any specific domain — the system
represents a platform to which domain specifications can be submitted by users
via the Web. Given such heuristics, a user in the role of a knowledge engineer
can submit such a specification to the advisory system. The knowledge engineer
engages in a dialogue with an administrator tool to specify algorithm selection
heuristics in a convenient manner. This tool ultimately generates an OWL de-
scription of the engineer’s specification, but in generating this description the
tool may give guidance to the engineer by asking critical questions such as: “is
decision criteria x derivable from the data set or must it be user-specified?”.
Once this design is complete, the administrator tool automatically generates a
set of Jess1 rules that provide a procedural encoding of the domain heuristics.
This domain knowledge is subsequently available for any user seeking advice.
Figure 1 shows the essential elements of this system with the two basic roles
for users. The so-called “administrator” is responsible for the deployment of
new domain-specific knowledge bases. These are wrapped by so-called “broker”
services, which provide the advisory service.

Future research has to take into account the open nature of such a web-
based advisory infrastructure. Because of its openness, its functionality emerges
from the concerted effort of the research community. It also offers possibilities
for commercial vendors to contribute descriptions and knowledge about prod-
ucts implementing scientific analysis or to access various sources that can provide
data. With scientists using third-party data for their analysis or with commercial
interests involved, problems of privacy, charging models, trust in and reputation
of services have to be tackled [2]. Using agent technology in this advisory sce-
nario can provide the necessary capability to negotiate contracts for the usage
of specific services or to perform analysis tasks without disclosing privacy issues
of data sets.

References

1. D. De Roure, N.R. Jennings, and N.R. Shadbolt. The Semantic Grid: Past, Present
and Future. In to appear, 2005.

2. I. Foster, N.R. Jennings, and C. Kesselman. Brain Meets Brawn: Why Grid and
Agents Need Each Other. Proc. 3rd international Conference on Autonomous Agents

and Multi-Agent Systems AAMAS 2004, pages 8–15, 2004.
3. Y. Kodratoff, D. Sleeman, M. Uszynski, K. Causse, and S. Craw. Building a Machine

Learning Toolbox. In L. Steels and B. Lepape, editors, Enhancing the Knowledge

Engineering Process, pages 81–108. Elsevier Science Publishers, 1992.
4. D. Sleeman, M. Rissakis, S. Craw, N. Graner, and S. Sharma. Consultant-2: pre-

and post-processing of Machine Learning Applications. International Journal of

Human-Computer Studies, 43:43–63, 1995.

1 http://herzberg.ca.sandia.gov/jess

46

Proposed Functional-Style Extensions for

Semantic Web Service Composition

Barry Norton

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, S1 4DP Sheffield, UK

B.Norton@dcs.shef.ac.uk

In a related paper [9] we set out how various parts of a semantic web service-
based architecture for Armadillo[2], a harvesting tool for semantic annotation,
can be instantiated with information extraction and related language services.
We have constructed this as a workflow, illustrated as a whole on the following
page, in BPEL4WS [3], reasoning, as have several other authors [7], that even
while we should like to take advantage of semantic web service technology there
exist few, if any, generally available choreography solutions for OWL-S. As a
result we plan to take the lessons learned as input to an effort to implement and
extend a ‘coordination engine’ for OWL-S in the CASheW-s project[1].

The broad goals are to implement an engine in the programming language
Haskell [6] to which a workflow, expressed in an extended XML-encoded version
of OWL-S, can be communicated (over SOAP). This workflow will then be con-
verted to a process-algebraic representation in CaSE [10], a qualitatively-timed
CCS derivative, from which coordination engines have already been formed for
Microsoft COM via H/Direct [4]. Our plan is to use the GXS module of the
HAIFA framework [5] to allow the same kind of binding of SOAP services.

Our existing generalised dataflow model in CaSE [10] allows a semantics
for dataflows with loops, two loops can be seen over, and non-deterministic
agents, shown over as flow-graph style diamonds. Both of these features are
disallowed from the ‘Flow’ construct in BPEL (to construct the flow shown
over it is necessary to use more than one workflow, BPEL being insufficiently
algebraic), and the former syntactically restricted out of OWL-S, but very useful.

Our other major observation from BPEL was the frustrating need for use of
its extended XPATH language together with mutable variables - anathema to
the kind of analyses we should like to allow over designs. We have previously
proposed parametrically polymorphic functional language-like features as a more
suitable means to carry out transformation of XML-encoded data [8].

As well as allowing the binding of pure-functional Haskell operations at the
‘mediation’ level between services (as shown for instance in the second queue with
[B], a list of elements typed B, being transformed into (), the singleton type),
we should like to go further in adding operations to workflow primitives. Firstly,
we should like to bind Haskell functions to ‘If-Then-Else’ constructs, allowing
us to form an operation like ‘Trigger’ (in the two Queue services) directly from
a WSDL-described service without non-deterministic outputs. Furthermore, we
should like to bind functions to the ‘Split’ and ‘Join’ primitives so that informa-
tion can be propagated forward and consolidated through these features without
the use of global variables, as shown in the diagram.

47

B-

Doc Loader

A

LowPriority
Enqueue

3Queue<DocId>

HighPriority
Enqueue

DocId

B-Recogniser

Doc

Reference
Finder

[DocId]

Correlation
Reasoner

[DocId]

Relational
Reasoner

B Reference
Oracle

A-B
Colocated
Reference

Oracle

[B]

B

(Evidence, [((B, _, A), Evidence)])

([Evidence], [((B, _, A), Evidence)], [(C, [((B, _, C), Evidence)])])

Combination

()

(Evidence, [(C, [((B, _, C), Evidence)])])

[C]

B-C
Relation

Repository

MedPriority
Enqueue

Trigger

Doc

[B]

Duplicate Removal
and Consolidation

Queue
Enqueue Trigger

[B]

[B] ()

()

() ()

[DocId]

[DocId]

(Evidence, [((B, _, A), Evidence)],
 [(C, [((B, _, C), Evidence)])])

Acknowledgements

This work was carried out within the AKT project (http://www.aktors.org),
sponsored by the UK Engineering and Physical Sciences Research Council (grant
GR/N15764/01), and the Dot.Kom project, sponsored by the EU IST asp part of
Framework V (grant IST-2001-34038). Also to be acknowledged are the students
working on the CASheW-s project: Ravish Bhagdev, Xian Liu, Atheesh Sanka,
Andrew Hughes and Simon Foster whose HAIFA project is being continued here.

48

References

1. CASheW-s engine project. http://savannah.nongnu.org/projects/CASheW-s-engine.
2. Fabio Ciravegna, Sam Chapman, Alexiei Dingli, and Yorick Wilks. Learning to

harvest information for the semantic web. In Proceedings of the First European
Semantic Web Symposium, May 2004.

3. IBM et al. Business process execution language for web services version 1.1.
http://www-128.ibm.com/developerworks/library/ws-bpel, 2003.

4. Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. H/Direct:
A binary foreign language interface for Haskell. In Proc. 3rd ACM SIGPLAN
International Conference on Functional Programming (ICFP-98), ACM SIGPLAN
Notices. ACM Press, 1998.

5. Simon Foster. HAIFA : An interoperability framework for Haskell. MEng
Dissertation, Department of Computer Science, University of Sheffield, 2004.
http://www.dcs.shef.ac.uk/teaching/eproj/ug2004/abs/u1sf.htm.

6. Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge University
Press, 2003.

7. David J. Mandell and Sheila A. McIlraith. Adapting BPEL4WS for the Semantic
Web: The bottom-up approach to web service interoperation. In Proc. 2nd Intl.
Semantic Web Conference (ISWC2003), 2003.

8. Barry Norton. Eclipse as a development platform for semantic web services. Eclipse
Technology Exchange (eTX04), 18th European Conference on Object-Oriented
Programming (ECOOP-2004), 2004.
http://www.dcs.shef.ac.uk/∼barry/CASheW-s/Norton04.pdf.

9. Barry Norton, Sam Chapman, and Fabio Ciravegna. Developing a service-oriented
architecture to harvest information for the semantic web. In Proc. 1st AKT Work-
shop on Semantic Web Services.

10. Barry Norton, Gerald Luettgen, and Michael Mendler. A compositional semantic
theory for synchronous component-based design. In Proc. 14th Intl. Conference on
Concurrency Theory (CONCUR’03), volume 2761 of LNCS, 2003.

49

Position Paper for the First AKT Workshop on
Semantic Web Services

Birgitta König-Ries1 and Michael Klein2

1 Institut of Computer Science, Friedrich-Schiller-Universität Jena, D-07743 Jena,
Germany, koenig@informatik.uni-jena.de

2 Institute for Program Structures and Data Organization, Universität Karlsruhe,
D-76128 Karlsruhe, Germany, kleinm@ipd.uni-karlsruhe.de

1 The DIANE Service Description

The goal of the DIANE project1 is it to enable automatic resource sharing in
dynamic environments, more precisely in ad hoc networks. The work is based
on the paradigm of service oriented computing. One major prerequisite to allow
for automatic resource sharing in such a system is the ability to automatically
discover and bind services. This in turn requires semantic service descriptions
and appropriate methods to match service offers and requests.

Since existing service description languages, in particular OWL-S, did not
provide all that is necessary for automation, we have developed our own de-
scription language, the DIANE Service Description (DSD). In our opinion, this
language prototypically realizes all the functionality that is needed from a se-
mantic service description.

A major enhancement of DSD over OWL-S is the explicit distinction between
service offers and requests. While in OWL-S (and most other proposals), service
requests are formulated as descriptions of the ideal service, DSD allows for a more
flexible, yet at the same time more precise description of what is needed. Instead
of specifying one instance (namely the ideal one) and leaving it to the matcher to
determine how close any given offer is to that request, in DSD, a requestor will
specify a fuzzy set of acceptable services. This specification explicitly encodes
the user’s preferences so that the matcher is able to unambiguously decide how
well a service offer matches the request.

A second major difference of DSD from other approaches is its pure state-
orientation. Instead of modeling message flow and state change separately as
OWL-S and WSMO do, DSD describes services exclusively by their state change.
The message flow is encoded in these effects by the introduction of input and
output variables. These variables are bound during the matching process. This
approach has two advantages: First, the semantics of the service are captured
more clearly, since the influence of input variables on the effect is made explicit.
Second, it allows to invoke services that offer the desired functionality but use a
different interface then the one envisioned by the requestor.

1 http://www.ipd.uka.de/DIANE/en

50

2 Tools from the DIANE Project

Within the DIANE project, we are developing not only the language itself, but
also a number of accompanying tools.

– A Microsoft VISIO template is available that allows even unexperienced
users to graphically develop DSD descriptions. These are then automatically
translated into a formal representation.

– Transformation tools that transform the formal representation for example
in a java based one. These java classes are then used by the other components
of the system.

– A matcher that takes full advantage of the features of DSD is currently being
developed. A preliminary version with limited capabilities is available, the
full matcher will be realized by the beginning of 2005.

– A simulation environment, DIANEmu, that allows for extensive testing of
service discovery and invocation in a dynamic environment, is available, too.

– Finally, we offer an execution framework, i.e. a middleware platform.

3 Questions to be Addressed at the Workshop and
Challenges for Semantic Web Services

– What are the key features each description language for semantic web ser-
vices should possess? Which of these features are still lacking from current
approaches?

– Do we really need powerful reasoning mechanisms for semantic web services?
Can’t matching be done without them?

– A unified world ontology is certainly not realistic. How can we handle a
multitude of small (and possibly overlapping) ontologies?

– Will there be ”the one” description language? If not: How can co-existing
solutions be used in a unified way (or: Given a request expressed in OWL-S,
will I be able to find a service described in WSMO?)

About the Authors

Birgitta König-Ries got her PhD from the University of Karlsruhe in 1999.
After 3 years as a postdoctoral research assistant at the University of Louisiana
at Lafayette and Florida International University, she returned to Germany.
After a few years as head of the mobile information systems group at Karlsruhe
University, she has recently joined the Computer Science Department of the
Friedrich-Schiller-University in Jena. Her research is focused on resource sharing
in dynamic, in particular mobile environments.

Michael Klein studied computer science at the University of Karlsruhe
in Germany. Since 2001, he is working towards his PhD at the Institute for
Program Structures and Data Organization at the University of Karlsruhe. His
main research area is semantic service descriptions.

51

Demo Papers

OntoSearch: a Semantic Web Service to Support the
Reuse of Ontologies1

Edward Thomas, Yi Zhang, Joe Wright, Craig McKenzie, Alun
Preece, Derek Sleeman

Department of Computing Science, University of Aberdeen
Aberdeen, AB24 3UE

{ethomas, yzhang, jwright, cmckenzi, apreece, dsleeman} @
csd.abdn.ac.uk

This document provides an overview of the development of OntoSearch, an
ontological search engine designed to help users find RDF based ontological
information on the Semantic Web. It uses the Google API to search several
million documents on the Semantic Web with supporting servlets to provide
summary information & various visualizations of the documents found.

1. Overview and Motivation

Finding a suitable ontology from the Internet is a hard task because of the difficulty
of separating ontological data from the mass of instance data on the Semantic Web
and quickly evaluating its suitability. There is still no good tool to handle this
problem. Google offers a powerful web search engine. However, with regard to
ontology searching, it has its own problems, such as a lack of visualisation facilities.
Using the Google API2 give us a chance to develop our own tool (OntoSearch[2]) to
search the relevant ontology files to meet the user's requirements.

2. Conceptual design of OntoSearch

The concept of OntoSearch is to facilitate knowledge reuse by allowing the huge
number of ontology files available on the Semantic Web to be quickly and effectively
searched using an online tool. The search results contain both ontologies and other
SWDs to allow knowledge engineers to browse relevant documents to find
supplementary information on a subject if a complete ontology is not available.

To allow fast development of a system it was decided to use the Google search
engine through its API to search the available Ontologies in the RDF(S)3, OWL4 and
DAML (+OIL)5 representational formalisms. Once the Google results have been
returned, each document listed is examined and summary information identifying
where the terms matched the returned documents and statistical data about the size of

1 This work is part of the Advanced Knowledge Technology (AKT) [1] project, which is
funded by EPSRC

2 Google APIs: http://www.google.com/apis
3 RDF(S): http://www.w3.org/TR/rdf-schema/
4 |OWL: http://www.w3.org/TR/owl-features/
5 DAML (+OIL): http://www.w3.org/TR/daml+oil-reference

52

the ontology is presented to the user to allow quick evaluation on the suitability of a
large number of potential ontologies and other Semantic Web Documents (SWDs).

3. Outline of implementation

OntoSearch is implemented as a number of specialised servlets which work
together to provide the functionality of OntoSearch. This architecture allows
additional features to be plugged into the basic system quickly and easily.

The SearchServlet is responsible for querying the Google database using the
Google API object, it takes the users query either through a web form or as an HTTP
GET request and returns a list of matching ontology files from Google, either as an
HTML file or an RDF file (depending on a variable set in the user's request).

If an HTML file is returned, this contains several embedded iframe elements which
each reference the DetailsServlet. This accesses each document and examines the
ontology returned and displays a list of where the search terms were found in the
ontology, gives general statistics about the size of the ontology and lists the
namespaces used in the ontology.

Once a file has been found which appears to suit the purpose, a variety of
visualisations are available through links on the results page, either in a format
provided by Notation 3 (N3) or as a hyperbolic tree showing the structure of the
ontology. The visualisation is particularly useful for examining an entire ontology
quickly, browsing through multiple classes and linkages to quickly see the underlying
structure.

4. Discussion

The facilities provided by the current version of OntoSearch have been used by
several people within AKT, and over 2000 searches have been performed. However
there are several areas of the system which we intend to develop further.

To address these points, a new version of OntoSearch is currently being designed
which will preserve the unique functionality of OntoSearch and to address the short-
comings identified to provide a more valuable tool. It will allow the data to be
searched for a far wider set of parameters (including some aspects of structure), and
the results returned will be more focused as an enhanced scoring mechanism will
reflect the important aspects of the user's request.

The current HTTP API will be extended to allow the new features to be made
available to other applications as a web service, and the basic RDF results which can
be accessed at OntoSearch will be extended to include the full range of information
available through the web interface.

References

1. Advanced Knowledge Technology (AKT project) http://www.aktors.org
2. Zhang Y, Vasconcelos W, and Sleeman D. OntoSearch: An Ontology Search

Engine (AI-2004). The Twenty-fourth SGAI International Conference on
Innovative Techniques and Applications of Artificial Intelligence, Cambridge.

53

	workshop_papers.pdf
	workshop_papers.pdf
	IRS-OWLS_AKT.pdf
	IRS-OWLS_AKT.pdf
	1 Introduction
	2 Background
	3 OWL-S Process and Web Service
	Functional Parameters
	Goals and Web Services
	Composition

	4 Translation
	5 Summary
	References

