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Abstract. Automating the process of B2B partner discovery and con-
tract negotiation is expected to significantly optimise company processes.
Numerous existing proposals for discovery follow the approach where
service descriptions are expressed by concept expressions in description
logics (DL), and description matching is performed by well-known DL
inferences. However, these approaches do not always produce results one
might intuitively expect, due to a gap between the formal semantics of
service descriptions and human intuition. In this paper, we address this
problem by analysing the connection between the modeler’s intuition and
formal logic used to operationalise discovery. Furthermore, we show how
to correctly map the intuition into description logic constructs. Finally,
we investigate different inferences used to realise service discovery.

1 Introduction

In the vision of Semantic Web Services [5, 9], online services are annotated with
semantic descriptions, thus allowing to automate various business processes such
as service discovery and composition. The semantic description specifies the func-
tionality of a service, both in terms of the business value that the service provides
and in terms of the business interactions involved. The vocabulary for express-
ing semantic descriptions is defined by upper-level ontologies such as OWL-S3

and WSMO4. By reusing a common vocabulary, service modelers can produce
semantic descriptions of their services that can be shared and understood on
the Web. Currently, service modelling requires a significant amount of exper-
tise. However, for wide acceptance of Semantic Web Services, modelling should
become easier and more intuitive.

Semantic service descriptions can be used to automate the process of locating
e-business services that meet the needs of the requestor; this process is also
known as semantic service discovery. A framework that aims at automating
discovery requires the following elements:

3 http://www.daml.org/services/owl-s/1.0/
4 http://wsmo.org
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– a language for expressing service descriptions with a formal semantics which
matches the modeler’s intuition.

– matching algorithms capable of reasoning with service descriptions used to
realise the discovery task.

In [4, 2, 13, 8, 14] description logics (DL5) have been used as formal languages
for expressing service descriptions. DLs are closely connected to OWL6, the on-
tology language for the Semantic Web. Hence, using DLs ensures compatibility
with existing ontology standards. Furthermore, the formal semantics of descrip-
tion logics allows precise definition of the semantics of service descriptions. Fi-
nally, discovery algorithms can be formally defined in terms of well-known DL
inferences. Unfortunately, initial experiments show that DL modelling primitives
do not directly correspond to the modeler’s intuition [4], so straightforward mod-
elling of service descriptions is likely to produce counterintuitive results. In this
paper, we present our preliminary methodological guidelines for modelling ser-
vice descriptions. In particular, we focus on the notion of variance. Namely, a
service description usually represents numerous variants of a concrete service
that can be performed. We believe that precise control of variance in service de-
scriptions is crucial to ensure the quality of the discovery process. The main goal
of our work is to provide methodological guidelines to ensure that the formal
semantics corresponds to the modeler’s intuition.

This paper is structured as follows. In Section 2, we informally introduce
the concepts used for modelling service semantics. In Section 3, we show how
to operationalise these concepts in a logical framework. In Section 4, we analyse
different inferences used to realise service discovery and their relationship to
the modeler’s intuition. In Section 5, we discuss the use of these inferences for
discovery and present a new approach to ranking discovery results.

2 Modelling Service Semantics

The term ‘service’ can be used in different ways [15, 11]. In particular, it some-
times refers to an abstract business interaction between two parties, and some-
times to a computational entity with a web service interface. As our notion of
discovery is based on the business-level semantics of a service, we use the term
‘service’ in the first sense.

Following [11], we distinguish between a concrete service instance and an
abstract service class. A service instance corresponds to a contract between a
provider and a requestor, defining all details of a business interaction.

An advertisement or a request for a service can naturally be understood as
a set of service instances acceptable to the provider or the requestor. Hence,
a service description should intuitively be understood as defining a space of
possible service instances. A service description is therefore an abstract class
acting as a template for service instances.

5 We assume the reader is familiar with the basics of description logics. See [1] for an
overview.

6 http://www.w3.org/2004/OWL/
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2.1 Representing Service Instances

We put the examples we use in the context of a logistics scenario, where providers
of shipping services offer transportation of goods between certain locations and
where requestors wish to transport their goods.

In this logistics context, a service instance contains the exact information
about the item to be shipped, the cities of origin and destination and the time
and date when the item should be picked up. Such a concrete service instance
can be represented using a simple relational data model. Table 1 represents a
concrete service instance c1 in a relational form. The service is shipping (1), and
takes place from Plymouth (5) to Bremen (6). Both Plymouth and Bremen are
Locations (3,4). Only one item, p1 , will be shipped (7), and this item is a crate
(2). The properties of p1 , such as weight, width, height and depth, are given
by (8 – 11). Finally, the price of shipping is 250 EUR (12), the package will be
picked up on 01.04.2004 (13) and will be delivered on 04.04.2004 (14).

(1) Shipping(c1 ) (6) to(c1 ,Bremen) (11) depth(p1 , 3 )
(2) Crate(p1 ) (7) item(c1 , p1 ) (12) price(c1 , 250 )
(3) Location(Plymouth) (8) weight(p1 , 50 ) (13) pickUp(c1 , ′01 .04 .2004 ′)
(4) Location(Bremen) (9) width(p1 , 1 ) (14) delivery(c1 , ′04 .04 .2004 ′)
(5) from(c1 ,Plymouth) (10) height(p1 , 2 )

Table 1. A Service Instance

The same service instance is represented as a directed labelled graph in Fig-
ure 1. This notation is compatible with the usual semi-structured data models
such as OEM [10] or RDF [3].
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Fig. 1. A Service Instance Represented as a Directed Labelled Graph

2.2 Variance in Service Descriptions

Service descriptions typically specify numerous different service instances, thus
introducing variance. For example the service provider might support shipping
from all UK cities to all cities in Germany. The appropriate service description
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should then contain service instances covering all possible pairs of source and
destination locations, including e.g. a service instance where shipping is con-
ducted from Plymouth to Bremen, as well as one where shipping is conducted
from Dover to Hamburg (represented in Figure 2). Since the service description
does not constrain all properties (such as weight) to concrete values, this induces
variance.

SI
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from to

PackageX
item

50 kg

weight

. . .

shipping2

HamburgDover

from to

BarrelY
item

25 kg
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Shipping containers from UK to GermanyS :
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50 kg

weight

. . .

shipping2

HamburgDover

from to

BarrelY
item

25 kg

weight

Shipping containers from UK to GermanyS :

Fig. 2. Expressing Variance in Service Descriptions

The above example shows variance which represents intended diversity in
service instances. However, another form of variance is due to incomplete knowl-
edge. Inspired by the model-theoretic semantics of first-order logic, we use the
notion of possible worlds to intuitively explain this kind of variance. Namely,
under open-world semantics, a modeler must explicitly state which service in-
stances are not covered by the service description. For each aspect of the service
instance which has not been fully specified there are several possible worlds, each
one reflecting a particular way of resolving incompleteness.

It is beneficial to separate the variance due to intended diversity from the
variance due to incomplete knowledge at the methodological level. This in turn
influences the way service descriptions are modelled, as well as the way discov-
ery is performed. Variance due to incomplete knowledge is resolved by allowing
many different possible worlds, each resolving unspecified issues in a different
way. Variance due to intended diversity is resolved by allowing alternative ser-
vice instances within one possible world. Hence, given incomplete information is
resolved in a specific way (resulting in a particular possible world), the intended
diversity is reflected by different alternative service instances corresponding to
the service description.

Consider a service description of a service provider which advertises shipping
from all UK cities to all German cities, as illustrated in Figure 3. In every possible
world there will be service instances for shipping from, say, Plymouth to Bremen.
In addition, because the provider has not explicitly stated that he does not ship
to the USA, there will be a possible world which additionally contains service
instances for shipment from Plymouth to Boston. The two kinds of variance are
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Fig. 3. Different Kinds of Variance

reflected by the two dimensions: the horizontal dimension represents resolution
of incomplete knowledge, producing different possible worlds, and the vertical
dimension represents intended diversity, producing alternative service instances
within each possible world.

2.3 The Discovery Phase

Discovery is the task of locating service providers who meet a requestors needs.
Discovery is performed by matching a service description of a requestor to the
service descriptions of potential providers, in order to detect which of them are
relevant. Following the intuition in [14, 11], two service descriptions match if
there is a service instance acceptable for both descriptions. In this case, the
service instance provides a basis for a business interaction between the provider
and the requestor.

If the discovery phase returns a successful match between requestor and
provider, it means that the two parties can potentially do business with each
other. Before the business interaction is actually carried out, direct communi-
cation between the two parties may be necessary to further refine service pa-
rameters. This takes place during a pre-contractual phase, which may include
negotiation [14, 11]. Hence, a match during discovery does not necessarily im-
ply a successful business interaction; it only shows the potential for such an
interaction. In this paper we focus on discovery only, leaving negotiation and
pre-contractual interaction outside of our scope.
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3 Using Logic to Operationalise Discovery

In this section we operationalise the intuition from Section 2 in the framework
of description logics, and thus obtain a platform for service discovery.

3.1 From Intuition to Logic

To bridge the gap between the intuition and formal logic, we map the notions
from Section 2 to description logic constructs in the following way:

– A service description maps to a set of DL-axioms D = {φ1, φ2, . . . , φn}. Some
of the axioms φi in D impose restrictions on an atomic concept S, which
represents the service to be performed.

– Domain-specific background knowledge maps to a knowledge base KB that
contains all relevant domain-level facts.

– A possible world resolving incomplete knowledge issues in a particular way
maps to a single DL model I of KB ∪ D.

– A service instance maps to a relational structure in I.
– The service instances that are acceptable w.r.t. a service description D map

to the individuals in the extension SI of the concept representing the service.
– Variance due to intended diversity is reflected by SI containing different

individuals.
– Variance due to incomplete knowledge is reflected by KB ∪D having several

models I1, I2, . . . .
– Matching a provider’s service description Dp against a requestor’s service

description Dr w.r.t. a domain knowledge base KB is captured by a boolean
function match(KB ,Dr,Dp), which specifies how to apply DL inferences to
perform matching.

In contrast to [4], our approach makes an explicit distinction between the
service description D and the concept description S, as we allow the axioms φi

in D to restrict concepts other than S. Furthermore, note that the concept S is
equivalent to the unary predicate S(x) in first-order logic.

3.2 Basic Elements for Modelling Service Semantics

The axioms in a service description D constrain the set of acceptable service
instances in SI . These restrictions usually constrain various properties of a ser-
vice instance. We now analyse the various ways in which a property can be
constrained, and show how to express this in DL.

– Variety

A property can either be restricted to a fixed value or it can range over in-
stances of a certain class. This can be expressed with qualifying DL concept
constructors, such as ∀ r.{i} and ∀ r.C, respectively. For any acceptable ser-
vice instance, the value of such a property must either be a certain individual
or a member of a certain class.
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– Availability

A property can either be obligatory, requiring all acceptable service instances
to have a value for it, or optional, allowing service instances without a prop-
erty value. By using existential quantification of the form ∃ r.⊤ service in-
stances are required to have a value for r.

– Multiplicity

A property can either be multi-valued, allowing service instances with sev-
eral different property values, or single-valued, requiring service instances to
have at most one value for the property. By the number restriction ≤ 1 r, a
property can be marked as single-valued.

– Coverage

A property can be explicitly known to cover a range. If it is range-covering,
the service description enforces that in every possible world, for any value in
the range, there is an acceptable service instance with this property value.
This introduces variance due to intended diversity. This can be expressed
by including an additional axiom of the form C ⊑ ∃ r−.S in D, where the
concept C is the range of the property r to be covered7. Conversely, a non-
range-covering property induces variance due to incomplete knowledge, as
in different possible worlds different subsets of the range will be covered.

We illustrate different aspects of property restrictions by the following ex-
ample. It consists of a requestor’s service description Dr, and two service de-
scriptions DpA

and DpB
specified by potential providers A and B, as well as a

domain knowledge base KB .

Dr = { Sr ≡ Shipping ⊓ ∃ from.{Plymouth,Dover,Dublin} ⊓
∃ to.{Bremen} ⊓ ∀ payment.EPayment ⊓
∃ item.(Package ⊓ ∀ weight. =18) ,

Shipping ⊑ = 1 item ,

{Plymouth,Dover,Dublin} ⊑ ∃ from−.Sr ,

EPayment ⊑ ∃ payment−.Sr }

DpA
= { SpA

≡ Transportation ⊓ ∃ from.UKCity ⊓
∃ to.GermanCity ⊓ ∃ payment.CreditCard ⊓
∀ item.(∀ weight. ≤20) ,

UKCity ⊑ ∃ from−.SpA
,

GermanCity ⊑ ∃ to−.SpA
,

CreditCard ⊑ ∃ payment−.SpA
}

DpB
= { SpB

≡ Shipping ⊓ ∃ from.USCity ⊓
∃ to.USCity ⊓ ∃ payment.CreditCard ⊓
∀ item.Container ,

USCity ⊑ ∃ from−.SpB
,

USCity ⊑ ∃ to−.SpB
,

CreditCard ⊑ ∃ payment−.SpB
}

7 This is obtained by transforming the axiom ∀x : C (x) → ∃y : [r(y, x) ∧ S(y)] into
description logic by standard manipulation of first-order formulae.
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KB = { Package ⊑ Container , P lymouth : UKCity ,

Shipping ⊑ Transportation , Dover : UKCity ,

Bremen : GermanCity }

Through the description Dr, a requestor asks for a service capable of shipping
a package weighing 18 kg from Plymouth, Dover or Dublin to Bremen, accepting
any kind of electronic payment. Provider A offers transportation for freights
weighing at most 20 kg from cities in the UK to cities in Germany and requires
payment by credit card. Provider B offers a similar kind of service between cities
in the USA, with less restrictions on the items to be shipped. We now discuss
different types of property restrictions employed in this example.

Variety : The requestor restricts the to property to a fixed value, i.e. it requires
the destination to be Bremen. In the descriptions of the providers the same
property ranges over classes. For the origin location, the requestor restricts the
range of the property from to a set of explicitly specified values.

Availability : The providers make the payment property obligatory by existential
quantification. The requestor does not necessarily require payment specification
in the service instance; however, if payment is specified, it must be a kind of
electronic payment.

Multiplicity : In most cases, it makes sense to declare properties as single-valued
by functional constraints in the domain ontology. Sometimes there are natural
multi-valued properties, such as item. In the example, the requestor imposes an
additional constraint making item single-valued, specifying that he wants to ship
only one item.

Coverage: The origin and destination locations of the providers cover a range.
For example, by an additional axiom in DpA

, the provider A requires any UK
city to occur as a value of the property from in some service instance. In this way
the provider explicitly states that they support shipping from all UK cities8.

4 Matching Service Descriptions

We now discuss the application of DL inferences to perform service discovery.
To better understand the semantics of the inferences we start by explaining how
variance, introduced in Section 2, influences the matching process.

4.1 Treating Variance due to Incomplete Knowledge

There are two possible ways to deal with variance due to incomplete knowledge in
the matching process. The first is to ask if there is a way of resolving unspecified
issues such that the two service descriptions accept a common service instance.
Let α denote the actual formula used to check whether two service descriptions

8 In Section 5.1 we show that such an axiom for specifying range-coverage is insufficient
when there are several range-covering properties in one service description.
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match. Then the above question may be answered by checking the satisfiability
of KB ∪ Dp ∪ Dr ∪ {α}, i.e. whether KB ∪ Dp ∪ Dr ∪ {α} has a model. In other
words, we check whether Dr and Dp specify a common service instance in at
least one possible world.

The second possibility is to ask whether the requestor and provider have
common service instances, regardless of how unspecified issues are resolved. This
is equivalent to checking whether KB ∪ Dp ∪ Dr |= α, i.e whether α is satisfied
in every model of KB ∪ Dp ∪ Dr. In other words, we check whether Dr and Dp

specify a common service instance in each possible world.

4.2 Treating Variance due to Intended Diversity

There are three ways of checking whether intended diversity allows a common
service instance, each resulting in a different matching formula α. The first pos-
sibility is to ask if there is a service instance acceptable to both the requestor
and the provider. This amounts to checking whether the intersection Sr

I ∩ Sp
I

is non-empty, and can be performed by α = Sr ⊓ Sp 6⊑ ⊥.

Two other possibilities are to check whether the service description of the re-
questor is either more specific or more general than the one of the provider. This
amounts to verifying whether Sr

I ⊆ Sp
I or Sp

I ⊆ Sr
I , and can be performed by

α = Sr ⊑ Sp or α = Sp ⊑ Sr respectively.

4.3 Inferences for Discovery Matching

Substituting the different definitions of α into the two approaches applying α

results in several possible inferences. We discuss some of these alternatives on a
simplified version of the example from Section 3.

Dr = { Sr ≡ Shipping ⊓ ∃ from.{Plymouth,Dublin} ,

P lymouth : ∃ from−.Sr ,

Dublin : ∃ from−.Sr }

DpA
= { SpA

≡ Shipping ⊓ ∃ from.UKCity ,

UKCity ⊑ ∃ from−.SpA
}

DpB
= { SpB

≡ Shipping ⊓ ∃ from.USCity ,

USCity ⊑ ∃ from−.SpB
}

KB = { Plymouth : UKCity , Shipping ⊑ = 1 from }

For each different inference we provide formalisations in first order logic and
in description logic. The latter can be performed by any description logic reasoner
capable of checking knowledge base satisfiability.
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Satisfiability of Concept Conjunction We begin with the inference that
follows directly from the intuition of a non-empty intersection of the sets of
service instances associated to the two service descriptions, as proposed in [2,
13, 14]. In the following, the symbol ι represents an individual not occurring in
KB , Dr or Dp.

Inference: Satisfiability of Concept Conjunction
Intuition: Is there a way to resolve unspecified issues such that Dr and

Dp specify some common service instance?
Formula: KB ∪ Dr ∪ Dp ∪ {∃x : Sr (x) ∧ Sp(x)} is consistent

⇔
KB ∪ Dr ∪ Dp ∪ {ι : (Sr ⊓ Sp)} is satisfiable

This is the weakest check with respect to both kinds of variance. Along
the dimension of intended diversity, it is sufficient to find one common service
instance. Along the dimension of incomplete knowledge, it is sufficient to find
one possible world in which such a service instance exists regardless of all other
possible worlds.

Applied to the example above, match(KB ,Dr,DpA
) yields a positive result

because the concept Sr ⊓ SpA
is satisfiable w.r.t. KB ∪ Dr ∪ DpA

. This matches
our intuition, since the restrictions of the two service descriptions are not con-
tradictory. On the other hand, match(KB ,Dr,DpB

) also yields a positive result.
At first glance, this looks counterintuitive and seems to be a false positive match
since none of the cities involved are US cities. However, this does not contradict
the intuitive meaning we gave to the inference, which is checking for an exis-
tence of a common service instance in one possible world. The concepts UKCity

and USCity are not explicitly defined as disjoint. Hence, in some models of
KB ∪ Dr ∪ DpB

they can have a common instance. To remedy this problem,
modelers should impose additional constraints to reduce variance due to incom-
plete knowledge. Unfortunately, axioms such as UKCity⊓USCity ⊑ ⊥ are often
not found in domain ontologies, thus preventing the effective use of this inference.

Entailment of Concept Subsumption Another inference that has been ap-
plied to matchmaking for discovery in e.g. [8] or [7] is checking for subsumption,
either of the requestor’s description by the provider’s or vice versa.

Inference: Entailment of Concept Subsumption (Specialised Request)
Intuition: Do the service instances of Dp encompass the service in-

stances of Dr, regardless of how unspecified issues are re-
solved?

Formula: KB ∪ Dr ∪ Dp |= ∀x : Sr(x) → Sp(x)
⇔
KB ∪ Dr ∪ Dp ∪ {ι : (Sr ⊓ ¬Sp)} is unsatisfiable
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Inference: Entailment of Concept Subsumption (Generalised Request)
Intuition: Do the service instances of Dr encompass the service in-

stances of Dp, regardless of how unspecified issues are re-
solved?

Formula: KB ∪ Dr ∪ Dp |= ∀x : Sp(x) → Sr(x)
⇔
KB ∪ Dr ∪ Dp ∪ {ι : (Sp ⊓ ¬Sr)} is unsatisfiable

In contrast to Satisfiability of Concept Conjunction this check is very strong,
since it requires one of the service descriptions to be more specific than the other
for all service instances in all possible worlds. In [8] and [4], specialisation has
been denoted as PlugIn-match and generalisation as Subsumes-match. Neither
of the directions in which subsumption can be applied works in our example, i.e.
neither match(KB ,Dr,DpA

) nor match(KB ,DpA
,Dr) yields a positive result.

This is because neither of the two service descriptions is more specific or more
general than the other. The requestor accepts shipping from Plymouth or Dublin
and the provider accepts shipping from UK cities. Since Dublin is not in the UK,
neither of the two associated sets of service instances fully contains the other in
every possible world.

Entailment of Concept Non-Disjointness To overcome the deficiencies of
the above matching formulas we propose the following one, which exploits in-
complete knowledge in service descriptions without being too weak.

Inference: Entailment of Concept Non-Disjointness
Intuition: Do Dr and Dp specify some common service instance, regard-

less of how unspecified issues are resolved?
Formula: KB ∪ Dr ∪ Dp |= ∃x : Sr(x) ∧ Sp(x)

⇔
KB ∪ Dr ∪ Dp ∪ {Sr ⊓ Sp ⊑ ⊥} is unsatisfiable

This check is stronger than Satisfiability of Concept Conjunction because it
checks for an intersection in every possible world. However, it is not as strong as
Entailment of Concept Subsumption because it does not require one of the sets of
acceptable service instances to be fully contained in the other set. In our example,
match(KB ,Dr,DpA

) yields a positive result whereas match(KB ,Dr,DpB
) does

not, thus matching our intuition. By specifying that the property from is range-
covering, provider A ensures that there is a service instance for shipping from
each UK city in every possible world. Thus a service instance for shipping from
Plymouth yields a match since Plymouth is a UK city in each possible world.
Furthermore there is at least one possible world in which Plymouth is not a
US city, since it has not been explicitly specified as such. Therefore the service
description of provider B does not match with the service description of the
requestor.
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5 Applying Matching to Discovery

Having provided an intuitive and formal framework for describing service se-
mantics, we now discuss its practical usage.

5.1 Practicality of Various Inferences

Satisfiability of Concept Conjunction is a very weak check which will often yield
false positive matches, mainly due to incompleteness in domain ontologies and
service descriptions. However, it can still be used as a first check to filter out
incompatible service descriptions which cannot have a common service instance
under any circumstances.

Entailment of Concept Non-Disjointness requires modelers to be careful and
to include all important information in each possible world. This can be achieved,
for example, by range-covering property restrictions. Unfortunately, expressing
range-coverage using DL axioms, as described in Section 3, lacks expressiveness if
several properties should simultaneously cover a range. Applied to the example
in Section 3.2, match(KB ,Dr,DpA

) does not yield a positive result. Namely,
properties from and to occurring in DpA

are range-covering, but this is stated
separately for each property: DpA

does not require all combinations of possible
property values to be covered. To express the coverage of a range C1 × C2 for
two properties at once, one needs the formula ∀x1, x2 : C1(x1) ∧ C2(x2) → ∃y :
[r1(y, x1)∧ r2(y, x2)∧S(y)]. Unfortunately this formula cannot be translated to
DL as it is no longer in the two-variable fragment of first-order predicate logic.
We are currently investigating whether the combination of DL with rules, as
suggested in [6], can provide a solution to this problem.

From the discussion in Section 4, we argue that subsumption is too strong for
the general case. In the following subsection we propose a subsumption-based
ranking mechanism that supersedes Entailment of Concept Subsumption as an
inference for discovery.

5.2 Ranking Service Descriptions

Discovery may result in a service requestor locating several possible service
providers, each able to provide a different set of service instances, with dif-
ferent service parameters. The requestor (and providers) may have preferences
over the choice of parameter; for example, the requestor may prefer to ship from
Plymouth, though other ports are possible too. However, preference information
is often sensitive and is therefore rarely revealed explicitly [12]. For this reason,
a discovery framework should not require the modeler to reveal such informa-
tion. It can be used implicitly in negotiations between two entities which have
been put in contact with each other through the discovery process. We show
that there is a way to rank potential service providers without revealing pref-
erence information by defining a partial order for service descriptions based on
subsumption.
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To see this in practice, let us return to the example from Section 3.2 and
slightly modify it. A requestor formulates a service description Dr that accepts
shipping from one of the cities {Plymouth,Portsmouth,Dover}. In any nego-
tiation situation the requestor prefers Plymouth while Portsmouth is second
choice. Now suppose provider X advertises the availability of {Plymouth,Dover}
as origins, provider Y advertises the availability of {Edinburgh,Dover}, and
provider Z advertises the availability of {Portsmouth,Newcastle}. Even with-
out any knowledge about the preferences of the requestor, discovery can provide
some order on the matches as to which is potentially most useful. Of the alterna-
tives offered by Y , Edinburgh is of no interest, leaving Dover . However, provider
X offers Plymouth and Dover . Hence, provider X offers a superset of relevant
options, so X is ‘better’ than Y . X also provides more alternatives than Z. How-
ever, the discovery mechanism has no access to the requestor’s preferences, and
Portsmouth could as well be the preferred option as could Plymouth or Dover .
Hence, it can return a list of service providers [X,Y,Z], together with a partial
order {X ≥ Y } to the requestor. The requestor can then assess the maximal
elements in the partial order (in this case, X and Z) and contact one or more of
them.

This example shows that one provider is ‘better’ than another if the variance
it provides, which is relevant to the requestor, is a superset of the other. We
formalise this notion by saying that, for two service descriptions Dp1

and Dp2

specified by providers and a service description Dr specified by a requestor,
Dp1

≥ Dp2
w.r.t. Dr if the following inference yields a positive result.

Inference: Entailment of Partial Concept Subsumption
Intuition: Do the service instances common to Dr and Dp1

encompass
the service instances common to Dr and Dp2

, regardless of
how unspecified issues are resolved?

Formula: KB ∪Dr ∪Dp1
∪Dp2

|= ∀x : Sr(x)∧Sp2
(x) → Sr(x)∧Sp1

(x)
⇔
KB ∪Dr ∪Dp1

∪Dp2
∪{ι : (Sr ⊓Sp2

⊓¬Sp1
)} is unsatisfiable

This relationship defines a partial order on the set of all available service
descriptions advertised by providers9. As the above example shows, there may
be more than one maximal element and more than one minimal element in the
set. In our example, supplier Z is both maximal and minimal.

An interesting property of this partial order is the following: if a description
Dp is such that Sp subsumes Sr, then Dp is a maximal element.10 Researchers
have proposed both concept subsumption and concept intersection as alternative
definitions of matching during discovery, and have argued that subsumption is
preferable. Our partial order is a generalisation of this. A subsumption match will
always be a maximal element in the partial order, and so will be preferable to all

9 Technically, it defines a partial order on the equivalence classes of service descriptions
defined by the equivalence relation Dp1

∼ Dp2
iff Dp1

≥ Dp2
and Dp2

≥ Dp1
.

10 Furthermore, the equivalence class containing it is the top element of the partial
order.
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non-subsumption matches. However, even if no subsumption matches occur in a
given set, we can still define the partial order and determine preferred matches.

6 Conclusion

In this paper, we have described service discovery based on semantic descriptions
of services and DL reasoning. We have given formal service descriptions a clear
intuitive semantics based on the notion of a service instance, whereas a service
description constrains the set of allowed service instances. In this context we
have identified two different kinds of variance that arise in service modelling.
We have shown how variance due to incomplete knowledge can be modelled by
different possible worlds for resolving unspecified issues, and how variance due
to intended diversity can be modelled by several service instances in one possible
world.

We have mapped these intuitive notions into description logics, thus allowing
the discovery framework to be realised with Semantic Web standards, such as
OWL-DL. We have introduced a set of attributes by which restrictions on a
service can be characterised on an intuitive level. We have further shown how
such restrictions can be expressed in description logics.

Based on different ways of handling variance during the matching process,
we have discussed several inferences that can be applied to perform discovery.
In particular, we have proposed Entailment of Concept Non-Disjointness as a
new inference to overcome some deficiencies of inferences proposed in the liter-
ature. We have identified some problems with inferences based on subsumption
reasoning and satisfiability of concept conjunction, that had not been outlined
before. For each of the inferences, we have based the semantics of matching on
our intuitive notions of service instances and variance in order to provide a thor-
ough understanding of the matching process. Furthermore, we have proposed a
new way of ranking service providers, which generalises existing proposals in the
literature.

In future, we shall expand and round up the set of primitives necessary for
modelling service descriptions. Our final goal is to provide modelers with a set
of intuitive modelling primitives with a mapping to a well-defined formalisation.
We hope that such an approach will allow domain experts to model services,
without requiring an in-depth knowledge of logic. Finally, we wish to investigate
different interpretations of variance in service instances, and explore ways to
capture these within a single modelling framework.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, January 2003.

2. J. Gonzales-Castillo, D. Trastour, and C. Bartolini. Description Logics for Match-
making of Services. In Proc. of the KI-2001 Workshop on Applications of Descrip-
tion Logics, volume 44, 2001.



Variance in e-Business Service Discovery 15

3. O. Lassila and R. R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification, http://www.w3.org/TR/REC-rdf-syntax/.

4. L. Li and I. Horrocks. A Software Framework For Matchmaking Based on Semantic
Web Technology. In Proc. of the Twelfth World Wide Web Conference, 2003.

5. S. McIlraith and D. Martin. Bringing Semantics to Web Services. IEEE Intelligent
Systems, 18(1):90–93, 2003.

6. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules.
To appear in Proc. of the 3rd Intern. Semantic Web Conf. (ISWC), 2004.

7. T.D. Noia, E.D. Sciascio, F.M. Donini, and M. Mogiello. A System for Principled
Matchmaking in an Electronic Marketplace. Journal of Electronic Commerce, 2004.

8. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic mathcing of web
service capabilities. In Proc. of the 1st Intern. Semantic Web Conf. (ISWC), pages
333–347, 2002.

9. M. Paolucci and K. Sycara. Autonomous Semantic Web Services. IEEE Internet
Computing, 7(5):34–41, 2003.

10. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange across
Heterogeneous Information Sources. In 11th Conf. on Data Engineering, pages
251–260, Taipei, Taiwan, 1995. IEEE Computer Society.

11. Chris Preist. A Conceptual Architecture for Semantic Web Services. To appear in
Proc. of the 3rd Intern. Semantic Web Conf. (ISWC), 2004.

12. K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan. Dynamic discovery and
coordination of agent-based semantic web services, 2004.

13. D. Trastour, C. Bartolini, and J. Gonzales-Castillo. A Semantic Web approach to
service description for Matchmaking of Services. In Proc. of the First Semantic
Web Working Symposium, 2001.

14. D. Trastour, C. Bartolini, and C. Preist. Semantic web support for the business-
to-business e-commerce lifecycle. In Proc. of the Eleventh Intern. Conf. on World
Wide Web, pages 89–98, 2002.

15. H. Akkermans Z. Baida, J. Gordijn. A Shared Service Terminology for Online
Service Provisioning. To appear in Proc. of the Sixth Intern. Conf. on Electronic
Commerce (ICEC04), Delft, 2004.


